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CHAPTER 11: SPATIAL DATA

So far we have concentrated on longitudinal data; we now consider spatial data.

Two important distinctions are between lattice and non-lattice data. and

between point data, and data aggregated over space.

Pure spatial data are fundamentally different from longitudinal data from

multiple individuals, since they are a single realization. In this sense they are

closer to time series data, though such data are often regularly spaced (which

under assumptions of stationarity allows simplification of estimation), whereas

with spatial data it is usual to have non-lattice data.

This lack of replication aspect of non-lattice data dictates that sandwich

estimation is not available. Hence we concentrate on likelihood-based methods.

Space-time data do offer replication.
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Motivating Examples

Childhood Asthma in Anchorage, Alaska

Study details:

• Study PI is Dr Mary Gordian. Data were collected on first grade children

in Anchorage, with questionnaires being sent to the parents of children in

13 school districts (the return rate was 70% which has implications for

interpretation).

• We analyze data on 905 children, with 885 between the ages of 5 and 7.

There were 804 children without asthma, and 101 with asthma.

• The exposure of interest is exposure to pollution from traffic. Traffic counts

were recorded at roads throughout the study region and a 50m buffer was

created at the nearest intersection to the child’s residential address and

within this buffer traffic counts were aggregated (for confidentiality reasons

the exact locations were not asked for in the survey).

Figure 42 shows the residential location of the cases and non-cases in

Anchorage.
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Figure 42: Asthma cases (4) and non-cases (+) in Anchorage.
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Naive non-spatial logistic modeling

• Initially we may ignore confounding and the spatial nature of the data and

fit a logistic regression of asthma incidence on exposure (with the exposure

variable scaled to lie between 0 and 10).

• Such an analysis gives an odds ratio of 1.09 with a 90% confidence interval

of 1.00–1.18.

• This analysis assumes that, given exposure, the Bernoulli 0/1 labels are

independent. Due to unmeasured variables with spatial structure this is

dubious and will result in inappropriate standard errors.
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Scottish Lip Cancer Data

Incidence rates of lip cancer in males in 56 counties of Scotland, registered in

1975–1980. These data were originally reported in the mapping atlas of Kemp,

Boyle, Smans and Muir (1985).

The form of the data is:

• Observed and expected number of cases (based on the county age

populations),

• A covariate measuring the proportion of the population engaged in

agriculture, fishing, or forestry (AFF),

• The standardized morbidity ratio,

• The projections of the longitude and latitude of the area centroid, and the

“position” of each county expressed as a list of adjacent counties.
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County Obs Exp Prop SMR Project Projext Adjacent

No. i Cases Yi Cases Ei AFF N (km) E (km) Counties

1 9 1.4 0.16 6.43 834.7 162.2 5,9,19

2 39 8.7 0.16 4.48 852.4 385.8 7,10

3 11 3.0 0.10 3.67 946.1 294.0 12

4 9 2.5 0.24 3.60 650.5 377.9 18,20,28

5 15 4.3 0.10 3.49 870.9 220.7 1,12,19

6 8 2.4 0.24 3.33 1015.2 340.2 Island

7 26 8.1 0.10 3.21 842.0 325.0 2,10,13,16,17

8 7 2.3 0.07 3.04 1168.9 442.2 Island

9 6 2.0 0.07 3.00 781.4 194.5 1,17,19,23,29

...

47 2 5.6 0.01 0.36 640.8 277.0 24,31,46,48,49,53

48 3 9.3 0.01 0.32 654.7 282.0 24,44,47,49

49 28 88.7 0.00 0.32 666.7 267.8 38,41,44,47,48,52,53,54

50 6 19.6 0.01 0.31 736.5 342.2 21,29

51 1 3.4 0.01 0.29 678.9 274.9 34,38,42,54

52 1 3.6 0.00 0.28 683.7 257.8 34,40,49,54

53 1 5.7 0.01 0.18 646.6 265.6 41,46,47,49

54 1 7.0 0.01 0.14 682.3 267.9 34,38,49,51,52

55 0 4.2 0.16 0.00 640.1 321.5 18,24,30,33,45,56

56 0 1.8 0.10 0.00 589.9 322.2 18,20,24,27,55
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Figure 43: Labels for 56 counties of Scotland.
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Figure 44: SMRs for male lip cancer in 56 counties of Scotland.
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Figure 45: Map of proportion of individuals in agriculture, fishing and farming,

for 56 counties of Scotland.
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Inference for Spatial Regression

We may extend the GLMM approaches of Chapters 9 and 10 to the spatial

setting.

Inference may then proceed via likelihood or Bayesian methods.

