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Longitudinal Data Analysis for Discrete and Continuous
Outcomes

Scott L. Zeger and Kung-Yee Liang
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615 N. Wolfe Street, Baltimore, Maryland 21205, U.S.A.

SUMMARY

Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates
for each of many subjects. One objective of statistical analysis is to describe the marginal expectation
of the outcome variable as a function of the covariates while accounting for the correlation among
the repeated observations for a given subject. This paper proposes a unifying approach to such analysis
for a variety of discrete and continuous outcomes.

A class of generalized estimating equations (GEEs) for the regression parameters is proposed. The
equations are extensions of those used in quasi-likelihood (Wedderburn, 1974, Biometrika 61,
439-447) methods. The GEEs have solutions which are consistent and asymptotically Gaussian even
when the time dependence is misspecified as we often expect. A consistent variance estimate is
presented. We illustrate the use of the GEE approach with longltudmal data from a study of the effect
of mothers’ stress on children’s morbidity.

1. Introduction

Longitudinal data sets are comprised of repeated observations of an outcome variable and
a set of covariates for each of many subjects. For example, in a study of the impact of
mothers’ stress on children’s morbidity, the presence (1) or absence (0) of illness in children
as well as the level of mothers’ stress were recorded daily for a sample of children. One
possible objective in analyzing longitudinal data sets is to describe the marginal expectation
of the outcome, here the probability of illness, as a function of the predictor variables.
Because repeated observations are made on each subject, correlation is anticipated among
a subject’s measurements. It must be accounted for to obtain a correct statistical analysis.

When the outcome variable is approximately Gaussian, a large class of linear models is
available for analysis. Rao (1965), Grizzle and Allen (1969), and Hui (1984) have discussed
methods based on fitting growth curves to the repeated observations for each subject. Here,
each subject’s data are modelled as a simple function of time and the dependence of the
resulting coefficients on the covariates is then assessed. Fearn (1975) discussed a Bayesian
approach to growth curve modelling. Harville (1977) and Laird and Ware (1982) developed
random-effects models in which repeated observations for a subject are assumed to share a
common random component. Laird and Ware’s (1982) discussion is more general, includ-
ing both growth models and random-effects models as special cases. Azzalini (1984)
discussed models in which autoregressive error structure was assumed. Here, the auto-
correlation decreases as a geometric function of the time between two observations. Ware
(1985) has presented an overview of linear models for Gaussian longitudinal data.

This is Department of Biostatistics paper #568, Johns Hopkins University.
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Fewer techniques have been available when the outcome is not approximately Gaussian.
Random-effects models for binary outcomes are the exception. Stiratelli, Laird, and Ware
(1984) and Anderson and Aitkin (1985) have developed a logistic model; Ochi and Prentice
(1984), a probit model; and Koch et al. (1977), log-linear models. Of these, only the logistic
random-effects model allows for time-dependent covariates. Cox (1970) alternatively sug-
gested a logistic regression model for the conditional expectation of binary data given
previous observations. This model corresponds to a Markov chain in which the transition
probabilities depend on the covariates. Korn and Whittemore (1979) have used this method
in a study of the health effects of air pollution.

Zeger, Liang, and Self (1985) proposed a class of Markov “working” models for binary
longitudinal data. They showed that as the number of subjects increased, the regression
coefficients obtained from the working likelihood analysis were consistent and had consis-
tent variance estimates under weak assumptions about the actual time dependence. How-
ever, their models, which explicitly included parameters for the time dependence, could be
used only with time-independent covariates.

The limited number of models for non-Gaussian longitudinal data is partly due to the
lack of a rich class of distributions, such as the multivariate Gaussian, for the repeated
observations for each subject. Hence, likelihood analyses have not been developed except
in the particular cases mentioned above. Even in the binary case where likelihood analysis
is possible, computation is difficult (Stiratelli et al., 1984).

In the regression context with a single observation for each subject, generalized linear
models and quasi-likelihood theory (McCullagh and Nelder, 1983; Wedderburn, 1974)
have extended linear models from the Gaussian case to a broad class of outcomes. In the
quasi-likelihood approach, a known transformation of the marginal expectation of the
outcome is assumed to be a linear function of the covariates. Instead of specifying the
distribution of the dependent variable, we assume its variance is a known function of its
expectation. For example, with binary outcomes we might assume that the logit of the
probability of response, p, depends linearly on the covariates. The variance is just p(1 — p).
This partial specification of the outcome distribution leads to simple techniques for
regression analyses of Gaussian, gamma, Poisson, binomial, categorical, and ordinal data
(McCullagh and Nelder, 1983).

