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CHAPTER 10: BINARY DATA MODELS

We devote an entire chapter to binary data since such data are challenging,
both in terms of modeling the dependence, and parameter interpretation.

We again consider mixed effects models approached (with inference from
likelihood or Bayes perspectives), and GEE.

Motivating Data - Indonesian Child Health

DHLZ describe a dataset in which the response is the absence/presence of
respiratory illness in 275 children, with mutiple measurements being collected
over time — quarterly measurements were taken for up to six consecutive
quarters. Age also recorded.

Question of interest:

Is the prevalence of respiratory infection higher amongst children who suffer
from xerophthalmia, an ocular manifestation of chronic vitamin A deficiency?

Figure 39 shows the infection indicator versus time for the first 49 children.
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Figure 39: Respiratory infection versus time for the first 49 children.

297



2006 Jon Wakefield, Stat/Biostat 571

1.0 - =
0.8 o =
0.6 - =
0.4 o =
0.2 o =
0.0
d d id id d d d
- k10
- Fos
- Fos
- Foa
- E o2
oo ° cooof 0.0
d id id id d d d
1.0 - b
08 o =
0.6 - =
0.4 o =
0.2 o =
0.0
d d id id id d d

08
0.6

Xero

0.0

T R B B R B A
o
o

06

0.2
0.0

00000k
ohho®o
[
0
TTT T T 1T TTT17T

00000 KR
ohho®o
L
TTTTT

555555555555555555555555

Figure 40: Xerophthalmia versus time for the first 49 children.
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Exploratory Summaries

With binary responses and covariates, plots are not so informative - instead
look at tables. We first present some cross-sectional summaries of the first time
point only.

> table(n) # counts per child - 1200 in total
1 2 3 4 5 6
22 32 29 55 15 122
> xtabs(“xerocross+ycross) # cross-sectional comparison of respiratory
ycross # event (ycross) and xerophthalmia (xerocross)
Xerocross 0 1
0 234 31
1 9 1
> 234/(9%31)
[1] 0.8387097
> summary (glm(cbind(ycross,1-ycross)
Estimate Std. Error z value Pr(>|zl)
(Intercept) -2.0213 0.1911 -10.576  <2e-16 **x
Xerocross -0.1759 1.0712 -0.164 0.87
> exp(-.1759)
[1] 0.8387018

xerocross, family="binomial"))
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Now add in age (potential confounder).

> modglm <- glm(cbind(ycross,1-ycross) agecross+xerocross, family="binomial")
> summary(modglm) # Cross-sectional analyses
Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) -2.17017 0.21785 -9.962 <2e-16 **x*
agecross -0.02395 0.01059 -2.262 0.0237 *
Xerocross 0.22630 1.09367 0.207 0.8361
Null deviance: 197.79 on 274 degrees of freedom
Residual deviance: 192.17 on 272 degrees of freedom
> modglmg <- glm(cbind(ycross,l-ycross) ~ agecross+xerocross,family=quasibinomial())
> summary (modglmq)
Coefficients:
Estimate Std. Error t value Pr(>[t|)
(Intercept) -2.17017 0.21493 -10.097 <2e-16 **x*
agecross -0.02395 0.01045 -2.293 0.0226 *
Xerocross 0.22630 1.07900 0.210 0.8340
(Dispersion parameter for quasibinomial family taken to be 0.9733635)
Null deviance: 197.79 on 274 degrees of freedom
Residual deviance: 192.17 on 272 degrees of freedom
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Logistic Mixed Effects Models

A GLMM for binary data takes the binomial exponential family, with canonical
link being logistic.

We have
Stage 1: Y;; ~ing Binomial(n;;, p;;) with
log (&) =xi; B+ zi;b;
1 —pij
Stage 2: b; ~;;q N(0, D).
Marginal moments are not available in closed form.
Conjugate model: Y | p ~ Binomial(n, p), p ~ Beta(a,b), gives

. m\T(a+b) T'la+y)l'(b+n—y)
Pr(Y =y) = <y> T(a)L(d) TD(a+b+n)
Marginal moments:

, y=0,1,...n.

n a at+b+n
 a+b’ a+b+1

Limitations: likelihood is complex, extension to covariates increases complexity,

var(Y') = nE[p](1 — E[p])

and no tractable way to allow random effect slopes.
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Parameter Interpretation
For the random intercepts model the conditional parameters 3¢ and marginal
parameters 3™ are approximately linked through
exp(xB™
By] = P g ey
1+ exp(@B™)
- E { exp(@f3° +b) } . _exp(@B/[?0” +1]'/?)
B 1+exp(xB°+b)] 1+ exp(xB°/[c20? + 1]1/2)

where ¢ = 161/3/(157). Hence the marginal coefficients are attenuated towards

zero; Figure 41 illustrates for particular values of 3, 81, 0(2).

