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SUMMARY

Clustered binary data occur commonly in both the biomedical and health sciences. In this paper, we
consider logistic regression models for multivariate binary responses, where the association be-
tween the responses is largely regarded as a nuisance characteristic of the data. In particular, we
consider the estimator based on independence estimating equations (IEE), which assumes that the
responses are independent. This estimator has been shown to be nearly efficient when compared
with maximum likelihood (ML) and generalized estimating equations (GEE) in a variety of settings.
The purpose of this paper is to highlight a circumstance where assuming independence can lead to
quite substantial losses of efficiency. In particular, when the covariate design includes within-cluster
covariates, assuming independence can lead to a considerable loss of efficiency in estimating the
regression parameters associated with those covariates.

1. Introduction

Clustered binary data occur commonly in both the biomedical and health sciences. The clustering
may arise due to subsampling of the primary sampling unit, e.g., when observations are made on
each member within a cluster or group. Alternatively, clustering can arise in longitudinal studies
where repeated observations are made on the same unit across occasions. Whatever the nature of
the clustering, observations within the same cluster are usually (positively) correlated. The focus of
this paper is on regression models for multivariate binary responses, where the expectation of the
response is related to a set of covariates by some known link function. When the responses are
binary, a natural choice is to use a logit link function, although in principal any link functions can
be used. We distinguish between studies where the association within the vector of responses is of
scientific interest, from studies where the association parameters are considered to be a nuisance
characteristic of the data. In the former, the parameters modelling the covariance or the conditional
expectation given other responses are of primary interest, while in the latter interest is focussed
primarily on the regression parameters for the marginal expectations. Regression or marginal
models are the focus of this paper.

When the response is continuous and assumed to be approximately Gaussian, there is a general
class of linear models that are suitable for analyses. However, when the response variable is binary,
fewer methods are available. This is due in part to the lack of a discrete multivariate analogue of the
multivariate Gaussian for the joint distribution of the responses. Thus, likelihood-based methods for
multivariate binary outcomes have only been developed for certain special cases. Recently, there
has been considerable interest in the generalized estimating equations (GEE) approach to analysing
multivariate binary responses (Liang and Zeger, 1986; Zeger and Liang, 1986), which does not
require the complete specification of the joint distribution of the responses. In particular, the
estimator based on independence estimating equations (IEE), which assumes that the responses are
independent, has been shown to be nearly efficient relative to maximum likelihood in a variety of
settings. When the correlation between responses is not too high, Zeger (1988) suggests that this
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estimator should be nearly efficient. In a more recent article that focuses on the bivariate case,
McDonald (1993) concludes that the independence estimator ‘‘may be recommended for practical
purposes whenever the association between paired observations is a nuisance.’” This estimator is
also very appealing, since it can easily be implemented using existing statistical software packages.
In contrast, Zhao, Prentice, and Self (1992) present asymptotic efficiency results that suggest that
when the correlation between responses is high, assuming independence ‘““can lead to important
losses of efficiency.”” In this paper we demonstrate how the paradoxical findings of McDonald (1993)
and Zhao, et al. (1992) can be explained by their choice of covariate design.

The purpose of this paper is to highlight a circumstance where assuming independence can lead
to quite substantial losses of efficiency. In particular, when the covariate design includes a within-
cluster covariate, that is, a covariate that varies within the cluster, assuming independence can lead
to a considerable loss of efficiency in estimating the regression parameter associated with that
covariate. Such covariates can arise in both designed experiments (e.g., higher-order cross-over
designs for carryover effects (Baalam, 1968)) and observational studies. In longitudinal studies,
within-cluster covariates are often called ‘“‘time-varying’ covariates, since they can change from
one occasion of measurement to another. In Section 2 we introduce some notation and discuss the
marginal distribution of the vector of binary responses. Estimators of the marginal regression
parameters, based on independence and generalized estimating equations are described in Section
3. A full likelihood-based estimator is also described. In Section 4, we compare the asymptotic
efficiency of the estimator based on independence estimating equations relative to the optimal
maximum likelihood estimator. Finally, a tractable expression for the limiting asymptotic relative
efficiency of the ““independence’ estimator relative to the GEE estimator is derived.