In this paper, we propose a methodology for discrete and continuous longitudinal data
that uses the quasi-likelihood approach. We turn to quasi-likelihood because of the
sparseness of multivariate distributions for non-Gaussian data. We specify that a known
function of the marginal expectation of the dependent variate is a linear function of the
covariates, and assume that the variance is a known function of the mean. In addition, we
specify a “working” correlation matrix for the observations for each subject. This set-up
leads to generalized estimating equations (GEEs) which give consistent estimators of the
regression coefficients and of their variances under weak assumptions about the actual
correlation among a subject’s observations.

Liang and Zeger (1986) recently derived the GEEs discussed here from a different and
slightly more limited context. They assumed that the marginal distribution of the dependent
variable followed a generalized linear model (McCullagh and Nelder, 1983). They proposed
a “working” model in which repeated observations for a subject were assumed to be
independent. They then generalized this “independence working model” to explicitly
account for correlation, giving the GEE.

The broad objectives of this paper are not to give details about quasi-likelihood and its
extension to longitudinal data nor to give technical results about the GEEs. Rather, our
intention is to motivate what we consider to be a widely applicable methodology for
longitudinal data, summarize its advantages and disadvantages, and illustrate its use. Section
2 briefly describes quasi-likelihood. Section 3 applies the quasi-likelihood approach to
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longitudinal data giving the generalized estimating equations (GEE). Section 4 illustrates
the methodology with the stress-morbidity data. The final section discusses problems which
arise in using GEEs and mentions extensions to other situations.

2. Quasi-Likelihood

This section briefly describes the aspects of quasi-likelihood theory used in our development
of the GEE approach to longitudinal data analysis. Quasi-likelihood was first proposed by
Wedderburn (1974) and later examined extensively by McCullagh (1983). It is a method-
‘logy for regression that requires few assumptions about the distribution of the dependent
variable and hence can be used with a variety of outcomes. In likelihood analysis, we must
specify the actual form of the distribution. In quasi-likelihood, we specify only the
relationships between the outcome mean and covariates and between the mean and
variance. This extension is important to our problem in that, except for nearly Gaussian
outcomes, there are few choices for the joint distribution of the repeated values for each
subject. By adopting a quasi-likelihood approach and specifying only the mean—covariance
structure, we can develop methods that are applicable to several types of outcome variables.

To establish notation useful in the next section as well, consider the observations

(vij, xi;) for times t;;, j = 1, ..., n; and subjects i = 1, ..., K. Here y;; is the outcome
variable and x;; is a p X 1 vector of covariates. Let y; be the n; X 1 vector (i, ..., Vi)’
and x; be the n; X p matrix (X;i, . . ., Xi,)’ for the ith subject. Quasi-likelihood has previously

been applied to the regression context where n; = 1 for all /. Hence, in discussing these
results in this section, we drop the subscript j and treat each subject’s data as a scalar.
Define u; to be the expectation of y; and suppose that

mi = h(x;8) (1

where 8 is a p X 1 vector of parameters. The inverse of 4 is referred to as the “link” function
(McCullagh and Nelder, 1983). In quasi-likelihood, the variance, v;, of y; is expressed as a
known function, g, of the expectation, y;, i.e.,

v; = g(u)/é (2)

where ¢ is a scale parameter. The focus of quasi-likelihood is on methods for inference
about 8. Hence, ¢ is treated as a nuisance parameter.
The quasi-likelihood estimator is the solution of the score-like equation system
& o
Sk(ﬂ)‘—‘Zg_Uil(J’i—#i):O, k=1,...,p. (3)

i=1 9Bk
Equations (3) are in fact score equations for 8 when y; has distribution from the exponential
family. Their solution can be obtained by an iteratively reweighted least squares. The
resulting estimator is asymptotically Gaussian under mild regularity conditions (McCullagh,
1983). It also possesses a Gauss-Markov-like optimality in that it is asymptotically the
minimum variance estimator among those with linear influence function. Wedderburn
(1974) and McCullagh (1983) provide details about quasi-likelihood in the regression
context.