EY |8 \_
log (T[Y\b]) =x8°+ 2b

where b ~;;q Ng11(0, D) we obtain

For the model

BlY] ~ —p (xB° | 2Dz2T + I441 |~ (111/2)
T exp (B¢ | 2Dzz" + I 441 |*(<1+1)/2)

so that
Bm %| CQDZZT ‘|‘Iq—|—1 ’—(q+1)/2 ﬁc
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Probatilty

Figure 41: Individual-level curves (dotted lines) from random intercepts logistic
GLMM with log(E[Y | b])/(1 — E[Y | b])) = Bo + fiz, with Bog = —2,81 =
1 and b ~yiq N(0,22), along with marginal curve (solid curve). Approximate

attenuation is 1.54.
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> library(lme4)
> memmodl <- lmer(cbind(y,1-y) ~ age+xero+(1]|id),family=binomial,method="PQL")
> summary (memmod1)
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 3.7334 1.9322
Fixed effects:
Estimate Std. Error 2z value Pr(>|z]|)
(Intercept) -2.6920622 0.1795893 -14.9901 < 2.2e-16 **x*
age -0.0229009 0.0088506 -2.5875 0.009667 *x*
xero 0.1219975 0.5379760 0.2268 0.820602

memmod2 <- lmer(cbind(y,1-y) ~ age+xero+(1]id),family=binomial,method="Laplace")

> summary (memmod?2)
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 3.7334 1.9322
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.6920622 0.1810916 -14.8658 < 2e-16 **x
age -0.0229009 0.0089756 -2.5515 0.01073 =*
xero 0.1219975 0.5380319  0.2267 0.82062
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Likelihoods for Multivariate Binary Data
Consider n observations from a single individual Y = (Y1, ..., Yn)™.

The saturated model has 2" — 1 parameters (in contrast to n means, n
variances and n(n — 1)/2 correlations for the saturated normal model).

Log-Linear Model

We have 2™ — 1 distinct probabilities, but we wish to consider formulations
that allow more parsimonious descriptions as a function of covariates.

One choice is the log-linear model:

Jj1i2

Pr(Y = y) = c(0) exp Z 0§1)yj + Z S Yi1Yjg + - + Ggg?unyl...yn ,
J J1<i2

with 2™ — 1 parameters

0=, ..,0" 02 o2 o™ T,

YVn—1,mn’ " 712...n
and where ¢(0) is the normalizing constant.

This formulation allows calculation of cell probabilities, but is less useful for
describing Pr(Y = y) as a function of @.

Note that we have 2™ — 1 parameters and we have two aims: reduce this
number, and introduce a regression model.
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Pr(Y1 =y1,Y2 = y2) = c¢(0) exp (9gl)y1 + 05 o + 9%3)y1y2> :

where 0 = (051), 051), Qg))T and

11
c(0)"! = Z Z exp (951)741 + Gél)yz + 9%3)y1y2>

1=0y2=0
y1 | y2 | Pr(Y1=uy1,Y2 = y2)
0 0 | ¢(6)
1 0 | ¢(6) exp(@il))
0 1 | ¢(8) exp(@él))
1 1 | ¢(6) exp(@&l) + 951) + 9%))

306

2006 Jon Wakefield, Stat/Biostat 571

Hence we have interpretations:

exp(@%l))

Pr(Y; = 1,Ys = 0)
Pr(Y; = 0,Ys = 0)
Pr(Y; = 1|Y2 = 0)
Pr(Y; = 0[Y2 = 0)

the odds of a success at trial 1, given a failure at trial 2;

exp(03) =

Pr(Y1 =0,Y1 =1)
Pr(Y1 =0,Y2 =0)
Pr(Y2 =1|Y1 =0)
Pr(Y2 =0|Y1 =0)

the odds of a success at trial 2, given a failure at trial 1;

exp(@%m)