2. Notation

ConsiderN multivariate binary observations Yy, Y5, ..., Ya, Where Y; = (Y}y, Y2, ..., ¥},,), and
=1, 2, , N indexes clusters. Suppose that each cluster has a Q X 1 covariate vector x;;

assomated w1th Y, where j = 1, 2, ..., m,; indexes units within a cluster. Letting X; = (X;;, - -+ ,

X;,,)' represent the m; X Q matrix of covariates for the ith cluster, the marginal distribution of Y}; is

Bernoulli,

f(ytjlxi) = exp[ y;0,; — log{1 + exp( aij)}]a

where we assume 6; = log{u;/(1 — w;)} = x;;B, and p,(B) = E(Y;) = pr(Y; = 1|x;, B) is the
probability of success on Y; and B is a O X 1 vector of regression parameters. With binary
responses, the logit link function is a natural choice although, in principle, any link function could
be chosen. The w,;(B) can be grouped together to form a vector m,(B) containing the marginal
probabilities of success, p(B) = E(Y,) = (K15 +++ > Msm) - In the preceding, the only assumption
made concerns the marginal distribution of Y;;. In the next section, we consider estimators of B
based on independence and generalized estlmatmg equations. A likelihood-based estimator of B is

also described.

3. Estimating 8
3.1 Independence Estimating Equations
If the responses are naively assumed to be independent, then their joint distribution is

mi

AyilX,) =exp| X Yiib; — > log{l + exp(0;)}|-

The maximum likelihood estimate, B,, is the solution to the independence estimating equations,

LM 2
'ml,

N N
2 ;AiCOV_I(Yi)(yi —u)= 2 Xiy: — mi) =0, (1)

i i=1

where A; = diag[var(Y;y), ..., var(Y,,)].

In spite of the fact that the responses on units within the same cluster are usually (positively)
correlated, ordinary logistic regression maximum likelihood estimation (which assumes the within-
cluster responses are independent) yields estimates which are consistent and asymptotically normal
(Liang and Zeger, 1986). However, the joint likelihood under independence ignores the possible
intra-cluster correlation among the binary responses. Consequently, the inverse of the estimated
information matrix can give inconsistent estimates of the asymptotic variance of the estimated
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regression parameters. To circumvent this problem, Liang and Zeger propose using a robust
estimate of the variance, which is consistent regardless of the true correlation between the re-
sponses. This robust variance was also proposed by Huber (1967), and more recently by White
(1982), and Royall (1986), and is described in the next section. Thus, one very simple approach to
analysing multivariate binary responses is to use ordinary logistic regression, followed by a robust
variance correction.

3.2 Generalized Estimating Equations

With a binary response vector, the generalized estimating equations developed by Liang and Zeger
(1986) and Prentice (1988), simply generalize the independence estimating equations given in (1) by
introducing a ““working” or approximate correlation matrix, ®,(«). This leads to estimating equa-
tions of the form,

N

ui) = 2 X;Aivi_l(yi - p) =0, (2)

i=1

where V, = AR (a)A}’?. These generalized estimating equations yield consistent estimators of the
regression parameters, under only the correct specification of the form of the mean function, u,.
Since e« is unknown, it is usually estimated by defining a my(m; — 1)/2 vector of empirical
correlations, r;, with elements,

_ (Yij - lLij)(Yik - Mik)
Ves(t = ppua — ww)

Tijk

and then using a second set of moment estimating equations similar to (2). In many cases, this leads
to simple noniterative methods for estimating a. Furthermore, the choice of estimator for a has no
effect on the asymptotic efficiency for estimating B (Newey, 1990). Thus, in general, the estimates
(é, B) can be obtained by iterating between a modified Fisher scoring algorithm for 8 and moment
estimation of a.

Finally, if the association between responses has been correctly specified, so that V; = cov(Y,),
then B normalized has asymptotic covariance matrix given by,

lim N[H{'(B)], ®)

where

Mz

H,(B) = (XA V- lAiXi)'

i

Il
-

A consistent estimate of the asymptotic covariance of B is given by Hy (B). However, if the
“working”’ correlation, ®,(a), is misspecified, then B normalized has asymptotic covariance matrix
given by,

lim N[H{'(B)H(B)H: '(B)), 4)

N—>00
where

N
Hy(B) = Z [X;Aivi_lcov(Yi)Vi_lAiXi]-

i=1

A consistent estimate of the asymptotic covariance of B is given by Hy }(B) H,(B)H1 (B), where

N
Hz(ﬁ) = E [X;Aivi_l(yi = )y — ﬁ'i),vi_lAiXi]'
i=1

This estimator is robust in the sense of being consistent even if the ““working’’ covariance, V;, is not
equal to cov(Y,) (Liang and Zeger, 1986). Finally, we note that Zhao and Prentice (1990) and Liang,
Zeger, and Qagqish (1992) have described extensions of the GEE methodology to allow for joint
estimation of the mean and association parameters. The main advantage of the latter approaches is
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that they lead to more efficient estimates of (B, a), provided the model for both the mean and the
association is correctly specified. However, a serious drawback is that B8 may fail to be consistent
when the model for the association is misspecified.