3. Generalized Estimating Equations (GEEs) for Longitudinal Data

To apply the quasi-likelihood approach to the analysis of longitudinal data, we must
consider the mean and covariance of the vector of responses, y;, for the.ith subject. We
proceed as in Section 2 but in addition let R;(a) be the n; X n; “working” correlation matrix
for each y;. Note that the observation times and correlation matrix can differ from subject
to subject. R;(a), however, is assumed to be fully specified by the s X 1 vector of unknown
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parameters, «, which is the same for all subjects. Then following the quasi-likelihood
approach, the working covariance matrix for y; is given by

Vi = A/”Ri@)Ai”/¢, 4)

where A; is an n; X n; diagonal matrix with g(u;;) as the jth diagonal element. We refer to
R;(a) as a “working” correlation matrix because we do not expect it to be correctly specified.
We would like estimators that are consistent and have consistent variance estimates even
when R;(a) is incorrect.

Our extension of equations (3) to the longitudinal data case is given by

K

2 D/Vi'S;=0. (5)

i=1
Here S; = y; — w; with w; = (i1, - . ., uin)’ and D; = du;/98. Equations (5) reduce to the
quasi-likelihood equations (3) when #; = 1 for all i. More generally, U;(8, @) = D/ V'S, is
equivalent to the estimating function suggested by Wedderburn (1974) except that the V,’s
here are functions of « as well as 8. Equations (5) are designed to guarantee consistency of
the regression coefficients when the link function is correctly specified under minimal
assumptions about the time dependence. Note that D/V;"' does not depend on the y’s so
that equations (5) converge to 0 and hence have consistent roots as long as ES; = 0. Finally, -
note that for Gaussian outcomes, equations (5) are the score equations for 8.

While the estimating equations now depend on a as well as 8, they can be reexpressed
as a function of 8 alone by first replacing « in equatlons (4) and (5) by a K 1 2-con31stent
estimator, &(Y, B, ¢), and then replacing ¢ in & by a K'”-consistent estimator, oy, B).
Consequently, for any given R;(a), the estimate, B, of 8 is defined as the solution of

-§1 Uii8, &6, #(8)l} = 0. ©

Under mild regularity conditions, Liang and Zeger (1986, Theorem 2) show that as
K —> oo, B is a consistent estimator of 8 and that K'/?(8g — B) is asymptotically multivariate
Gaussian with covariance matrix Vg given by

-1 k K -1
Vg = lim K(Z D’V"‘D) [Z D{V,-“cov(y,-)V,T'D,-]<Z D,~’V,~“D,~)
K—oo i=1 i=1 i=1
)]
= }gm K(VT'VoVTh),

where the covariance of y; is the actual rather than the assumed covariance. Vi can be
estimated consistently without evaluating cov(y;) directly. This is achieved by simply
replacing cov(y;) by S;S/ and a, 8, and ¢ by their estimates in (7). It is interesting to note
that the asymptotic covariance matrix of S8r does not depend on the choice of « and ¢
among those that are K'/>-consistent.

To solve the GEE for Br, we iteratively solve for the regression coefficients and the
correlation and scale parameters, o and ¢. Given an estimate of R;(a) and of ¢, we can
calculate an updated estimate of 8 by iteratively reweighted least squares as described by
McCullagh and Nelder (1983). GLiM (Baker and Nelder, 1978) can be used in this step.
Given an estimate of 8, we calculate standardized residuals, r;; = (y;; — ii;)/v[V1'];, which
are used to con51stently estlmate a and ¢. These two steps are iterated until convergence.
Details on computing 8 and Vr are provided by Liang and Zeger (1986). As in many
quasi-likelihood problems, it is often possible to estimate 8 without estimating ¢ directly.
We require only that the elements of R be multiples of the parameters, a. This is the case
for many choices of practical interest.
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A useful feature of the GEE approach is that it is not necessary for the “working”
correlation matrix to be correctly specified to obtain a consistent and asymptotically
Gaussian estimate, 8r, or for estimating Vi consistently. We require only that « and ¢ be
estimated consistently and that the matrix V; on the right-hand side in equation (7)
converge when divided by K to a fixed matrix. Hence, it is also not necessary that the.
observations for all subjects have the same correlation structure. However, this robustness
property holds only when there is a diminishing fraction of missing data or when the data
are missing completely at random (Rubin, 1976).