Pr(Y; =1,Ys = 1) Pr(Y1 = 0,Ys = 0)

Pr(Yi =1,Y2 =0)Pr(Y; =0, Ys = 1)
Pr(Yo = 1|Y; = 1)/ Pr(Ya = 0|Y; = 1)
Pr(Ys = 1|Y; = 0)/ Pr(Yz = 0|Y1 = 0)

the ratio of odds of success at trial 2 given a success at trial 1, divided by the
odds of success at trial 2 given a failure at trial 1. Hence if this parameter is

larger than 1 we have positive dependence.
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Quadratic Exponential Log-Linear Model

‘We describe three approaches to modeling binary data: conditional odds ratios,

correlations, marginal odds ratios.

Zhao and Prentice (1990) consider the log-linear model with third and

higher-order terms set to zero, so that

Pr(Y = y) = c(@) exp | 300y, + 576y,
J i<k
For this model
Pr(Y; = 0|Yx =y, Y1 = 0,1 # j, k)

eXp(9§-1) + 95-?%)-

Interpretation:

° exp(HJ(.l)) is the odds of a success, given all other responses are zero.

° exp(e(.Q)) is the odds ratio describing the association between Y; and Yk,
jk J

given all other responses are fixed (equal to zero).
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Limitations:

1. Suppose we now wish to model 6 as a function of x.
Example: Y respiratory infection, z mother’s smoking (no/yes). Then we
could let the parameters 8 depend on z, i.e. 8(x). But the difference
between 95.1)(:1c =1) and 9](.1) (z = 0) represent the effect of smoking on the
conditional probability of respiratory infection at visit j, given that there
was no infection at any other visits. Difficult to interpret, and we would

rather model the marginal probability.

2. The interpretation of the 6 parameters depends on the number of responses

n — particularly a problem in a longitudinal setting with different n;.
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Bahadur Representation

Another approach to parameterizing a multivariate binary model was proposed
by Bahadur (1961) who used marginal means, as well as second-order moments
specified in terms of correlations.

Let
R, = Y — 1
[ (1 — pg)] 1 /2
pjk = corr(Y},Yy) = E[R; Ry]
ikt = E[R;RpRy]
Pl,...n = E[R1...Rn)

Then we can write

n
Pr(Y =y) = [[ 17 (1 —pj)' ™%
j=1

X |1+ E PjkTiTE + g PKITjTETL + oo+ P1,... nT1T2...Tn
i<k j<k<l

ealin ecause we nave e marginal means i an nuisance arameters.
Appealing b have th 1 j and “ ” t
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Limitations:

Unfortunately, the correlations are constrained in complicated ways by the
marginal means.

Example: consider measurements on a single individual, Y7 and Ys, with means

p1 and p2. We have
Pr(Yi=1,Y2a=1) — pi1pu2

corr(¥1,Y2) = {p1 (1 — pa)p2(1 — po)}1/2

and
max(0, pu1 + p2 — 1) < Pr(Y1 =1,Y2 = 1) < min(u1, p2),

which implies complex constraints on the correlation.

For example, if u1 = 0.8 and p2 = 0.2 then 0 < corr(Y1, Y2) < 0.25.
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Marginal Odds Ratios

An alternative is to parameterize in terms of the marginal means and the
marginal odds ratios defined by

Pr(Y; =1,Y, =1)Pr(Y; =0,Y;, =0)

Pr(Y; =1,Y, =0)Pr(Y; =0,Y, =1)

Pr(Y; =1|Y,=1)/Pr(Y; =0|Y, =1)
Pr(Y;=1|Y,=0)/Pr(Y; =0| Y, =0)

Yik =

which is the odds that the j-th observation is a 1, given the k-th observation is
a 1, divided by the odds that the j-th observation is a 1, given the k-th

observation is a 0.
Hence if v, > 1 we have positive dependence between outcomes j and k.

It is then possible to obtain the joint distribution in terms of the means wu,
where p; = Pr(Y; = 1) the odds ratios v = (y12, ..., 7n—1,n) and contrasts of

odds ratios
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We need to find E[Y;Yy] = pj, so that we can write down the likelihood

function, or an estimating function.