3.3 Maximum Likelihood Estimation

A likelihood-based approach requires the complete representation of the joint probabilities of the
vector of binary responses for each cluster. This joint distribution is multinomial with a vector of
2™ — 1 non-redundant probabilities, =; = E(P;), where

P, = (YnYz‘z te Yz‘(m,. — 1)Yim,., 1= Yil)Yiz e Yim,.— I)Ymi’ e s
1-Y)A-Yy) -1~ Yi(m, - 1))Yim,-)-

The fully parameterized distribution has 2" — 1 parameters. In this section we outline one
parametric description of the joint distribution, that was first suggested by Bahadur (1961), and later
by Cox (1972).

Bahadur (1961) describes the joint distribution in terms of the marginal means, u;, and the
marginal correlations, p; = (p;12 Pi13> - - » Pi12...m,)- Bahadur’s representation of the joint distribu-
tion for Y; can be written as,

f(Yi‘IJ'i’ p) = H .Uv?}ij(l - Mij)liyij
j=1

: (1 + Z Pijk€ij€ir T 2 Pijri€ij€ix€i t *** t Pirn ... m€i1€ia +++ €im, |»
j<k Jj<k<l

(Yy — my)
wheree; = 7J(T—;—; and p. = E(€;€i)s +++ 5 Pi12 - m, = E(€1€:2 + - - €;,,)). Thus, in terms of the
At}

(2™ — m; — 1) marginal correlations, p; = (p;12> Pi13> -+ - » Pi12 .- m,)> the joint distribution of the
responses can be evaluated in closed form. A feature of Bahadur’s representation, however, is that
the marginal correlations must satisfy certain linear inequalities determined by the marginal prob-
abilities. That is, the marginal correlations are constrained by the marginal probabilities.

The marginal probabilities, w;(B), can be modelled in the usual way as a function of x;; and B.
Then, one model for the pairwise and higher-way correlations, p(8, @) = (p;125 P13 +++ » Pi12 --- m)>
is to assume that they do not depend on cluster-level covariates, i.e., p(B, @) = (P12, P13> +++ »
P12 ... m,)- Maximum likelihood estimates of (B, a) can then be obtained by setting the first derivative
of the log-likelihood with respect to (B, a) to zero and solving for (B, &). The likelihood equations
for (B, a) are,

N

N
S(B, @)= 3 S{B, @)= CIW (P, —m,)=0, ®)

i=1 i=1

9 i
" B.a)
found in Lipsitz, Laird, and Harrington (1990), who derive a set of likelihood equations similar to (5)
for the bivariate case. The maximum likelihood estimates of (B, a) can be obtained using a
Newton-Raphson algorithm. Finally, if the model has been correctly specified, (fi, @) normalized
has asymptotic covariance matrix given by,

, and W, = {diag(m;)} — . A more detailed account of the derivations can be

-1

N
lim N( > c;wi—lc[) : (6)
=1

N-—>c0

4. Asymptotic Relative Efficiency

In this section, we examine the asymptotic relative efficiency of GEE estimators of the regression
parameters, 8, when compared to the ML estimator. We assume that the mean structure has been
correctly specified, but allow that the association between responses may be incorrectly specified,
e.g. by incorrectly assuming independence. We consider clustered binary data arising from a simple
longitudinal design with a trivariate response and a two-group design.
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One way to calculate the asymptotic relative efficiency is to specify the true joint distribution of
the binary responses and the covariates. That is, the probability of (Y;, X;) can be written as,

Pr(Y;, X)) = Pr(Y/X,) Pr(X))
and is then fully determined by specifying:

1. The probability distribution of the covariates, X,.
2. The model for the probability of Y, given X;, and (B, «).

For specifying 1 and 2 above, we assume the following model for the marginal expectation of Y;
given X,,

logit(um;) = Bo + Brxi + B2t — 2); t=1,2,3;

where x;, is a dichotomous covariate indicating group membership for the ith observation at the zth
occasion. We consider two different design configurations, one where group is a cluster-level
covariate (i.e., x;; = X, = X;3) and the other where group is a within-cluster or time-varying
covariate. For both cases, each of the possible covariate configurations is assumed to have equal
probability of occurrence. Note, we are assuming that x;, is an external time-varying covariate in the
sense described by Kalbfleisch and Prentice (1980); otherwise, the maximum likelihood and GEE
estimators of the parameters of the marginal model may be inconsistent (A discussion of this point
can be found in Fitzmaurice, Laird, and Rotnitzky, 1993; and Pepe and Anderson, 1994). Finally, the
association between the binary responses is parameterized in terms of the marginal correlations,

P = (Pir2> Pi13> Piz3> Pin2a)-
The parameters of the true model are

Bo =.25; By = —.25; B, = —.25;

pi = (Pi12> Pi13> Piz3s Pi123) = (P> Pza p, 0); where p € (0, .60).