There are several choices for the working correlation matrix, R;. The simplest is to
assume R; =1, the n; X n; identity matrix, i.e., that repeated observations are uncorrelated.
For y’s from the exponential family, the GEEs (7) then reduce to the score equations
obtained by assuming repeated observations are independent. The resulting estimator is a
generalization of the one proposed by Zeger et al. (1985) for binary outcomes. A second
extreme case is applicable when observation times are the same for all subjects so that
Ri(a) = R(a) and n; = n. We may then let R(a) be fully unspecified and estimate the
n(n — 1)/2 correlations. The resulting estimator is asymptotically minimum variance
among the class of estimators which satisfy the GEE for different choices of R. Another
choice for many longitudinal studies is to let [R;];x = @, j # k. This is the correlation
assumed in a random-effects model. Finally, R(a) might be chosen so that

12—kl It.. — 1 | <m
R1., = « s ij ikl =
[ I]Jk {O, ltij _ tikl >m’

where #;;, t; are the jth and kth observation times for the ith subject. This is the correlation
structure for a stationary m-dependent process.

Because both Gr and Vy are robust to the choice of R;, confidence intervals for 8 and
other statistical assessments of the model will be asymptotically correct even when R is
misspecified, as we believe will be the case more often than not. Choosing the working
correlation matrix to be close to the actual one, however, increases efficiency as, for
example, in the case when the outcomes are Gaussian.

This GEE approach is currently applicable to longitudinal data analyses with univariate
outcomes for which the quasi-likelihood formulation is sensible. This includes Gaussian,
Poisson, binomial (binary), gamma, and inverse Gaussian variables. In addition, the GEE
approach can be extended to include multinomial and ordinal data which are multivariate
by nature. By choosing R; to be the identity matrix, we can currently use formulations
described by McCullagh and Nelder (1983) for multinomial and ordinal variables. Other
choices of R; need to take into account the multivariate nature of the outcome and will be
discussed elsewhere.

4. Example: Mothers’ Stress—Children’s Morbidity

This section illustrates the GEE approach with data from a study of the association of
mothers’ stress and children’s morbidity. A population of mothers with infants between
the ages of 18 months and 5 years were recruited by Professor Cheryl Alexander of the
Johns Hopkins University Department of Maternal and Child Health from the Ambulatory
Pediatric Health Services Clinic at Baltimore City Hospital, Baltimore, Maryland. They
were asked to keep a diary and to record daily whether their child was ill and their own
relative stress. In a preliminary interview, time-independent covariates including child’s
race, household size, mother’s marital status, employment status, and general level of stress
were determined. We have used the first 9 days of the diaries for 167 women with nearly
complete records to illustrate use of the GEE method. Hence, n; = n = 9 and K = 167.
Note that the outcome and all predictor variables in this analysis are dichotomous. Table
1 summarizes the proportion of positive responses for each variable over all times and
subjects.
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Table 1
Frequencies for dichotomous variables averaged
over all times and children

Frequency of

Variable response 1
Children’s illness .14
Mother’s stress, ¢ — 1 .14
Mother’s stress, t — 2 15
Mother’s stress, t — 3 .16
Household size .66

0:2-3
1:>3
Race 55
0: White
1: Nonwhite .
Mother’s general stress .55
0: Low
1: High
Employment 33
0: Unemployed
1: Employed
Marital status .50
0: Other
1: Married

We assumed that the logit of the probability that a child was ill on day ¢ is a linear
function of the mother’s stress on days  — 1, t — 2, and ¢ — 3, and on the time-independent
covariates listed above. Table 2 presents the estimated regression coefficients and the
associated z-statistics obtained using four separate choices of the working correlation matrix,
R; = R. We first assumed that R = 1, i.e., that repeated outcomes for a given child were
independent. Mother’s stress 3 days prior and household size were found to be strongly
associated with the probability of morbidity for the child. Race and mother’s general stress
level were marginally associated. Mothers who rated themselves as being stressed more
than average on all three days (1 — 1, ¢t — 2, t — 3) were estimated to have a 2.5-fold increase
in the odds of their child being sick over women who were stressed on none of the days.
Nonwhites had 1.6 times the odds of illness over whites.