For the case of n = 2 we have

. Pr(Yl =1,Y2 = 1) Pr(Yl =0,Y2 = 0) . Mlg(l — 1 — p2 + M12)
Pr(Y1=1,Y2 =0)Pr(Y1 =0,Y2 =1) (11— pa2)(p2 — pa2)

Y12
and so
pia(viz — 1) + pi2b + y12p1p2 = 0,

where b = (u1 + p2)(1 — y12) — 1, to give

—b £ /b2 — 4(y12 — 1)p1p2

u12 = 2712 — 1)
Yo
0 1
Yy 0 1—m
1 H12 751
1—p2  pe2
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Limitations

In a longitudinal setting (we add an ¢ subscript to denote individuals), finding

the ;51 terms is computationally complex.

Large numbers of nuisance odds ratios if n;’s are large — assumptions such as

vijk =7 for all 7, j, k may be made.
Another possibility is to take
log vijk = ao + ailtiy — tiw] ™,

so that the degree of association is inversely proportional to the time between

observations.
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Modeling Multivariate Binary Data Using GEE
For a marginal Bernoulli outcome we have

Pr(Yij = yijl@ij) = pg;7 (1= pij)' Y9 = exp(yij0ij — log{1 + %7 }),
where 6;; = log(uij/(1 — pij), an exponential family representation.

For independent responses we therefore have the likelihood

m  n; m n; m TN

Pr(Yia) =exp | D> wiibij — > > log{l+e’ii}| =exp |> > L

i=1j=1 i=14=1 i=1j=1
To find the MLEs we consider the score equation:

O O Bl 00i N T
G(ﬁ):%:ZZWZTBJ:szij(yij—ﬂij):;mi(’!Jz’_ﬂz’)-

i=1j=1 i=1j=1 i=

So GEE with working independence can be implemented with standard
software, though we need to “fix-up” the standard errors via sandwich

estimation.
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Non-independence GEE

Assuming working correlation matrices: R;(c) and estimating equation
m
-1
G(B) = ZD?WZ (¥ — 1),
i=1

where W; = A;/QR,i(a)Ag/Q.
Here o are parameters that we need a consistent estimator of (Newey 1990,
shows that the choice of estimator for o has no effect on the asymptotic

efficiency).
Define a set of n;(n; — 1)/2 empirical correlations
(Yij — pij) Vil — pik)

R =
! [ (1 — gz ) pin (1 — pin)]

1/2°

We can then define a set of moment-based estimating equations to obtain

estimates of a.
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First Extension to GEE

Rather than have a method of moments estimator for o, Prentice (1988)
proposed using a second set of estimating equations for a. In the context of

count data in which

Gi(B,e) = Y DIW; ' (Yi-m)
=1

G2(B,e) = > E[H;'(T;—X)
=1

where R;; = {Y;; — ,uz'j}/v(,uij)l/Q, to give “data”

TT = (Ri1Ri2, .., Rin;—1Rin,, R%, ..., R?

1mg /)

¥ (o) = E[T}] is a model for the correlations and variances of the standardized
0%

residuals, E; = 5%, and H; = cov(T;) is the working covariance model for.
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Advantages:

e It is straightforward to incorporate a regression model, i.e. & = f(x), for
the variance-covariance parameters. In geepack there are three estimating
equations, one each for the mean, scale and correlation parameters.

e If G5 is correctly specified then there will be efficiency gains.
Disadvantages:

e If E[T] # X then we will not get a consistent estimate of e, and therefore
will lose consistency of 3 in Ga.

e For general H we will require the estimation of fourth order statistics,
i.e. var(T'), which is highly unstable unless we have lots of data; H; = I,
i.e. working independence, may be used as an alternative.
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Application to Marginal Odds Model

Suppose we wish to specify a model for the associations in terms of the
marginal odds ratios

Pr(Y;; =1,Yi, =1)Pr(Y;; =0,Y;, =0)

Pr(Y;j =1,Y, = 0) Pr(Yi; = 0,Vip = 1)

Yijk =

Carey et al. (1992) suggest the following approach; it is easy to show that
PrYij =11 Yk =yir) __y, Pr(Yij =1, Yir = 0)
Pr(Yi; = 0| Yik = vik) 4k Pr(Yi; = 0,Y, = 0)
R ( Wi — Pijk )
IE N1 = pig — ik + Bijk