Suppose we have data Yi with spatial location si (latitude and longitude, for

example), along with covariates xi, i = 1, ..., m. An obvious GLMM is then

Random Component: Yij |θij , α ∼ p(·) where p(·) is a member of the

exponential family, that is

p(yi|θi, α) = exp[{yiθi − b(θi)})/a(α) + c(yi, α)],

for i = 1, ..., m locations.
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Systematic Component: If µi = E[Yi|θi, α] then we have a link function g(·),

with

g(µi) = xiβ + bi,

so that we have introduced random effects into the linear predictor. The above

defines the conditional part of the model. The random effects are then assigned

a distribution, and in a spatial setting it is natural to assume

b = (b1, ..., bm)T ∼iid Nm(0,Σ),

where Σ = Σ(α) is an m × m covariance matrix We also have

var(Yi|θi, α) = αv(µi).
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Covariance Models

Many choices are available for the variance-covariance model Σ. A simple

choice has

Σij = α1 exp(−α2 | si − sj |),

for i, j = 1, ..., m, with α1, α2 > 0. This model is isotropic since the covariance

only depends on the distance between points.

Obvious links with the AR(1) models we considered in longitudinal data

analysis.

It is sometimes useful to think of the bi’s as arising from a Gaussian Random

Field (GRF). Specifically, a random field b(s) ∈ R2 is a (bivariate) Gaussian

random field if b(s1), ..., b(sn) is multivariate normal for any si ∈ R2,

i = 1, ..., n. This allows us to do prediction to arbitrary locations.

An obvious extension to the linear predictor is to add independent and

identically random effect also. For example, we might fit the model

g(µi) = xiβ + bi + vi,

with vi ∼iid N(0, σ2
0
), i = 1, ..., n.
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Childhood Asthma

We carried out a number of regression models from a Bayesian perspective.

Table 12 summarizes these analyses for the odds ratio of interest. We consider

the model:

• Stage 1:

Yi|xi, bi ∼ Bernoulli{p(xi, bi)},

for i = 1, . . . , n, where Yi is the case/non-case status, xi is a vector

containing the exposure of interest and confounders, and bi represent

unmeasured spatial effect.

• Stage 2:

logit {p(x, bi)} = xiβ + b(si),

where bi = b(si) is a realization of a GRF.

• Stage 3: Priors on β and the parameters of the GRF.

Adjustment for spatial dependence was carried out with covariances between

points d apart being given by α1 exp(−dα2).
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The results are almost identical across the different models, all giving evidence

of an association between asthma and exposure to traffic.

The prior on α2 was uniform on (0,50) and the posterior median was 25 with

95% credible interval was 2–49, indicating that the prior has hardly been

changed.

The spatial variance parameter α1 has posterior median 0.002, again providing

evidence that there is no evidence of spatial dependence in the residuals.

Adjust for Adjustment for Odds Ratio 95% Interval

confounders spatial exp(β)

No No 1.08 0.99–1.20

Yes No 1.08 0.98–1.20

No Yes 1.08 0.98–1.19

Yes Yes 1.08 0.97–1.19

Table 12: Odds ratio summaries (posterior medians and credible intervals) under

various models.
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Scottish Lip Cancer Data

The individual-level model Yij ∼iid Bernoulli(eβ0+β1xij ) for individual i,

j = 1, ..., Ni, leads to

Yi ∼iid Poisson(Ni{(1 − xi)e
α0 + xie

α0+α1}),

i = 1, ..., m.

Random effects can be added to the linear predictor, spatial or non-spatial (or

both). Here there is a large change in ebα1 , because the exposure has spatial

structure.

Model Relative risk St. Err.

Quasi-likelihood 22.7 7.0

Non-spatial r.e.’s 22.5 7.8

GRF model 6.3 3.0

Table 13: Estimates and standard errors for individual relative risk, eα1 .
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For a Bayesian analysis we require a proper prior on α1.

Assigning an improper uniform prior to α0 we integrate this parameter from

the model to give

p(α1|y) ∝

n
Y

i=1

„

Ni[(1 − xi) + xie
α1 ]

Pn
i=1

Ni[(1 − xi) + xieα1 ]

«yi

,

which tends to the constant

n
Y

i=1

„

Ni(1 − xi)
Pn

i=1
Ni(1 − xi)

«yi

(48)

as α1 → −∞, showing that a proper prior is required. The constant (48) is

non-zero unless xi = 1 in any area with yi 6= 0.