That is, we assume the correlation between Y}; and Y, is of the form p’=#j = k. This corresponds
to the first-order autoregressive correlation pattern so commonly assumed for continuous time
series data. We examine the asymptotic relative efficiency (ARE) of the estimator based on either
independence or generalized estimating equations (assuming common pairwise correlations) relative
to the maximum likelihood estimator, for both the group and time effects. The asymptotic relative
efficiency (ARE) for any element of B is given by the ratio of the corresponding diagonal elements
of (6) and (4). Results are not reported for the intercept term, since it is usually regarded as a
nuisance parameter in this setting.

First we consider the case where group is a cluster-level covariate. The ARE for the time effect
is very close to 1.0, regardless of the strength of the correlation between responses. However, for
the group effect, there is a very discernible loss of efficiency for both the ‘‘independence’ and
“pairwise’” GEE estimators. In Figure 1(a), the ARE for the group effect is plotted against the
correlation parameter, p. The efficiency of both estimators declines with increasing correlation, and
the decline is most notable when the correlation is greater than .4. The decline in efficiency can be
explained by the fact that both the ““independence’ and ““pairwise’” GEE estimators fail to exploit
all the information about the mean or regression parameters in the second and third moment
parameters. Recall that with binary responses the mean parameters are constrained by the higher
order moment parameters, and vice versa (see Prentice, 1988). Note, however, that in terms of their
asymptotic efficiency, the ‘““independence’ and “‘pairwise’”> GEE estimators are almost indistin-
guishable. That is, the ARE of the ‘“‘independence’ estimator relative to the “‘pairwise’> GEE
estimator is almost unity. Next we consider the case where group is a within-cluster or time-varying
covariate. Once again, the ARE for the time effect is very close to 1.0, regardless of the strength of
the correlation between responses. However, for the group effect, there is a substantial loss of
efficiency. Note, in Figure 1(b), that the efficiency of the ““pairwise’” GEE estimator can drop as low
as 60%, and that there is a more notable loss of efficiency for the “‘independence’” estimator. The
efficiency of the ‘““independence’” estimator decreases quite rapidly with increasing correlation
between the responses.

Comparing the ““independence’ estimator relative to the ‘““pairwise’” GEE estimator, the results
in Figure 1(a) and 1(b) demonstrate that their ARE depends on the covariate design. That is, when
the covariate design only includes cluster-level covariates the ARE is very close to 1.0. However,
when the covariate design includes a within-cluster covariate, assuming independence can lead to a
considerable loss of efficiency in estimating the regression parameter corresponding to that cova-
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Figure 1. (a) Asymptotic efficiency of the GEE estimators, relative to the maximum likelihood
estimator, when the true underlying joint distribution has a Bahadur representation (cluster-level
covariate). (b) Asymptotic efficiency of the GEE estimators, relative to the maximum likelihood
estimator, when the true underlying joint distribution has a Bahadur representation (within-

cluster covariate).
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Asymptotic Relative Efficiency
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Figure 2. Asymptotic efficiency of the Exchangeable GEE estimator, relative to the
Independence estimator, for selected values of the intra-cluster correlation for the covariate (and
when T = 5).

riate. Finally, note that these two different covariate designs represent two extremes, one where the
intra-cluster correlation between the x;, values is 1.0 (cluster-level covariate) and the other where the
intra-cluster correlation is zero (within-cluster covariate, with each covariate configurations having
an equal probability of occurrence). In the next paragraph, we explore in more detail how the ARE
depends on both the intra-cluster correlation for the covariate (i.e., corr(x;,, x;), ¢ # t') and the
correlation between the responses.

Following the approaches of Zhao, et al. (1992) and Lee, Scott, and Soo (1993), we consider the
simple case of a scalar parameter, i.e., where there is only a single covariate (and no intercept). We
assume the following model for the marginal expectation of Y; given X,

logit(p;) = BX;s; t=1,2,...,T.