Given pigj5, ik, Mijk this can be written as a logistic regression model in terms

of conditional probabilities:

(Pr(Yij =1|Yk = vir)
Pr(Yi; = 0| Yir = yir)

Pij — Pijk )
L — pig — pik + Pijh

where the term on the right is a known offset. Suppose for simplicity that

) = Yk log ik + log (

Vijk = 7 then given current estimates of 3, v, we can fit a logistic regression
model by regressing Y;; on Y, for 1 < j < k < n;, to estimate . Carey et
al. (1992) refer to this method as alternating logistic regressions.
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Second Extension to GEE: Connected Estimating Equations, GEE2?

In GEE2, there are a connected set of joint estimating equations for 3 and «.
Such an approach was proposed by Zhao and Prentice (1990), and Prentice and
Zhao (1991).

This approach is particularly appealing if the variance-covariance model is of

interest.

To motivate such a pair, consider the following model for a single individual

with n independent observations:
Yi|:37 & ~ind N {MZ(B)’ Zz(ﬁa Oé)} )

where, for example, we may have ¥;(3, a) = au;(8)%,i=1,...,n.

We have the likelihood

1(B,a) = ——Zlogz Z%

=1

#GEEL is the method in which we have a single estimating equation, and a consistent

estimator of a.
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The score equations are given by

o L= (08" 1 & (0m\" (Yi— M 1 o= /05:\T (Vi — ps)?
5= () 52 (5) S (%H) O

=1 i—1
- (%) Ee () o =) »

and

23 i=1 i
(05T (Vi - ) — 5]
- Z ( oa ) 232 (47)
=1 %

This pair of quadratic estimating functions, are unbiased given correct
specification of the first two moments — so note that if the variance model is

wrong, we are no longer guaranteed a consistent estimator of 3.

If it’s correct, however, there will be a gain in efficiency.
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Let

with, under the model,
E[S;] = %
var(S;)

I
>
n
o
|
o
2
o
Il
w
\g|
)
|
\g|
Y
I
\V]
\g|
Y

Hence we can rewrite (46) and (47)

al n n

28 - DIV — ) + > EWT (S — %)
B =1 =1

ol ~

e = L EWIsi-x)

1

3

where D; = 0u; /03, E; = 0%;/03 and F; = 0%; /0.
This can be compared with the usual estimating equation specification:

ol ~ _
8 ZDzTVi Y — ).

=1
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GEE2 Continued

The general form of estimating equations, in the dependent data setting, is
given by

T -1
T Di 0 Vi Cz' Yi — K 0

> =

where D; = 0u; /083, E; = 0%;/03 and F; = 0%;/0«a, and we have “working”

variance-covariance structure

VvV, = var(Y;)
Ci = COV(Yi, Sl)
WZ‘ = var(Si)
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When C; = 0 we obtain

Gl(ﬂ, a) = ZD;TV;l(YZ —[J,i)-i-ZEiW;l(Si _Zi)
=1 =1

Ga(B,a) = DY FW;'(S;—3)
=1

which are the dependent data version of the normal score equations we
obtained earlier.

Prentice and Zhao show that these equations arise from a so-called quadratic

exponential model:
p(Yi|0i, Xi) = ki ' explYT0; + ST + ¢i(Y)).

For example, ¢; = 0 gives the multivariate normal.
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Indonesian Children’s Health Example

> summary(geese(y ~ xero+age,corstr="independence",id=id,family="binomial"))

Mean Model:

Mean Link: logit

Variance to Mean Relation: binomial

Coefficients:

estimate san.se wald P

(Intercept) -2.38479528 0.117676276 410.699689 0.000000e+00
age -0.02605769 0.005306513 24.113112 9.083967e-07
Xero 0.72015485 0.419718477 2.943985 8.619783e-02
Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald P
(Intercept) 0.977505 0.2766052 12.48871 0.0004094196
Correlation Model:
Correlation Structure: independence
Number of clusters: 275 Maximum cluster size: 6
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> summary (geese(y agetxero, corstr="exchangeable", id=id,family="binomial"))

estimate san.se wald P
(Intercept) -2.37015400 0.117210489 408.902887 0.000000e+00
age -0.02532507 0.005271204 23.082429 1.552026e-06
xero 0.58758892 0.449818037 1.706371 1.914569e-01