The reason for the impropriety is that α1 = −∞ corresponds to a relative risk

of zero, so that exposed individuals cannot get the disease, which is not

inconsistent with the observed data unless xi = 1 in an area (all individuals are

exposed), and yi 6= 0, in which case clearly the cases are due to exposure. A

similar argument holds as α → ∞ with replacement of 1 − xi by xi in (48)

providing the limiting constant. Figure 46 illustrates this behavior for the

Scottish lip cancer example, for which xi = 0 in five areas.
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Figure 46: Log posterior for α1 for the Scottish data; the horizontal line is the

constant to which this function tends to as α1 → ∞.
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GeoBUGS has spatial models, and allows maps to be drawn.

model

{

for (i in 1 : N) {

Y[i] ~ dpois(mu[i])

log(mu[i]) <- log(E[i]) +

log( (1-X[i])*exp(alpha0) + X[i]*exp(alpha0+alpha1)) + U[i]

mean[i] <- 0

}

# Multivariate prior distribution for spatial random effects:

U[1:N] ~ spatial.exp(mean[], xm[], ym[], tau.U, phi, 1)

#

# The following prior is derived by assuming that there is a 5% chance that the

# correlations die to 0.5 in less that 5km, and a 95% chance that they die

# to 0.5 in less than 100km.

dhalf ~ dlnorm(3.107,0.9106)

phi <- 0.6931/dhalf

alpha0 ~ dflat()

# Prior says 50% RR less than one, 95% less than 50.

alpha1 ~ dnorm(0.0,0.1768)

# Parameters of interest

base <- exp(alpha0)

RRx <- exp(alpha1)

}

349



2006 Jon Wakefield, Stat/Biostat 571

list(N = 56, Y = c( 9, 39, 11, 9, 15, 8, 26, 7, 6, 20, 13, 5, 3, 8, 17, 9, 2, 7,

9, 7, 16, 31, 11, 7, 19, 15, 7, 10, 16, 11,5, 3, 7, 8, 11, 9, 11, 8,

6, 4, 10, 8, 2, 6, 19, 3, 2, 3, 28, 6, 1, 1, 1, 1, 0, 0), E = c(

1.4, 8.7, 3.0, 2.5, 4.3, 2.4, 8.1, 2.3, 2.0, 6.6, 4.4, 1.8, 1.1,

3.3, 7.8, 4.6, 1.1, 4.2, 5.5, 4.4, 10.5,22.7, 8.8, 5.6,15.5,12.5,

6.0, 9.0,14.4,10.2, 4.8, 2.9, 7.0, 8.5,12.3,10.1,12.7, 9.4, 7.2,

5.3, 18.8,15.8, 4.3,14.6,50.7, 8.2, 5.6, 9.3,88.7,19.6, 3.4, 3.6,

5.7, 7.0, 4.2, 1.8),X = c(0.16,0.16,0.10,0.24,0.10,0.24,0.10, 0.07,

0.07,0.16, 0.07,0.16,0.10,0.24, 0.07,0.16,0.10, 0.07, 0.07,0.10,

0.07,0.16,0.10, 0.07, 0.01, 0.01, 0.07, 0.07,0.10,0.10,

0.07,0.24,0.10, 0.07, 0.07, 0,0.10, 0.01,0.16, 0, 0.01,0.16,0.16, 0,

0.01, 0.07, 0.01, 0.01, 0, 0.01, 0.01, 0, 0.01, 0.01,0.16,0.10),

xm = c(

162.1894, 385.7761, 293.9555, 377.9338, 220.6786,340.1739, 324.9915, 442.2445, 194.5176, 367.6924,

112.8916, 247.7566, 289.5922, 227.9563, 342.3574,351.3505, 280.4916, 341.6081, 249.6855, 359.5902,

348.7138, 388.7655, 180.4228, 295.4908, 333.1159,312.0605, 290.1701, 359.4153, 291.3727, 303.4219,

257.4402, 264.9711, 336.4464, 258.0319, 227.1801,234.5294, 218.3428, 279.1010, 235.0805, 254.1736,

250.8301, 287.1202, 292.3773, 288.0333, 320.5682,257.8758, 276.9737, 281.9644, 267.8444, 342.226,

274.8713, 257.8069, 265.5934, 267.8921, 321.4991,322.1780),

ym =c(834.7496, 852.3782, 946.0722, 650.501,870.9356, 1015.154, 842.0317, 1168.904, 781.3746,

828.219, 903.1592, 924.9536, 842.3052, 561.1628,713.0808, 792.1617, 801.0356, 628.6406, 825.8545,

610.6554, 760.2982, 812.7655, 699.6693, 635.7658,701.8189, 691.102, 586.6673, 669.4746, 746.2605,

670.1395, 605.9585, 568.3428, 658.671, 716.452,598.2521, 668.0481, 641.4785, 670.285, 697.044,

677.589, 657.4675, 680.7535, 699.3761, 665.2905,671.6064, 631.046, 640.8285, 654.6629, 666.7073,

736.4561, 678.8585, 683.7104, 646.5754, 682.2943,640.1429, 589.9408))
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