Furthermore, we assume that p,,, = p, s # £, and arbitrarily fix the higher-way correlations to zero.
Next, we assume that X; has a multivariate normal distribution, with zero mean vector, and positive
definite covariance matrix X; = {(1 — r)I + rJ}, where Jis a T x T matrix of onesand lisaT x T
identity matrix. Then the asymptotic relative efficiency of the “‘independence’” estimator relative to
the “‘exchangeable’” GEE estimator is

, 2
( N1 XAV lcov(Y) VT lAiXi)( Ny X;Aixi)
ARE = lim {

N—x

2
| ( iy xz!AiVi_lAixi) ( M, X:AiCOV(Yi)AiXi)

2
(s xax)
= lim ;

{ ( Efi 1 XiAcov™ I(Yi)Aixi) ( Ny X;Aicov(Yi)Aixi)
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since V; = cov(Y;) when the association between responses has been correctly specified.
In order to derive a tractable expression for the limiting ARE, we consider the special case where
B = 0, and thus A; = %I. Then, by the strong laws of large numbers, as N — oo,

1 T
— > XIAX; "L —;
NE T

1y T
— > X/A,cov(Y)AX; *PL — (1 + (T — 1)pr);
N 2 4

) T(1+(T-2)p—(T-1)pr)
l 'Acov H(Y)AX; *PL —
N2 XiA,cov™ (Y)AX; 2 4 1-p)A+(T-1)p)

i

Mz

Thus, as N — o,

(1=p)A+(T—1)p)
1+ (T = Dpr)1 +(T=2)p — (T —1)pr)”

ARE P

This limit is a multivariate generalization of the one derived by Lee, et al. (1993) for the bivariate
case and can also be obtained from the covariance expressions derived by Neuhaus (1993). Note that
when either p = 0 or » = 1.0, the ARE is unity. That is, the ARE is 1.0 when either the responses
are independent or X; is a cluster-level covariate. However, if X; is a within-cluster covariate (r <
1.0), then the ARE declines with increasing correlation (p) between the responses. Note that these
results explain the paradoxical findings of McDonald (1993) and Zhao, et al. (1992). McDonald (1993)
considered a covariate design with only cluster-level covariates (» = 1.0), and thus found that
assuming independence results in little loss of efficiency. On the other hand, Zhao, et al. (1992)
considered a covariate design with a within-cluster covariate and » = 0.0, and thus found that
assuming independence results in substantial losses of efficiency. Finally, we note that for fixed p,
the ARE does not decrease monotonically with decreasing ». This is demonstrated in Figure 2,
where the ARE is plotted against p for selected values of the intra-cluster correlation for the
covariate (r) (and when T = 5).

5. Conclusion

In this paper we consider estimators of the logistic regression parameters in models for multivariate
binary responses. In particular, we consider the estimator based on independence estimating
equations, which assumes that the responses are independent. This estimator has been shown to be
nearly efficient when compared with maximum likelihood and generalized estimating equations in a
variety of settings. Thus, one very simple approach to analysing multivariate binary responses is to
use ordinary logistic regression, followed by a robust variance correction. We show, however, that
when the responses are strongly correlated and the covariate design includes a within-cluster
covariate, assuming independence can lead to a considerable loss of efficiency in estimating the
regression parameter associated with that covariate. This result demonstrates that the degree of
efficiency depends on both the strength of the correlation between the responses and the covariate
design. Finally, although these results are asymptotic, Lee, et al. (1993) and Lipsitz, et al. (1994)
report similar findings from a simulation study with small to moderate sample sizes. In conclusion,
we recommend that some attempt should generally be made to model the association between
responses, even when the association is regarded as a nuisance characteristic of the data and its
precise nature is unknown.
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RESUME

Des données binaires agrégées en classes sont fréquentes a la fois dans les sciences biomédicales et
de la santé. Dans cet article, nous considérons les modeles de régression logistique dans le cas de
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réponses binaires multidimensionnelles, ou ’association entre les réponses est considérée pour unc
grande part comme une caractéristique de nuisance des connées. Nous considérons en particulier
I’estimateur basé sur les équations d’estimation indépendantes (IEE), qui suppose que les réponses
sont indépendantes.

Cet estimateur est jugé comme étant 4 peu pres efficace par rapport a la méthode du maximum de
vraisemblance (ML) et aux équations d’estimation généralisées (GEE) dans une variété de con-
textes. Le but de cet article est de présenter une situation o ’hypothése d’indépendance peut
conduire a une perte substantielle d’efficacité. En particulier lorsque les covariables du dispositif
comprennent des covariables intra-classes, ’indépendance peut entrainer une perte considérable
d’efficacité dans I’estimation des coefficients de régression associés a ces covariables.
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