Similar results were obtained when the working correlation matrix, R, was assumed to
be either 1-dependent or stationary. In the first case, observations were assumed to be
correlated only with those immediately before or after them. The first lag correlation
coefficient was estimated to be .34. In the latter case, the correlation was assumed to depend
only on the time separating two observations. Here the correlations corresponding to lags
1 to 8 were estimated to be .35, .17, .07, .08, .02, —.07, —.09, .05. Note that the correlation
decreases to near O after the first or second lag so that the 1-dependent and stationary
correlation models should give similar results. This can be seen in Table 2. In addition, the
coefficients and z-statistics for these alternative models are similar to those obtained for the
independence working model. The coefficients for the time-dependent mother’s stress
variables decreased somewhat while those for the time-independent covariates changed
very little. The effect of assuming a nonindependent correlation structure is to use weighted
linear combinations of both the y’s and x’s for each subject in the GEE. It is therefore
sensible that the covariates which vary with time may experience larger changes in their
coefficients than do the time-independent covariates for finite samples. Note, however, that
the qualitative conclusions are the same for each of these three choices of R. The results
obtained here are also qualitatively similar to those reported by Kane (unpublished Ph.D.



127

Longitudinal Data Analysis

oL'1
$8°0—
£8'1
S6'1
pIe—
LT'1
9C°0—
Ly'0—

Se9—

861
96°0—
IeT
§TT
ore—
Ly'T
6L°0
90

6L'9—

LS'1
LO'T—
or'1
L1°T
S0t—
IS4
IT1
LY'0

8L9—

Sl
86°0—
IS
20T
6T
L9T
Se'l
140!

66'9—

6£°0
(44
£v'0
Sv'0
L 0—
o
90°0—
cro—

66'1—

Pe0
(44
0¢’0
1S°0
89°0—
8¢°0
ST°0
<o

0C—

60
§T0—
€0
0$°0
69°0—
6¢£°0
€20
600

S0'CT—

60
€C0—
9¢°0
90
L90—
144\
§To
1770

[4%4%

snJels [eILIe
JjuowiAo[dwg

ssans

[e19Ua3 S JOYION

wey

9z1S PjOYIsNoH
€—1

Ssa11S S IOYION
c—1

SSa11S S IOYION
I1-7

$S11S S JAYION

1dao1a1u]

JIqeddueyoxy Areuonel§ DuIPuddg-] doudpuddopuy

Jiqeadueyoxg Areuonel§ 9dudpuadd(g-] Souspuadapuf

SOTISTIBIS-7

SIUILJI0D)

U O 5201042 JU2.2[JP {7 40f SI1IS1IDIS-] PUD STUIIDNJI0D UOISSILZ4 PIIDUALIST

79198l



128 Biometrics, March 1986

Table 3
Comparison of t-statistics from GEE method with naive t-statistics obtained by assuming working
correlation matrix is correct

Independence 1-Dependence
t-statistic Naive ¢-statistic t-statistic Naive f-statistic

Intercept —6.99 -10.15 —6.78 =79
Mother’s stress

t—1 1.14 0.99 0.47 0.47
Mother’s stress

t—2 1.35 1.18 1.21 1.19
Mother’s stress

t—-3 2.67 2.26 2.35 2.12
Household size -2.92 -3.95 -3.05 -3.26
Race 2.02 2.66 2.17 2.28
Mother’s general

stress 1.55 2.13 1.40 1.49
Employment —0.98 -1.20 —-1.07 -1.02
Marital status 1.54 2.00 1.57 1.60

thesis, Johns Hopkins University, 1984), who used logistic regression and included previous
y’s to account for the time dependence.

For illustration, we have also assumed an exchangeable correlation matrix, i.e., that
R = a, j # k. We let & = .35, the estimated first lag correlation. Hence, the correlation
between the first and last observations for a subject was assumed to be .35, rather than its
estimated value .05. Our intention is to illustrate the effect of grossly misspecifying the
correlation. For a few predictor variables, the resulting coefficients and ¢-statistics in Table
2 can be seen to differ more markedly from their previous values. The largest difference is
for the stress variables which are time-dependent. The coefficients for the time-independent
predictors, however, are quite similar to those obtained for more appropriate choices of R.
The differences are likely due to the limited number of women given the number of
covariates. Note that the sensitivity of inferences about 8 to misspecification of R is likely
also to depend on the degree and pattern of incomplete data, although that was not a
problem in this example.