Estimated Scale Parameters:
estimate san.se wald P
(Intercept) 0.9681312 0.2618218 13.67278 0.0002175859
Estimated Correlation Parameters:
estimate san.se wald P
alpha 0.04423924 0.03222984 1.884079 0.1698713
> summary(geese(y ~ aget+xero, corstr="arl", id=id,family="binomial"))
Coefficients:
estimate san.se wald P
(Intercept) -2.37470963 0.11733291 409.6201566 0.000000e+00
age -0.02597886 0.00528451 24.167452 8.831225e-07
xero 0.63692645 0.44374132  2.060245 1.511859e-01
Estimated Scale Parameters:
estimate san.se wald P
(Intercept) 0.9715817 0.2694961 12.99732 0.0003119374
Estimated Correlation Parameters:
estimate san.se wald P
alpha 0.05844094 0.04528613 1.665344 0.1968834
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Conditional Likelihood: Binary Longitudinal Data

Recall that conditional likelihood is a technique for eliminating nuisance
parameters, here what we have previously modeled as random effects.

Consider individual ¢ with binary observations y;1, ..., ¥in, and assume the

random intercepts model Yj; | v;, 3 ~ Bernoulli(p;;), where

Di

log (7” ) =B+ i
1 — pij

where v; = ;8 + b; and x;; (a slight change from our usual notation), are

those covariates which change within an individual.
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We have
.
T exp (ViYi; + i Byij)
Pr ily ooy Yin, i =
Wir, - yini |73, P) jljl 1+ exp (vi + = 0)
ng n;
exp (%‘ Dot i o5 mz'jyz'jﬁ)
Bl [T72, [1+exp (vi +xi;8)]
_ exp (vit2i + t1:03)
[T2, [1 4 exp (vi + =i;8)]
_  &Xp (vit2: + t1:3)
= p(tis, t2 | v, B)
where
n; n;
tiy = Zwijyij, t2;i = Zyij
j=1 j=1
n;
k(vi,B) = [0 +exp(vi+zi;08).
j=1
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We have
m m
p(tii,t2i | Vi, B)
Le(B) = | | p(t1i | t2i,8) =
‘ 121_11 T @:1_[1 p(t2i | vi, B)
where
St exp (v 5L v + oy @inylB)
p(t2i | vi,B) =

k(%a IB) 7

where the summation is over the (yni) ways of choosing y;+ ones out of n;,
L — (,1 l — g\ 3

and y; = (y;q, ...,ymi), I=1,.., (?Ji+) is the collection of these ways.

Hence

m exp (Vi Doity Yij + Dol @iy B
LC(IB) _ H (nl>( j=1J2) Jj=1 JI1] )
=i exp (% Do yij Rl wikyfkﬁ)
B ﬁ exp (Z;Zl fvijyz‘j,3>
(v2)

1 : .
’ Zz:y1+ exp (2221 mlkyikﬁ)
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Notes

e Can be computationally expensive to evaluate likelihood if n; is large,
e.g. if n; = 20 and y;4 = 10, (yfi) = 184, 756.
e There is no contribution to the conditional likelihood from individuals:
— With n; = 1.
— With y;+ =0 or y;1 = n;.
— For those covariates with z;; = ... = z;,,, = x;. The conditional
likelihood estimates (3’s that are associated with within-individual

covariates. If a covariate only varies between individuals, then it cannot
be estimated using conditional likelihood.

For covariates that vary both between and within individuals, only the
within-individual contrasts are used.

e The similarity to Cox’s partial likelihood may be exploited to carry out
computation.

e We have not made a distributional assumption for the ~;’s!
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Examples:

If n; =3 and y; = (0,0, 1) so that y;4+ = 1 then
y; = (1,0,0), y7=(0,1,0), ¥ =1(0,0,1),

and the contribution to the conditional likelihood is

exp(xi33)
exp(xi18) + exp(xi208) + exp(x;30)

If n; =3 and y; = (1,0, 1) so that y;+ = 2 then
yi =(1,1,0), y?=(1,0,1), y?=(0,1,1),

and the contribution to the conditional likelihood is

exp(x;18 + x:30)
exp(x;18 + Ti2B) + exp(xi1 B + xi3B) + exp(i2B + xi33)
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