Table 3 presents a comparison, for two choices of R, of the ¢-statistics from the GEE
analysis against naive Z-statistics obtained by assuming that the working correlation matrix,
R, is the true correlation matrix. The naive f-statistic for the jth covariate is defined
t; = B;/v[V1'l,. First consider the comparison for the independence working model. For
the time-independent covariates, the naive ¢-values are larger than those obtained from the
GEE analysis. They therefore tend to overstate the association. This is expected with
positive correlation. Interestingly, the naive f-statistics for the time-dependent stress co-
variates are slightly conservative. For the 1-dependent working correlation matrix, note
that the GEE and naive f-statistics are more similar. This is an indication that the
1-dependent model is more consistent with the observed association.

5. Discussion

Longitudinal data sets in which the outcome variable cannot be transformed to be Gaussian
are more difficult to analyze for two reasons. First, simple models for the conditional
expectation of the outcome do not imply equally simple models for the marginal expecta-
tion, as is the case for Gaussian data. Hence, the analyst must choose to model either the
marginal or conditional expectation. Second, likelihood analyses often lead to estimators
of the regression coefficients which are consistent only when the time dependence is
correctly specified. The generalized estimating equations for 8 have been designed to
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guarantee consistency of the regression coefficient estimates under minimal assumptions
about the time dependence. This approach is sensible when the regression equation for the
marginal expectation is the principal interest and correlation is a nuisance.

The results presented thus far are valid when there is a small and asymptotically
diminishing fraction of missing data or when the data are missing completely at random
in the sense of Rubin (1976). When the pattern of missing data at a given time depends on
the previous outcomes, however, the consistency results for 8z and for Vg require that R
be the true correlation matrix. Hence, the robustness to the choice of R does not hold in
the case of nonrandom missing data. This is to be expected since most approaches will give
inconsistent estimates when the data are not missing at random unless the assumed model
is correct.

When there is little missing data or when the data are missing completely at random,
choosing a correlation matrix, R;, involves a trade-off between the number of assumptions
necessary to guarantee the consistency of 8 and the efficiency of the estimate. If R; = L,
then Br and Vg are consistent estimates of 8 and var(ﬁR) respectively, as long as the choice
of link function is correct. Subjects do not have to share the same correlation matrix. This
is particularly desirable for binary outcomes where the range of permissible correlations
depends on the propensity (Zeger et al., 1985). This choice, however, is less efficient than
alternatives which explicitly account for correlation when the magnitude of association is
large.

Several aspects of the GEE approach require further study. First, our results are asymp-
totic so it is important to assess the performance of GEEs for finite K. We are particularly
interested in the performance of the robust variance estimate as it has application to a
number of problems. Second, we have not considered systematic methods for choosing R.
While we prefer to explore several choices, residual analyses would be useful in selecting
an optimal R. Third, our approach can be extended to models that allow some severe
imbalance due either to missing data or to different observation times. Quasi-likelihood
analogues of random-effects models are of particular interest. Finally, as mentioned above,
this approach can be extended to categorical data by developing reasonable working
correlation matrices in this multivariate setting.
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RESUME

Les jeux de données longitudinales consistent en observations répétées d’un résultat et d’'un ensemble
de covariables pour chaque individu d’un ensemble. Un objectif de I’analyse statistique est de décrire
I’espérance marginale de la variable résultat comme fonction des covariables en tenant compte de la
corrélation entre les observations répétées concernant un méme individu. Cet article propose une
approche unifiée d’une telle analyse pour divers résultats discrets et continus.

Une classe d’équations généralisées d’estimation (EGE) pour les paramétres de regression est
proposée. Les équations sont des extensions de celles utilisées dans les méthodes de quasi-
vraisemblance (Wedderburn, 1974, Biometrika 61, 439-447). Les EGE ont des solutions qui sont
convergentes et-asymptotiquement gaussiennes méme quand la dépendance temporelle est spécifiée
de fagon erronée, comme on peut souvent s’y attendre. Un estimateur convergent de la variance est
proposé. Nous illustrons I'utilisation de I’approche par les EGE avec des données longitudinales
provenant d’une étude de I’effet du stress des méres sur la morbidité des enfants.
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