
2006 Jon Wakefield, Stat/Biostat 571

Stat/Biostat 571 Statistical Methodology: Regression

Models for Dependent Data

Jon Wakefield

Departments of Statistics and Biostatistics, UW

Lectures: Monday/Wednesday/Friday 1.30–2.20, T478.

Coursework: (and approximate percentages) weekly (30%). Examination at

mid-term (30%) and final (40%).

Office Hours:

Jon: Monday 2.30–3.20 (Statistics, Padelford, 616-9388) and Wednesday

2.30–3.30 (Biostatistics, Health Sciences, 616-6292). Or by appointment

(jonno@u.washington.edu).

TA’s: Liz Thomas (lizt@u), Ben French (bcf@u).

STAT/BIOSTAT 578 Data Analysis, strongly recommended for Applied Exam.

This course teaches methods, not data analysis.

Computing will be carried out using R and WinBUGS.

Class website: http://courses.washington.edu/b571/
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Textbooks:

Main Texts

Diggle, P.J., Heagerty, P., Liang, K.-Y. and Zeger, S.L. (2002). Analysis of

Longitudinal Data, Second Edition. Oxford University Press.

Fitzmaurice, G.M., Laird, N.M. and Ware, J.H. (2004). Applied Longitudinal

Analysis, Wiley.

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (1995). Bayesian Data

Analysis, CRC Press.

Hand, D. and Crowder, M.J. (1996). Practical Longitudinal Data Analysis, CRC

Press.

Pinheiro, J. and Bates, D.G. (2000). Mixed-Effects Models in S and S-PLUS,

Springer-Verlag,

Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal

Data. Springer-Verlag.

Background Texts

Davison, A.C. (2003). Statistical Models. Cambridge University Press.

Demidenko, E. (2004). Mixed Models: Theory and Applications, Wiley.

McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models, Second Edition,

CRC Press.
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COURSE OUTLINE

Chapter 1: Revision

Motivating Datasets; Benefits and Challenges of Dependent Data; Marginal

versus Conditional Modeling. Sandwich Estimation; Ordinary and Weighted

Least Squares.

Chapter 8: Linear Models

Linear Mixed Effects Models; Frequentist and Bayesian Inference; Equivalence

of Marginal and Conditional Modeling.

Chapter 9: General Regression Models

Generalized Linear Mixed Models; Frequentist and Bayesian Inference;

Non-equivalence of Marginal and Conditional Modeling.

Chapter 10: Binary Data Models

Modeling the covariance structure. Mixed Effects approach.

Chapter 11: Model Selection/Formulation

Types of analysis: descriptive, confirmatory, predictive. Causality and

confounding.
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CHAPTER 1: OVERVIEW

Recall: in a regression analysis we model a response, Y , as a function of

covariates, x.

In 570 we considered situations in which responses are conditionally

independent, that is

p(Y1, ..., Yn|β, x) = p(Y1|β, x1) × p(Y2|Y1, β, x2) × ... × p(Yn|Y1, ..., Yn−1, β, xn)

= p(Y1|β, x1) × p(Y2|β, x2) × ... × p(Yn|β, xn)

so that observations are independent given parameters β and covariates

x1, ..., xn.

In general, Y1, ..., Yn are never independent. For example, suppose

E[Yi|µ, σ2] = µ, var(Yi|µ, σ2) = σ2,

i = 1, 2 and cov(Y1, Y2|µ, σ2) = 0. Then if we are told y1, this will change the

way we think about y2 so that p(Y2|Y1) 6= p(Y2), and the observations are not

independent, however p(Y2|Y1, µ, σ2) = p(Y2|µ, σ2), so that we have conditional

independence.
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Motivating Examples

We distinguish between dependence induced by missing covariates, and that

due to contagion (for example, in an infectious disease context) – we will not

consider the latter.

One theme of the course will be modeling residual dependence, i.e. after we

have controlled for covariates.

The obvious situations in which we would expect dependence is in data

collected over time or space (but lots of others possible, e.g. families).

Example 1: Dental growth data

Table 1 records dental measurements of the distance in millimeters from the

center of the pituitary gland to the pteryo-maxillary fissure in 11 girls and 16

boys at the ages of 8, 10, 12 and 14 years.

Here we have an example of repeated measures or longitudinal data.

Figure 1 plots these data and we see that dental growth for each child increases

in an approximately linear fashion.

One common aim of such studies is to identify the within-individual and

between-individual sources of variability.
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Girls 8 10 12 14

1 21 20 21.5 23

2 21 21.5 24 25.5

3 20.5 24 24.5 26

4 23.5 24.5 25 26.5

5 21.5 23 22.5 23.5

6 20 21 21 22.5

7 21.5 22.5 23 25

8 23 23 23.5 24

9 20 21 22 21.5

10 16.5 19 19 19.5

11 24.5 25 28 28

Boys 8 10 12 14

1 26 25 29 31

2 21.5 22.5 23 26.5

3 23 22.5 24 27.5

4 25.5 27.5 26.5 27

5 20 23.5 22.5 26

6 24.5 25.5 27 28.5

7 22 22 24.5 26.5

8 24 21.5 24.5 25.5

9 23 20.5 31 26

10 27.5 28 31 31.5

11 23 23 23.5 25

12 21.5 23.5 24 28

13 17 24.5 26 29.5

14 22.5 25.5 25.5 26

15 23 24.5 26 30

16 22 21.5 23.5 25
6
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Figure 1: Dental growth data for girls and boys.
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Inference

We may be interested in characterizing:

1. the average growth curve, or

2. the growth for a particular child.

Two types of analysis that will be distinguished are marginal and conditional.

The former is designed for questions of type 1, and the latter may be used for

both types, but requires more assumptions.

Even if the question of interest is of type 1, we still have to acknowledge the

dependence of responses on the same individual – we do not have 11 × 4

independent observations on girls and 16 × 4 independent observations on boys

but rather 11 and 16 sets of observations on girls and boys.

For either question of interest ignoring the dependence leads to incorrect

standard errors and confidence interval coverage.

A marginal approach to modeling specifies the moments of the data only, while

in a conditional approach the responses of specific individuals are modeled.
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Models

First question is: why not just analyze the data from each child separately?

Possible but we wouldn’t be able to make formal statements about:

• The average growth rate of teeth for a girl in the age range 8–14 years.

• The between-girl variability in growth rates.

The totality of data on girls may also aid in the estimation of the growth rate

for a particular girl – becomes more critical as the number of observations per

child decreases. For example, in an extreme case, suppose a particular girl has

only one measurement?

At the other extreme we could fit a single curve to the data from all of the

girl’s data together. The problem with this is that we do not have independent

observations, and what if we are interested in inference for a particular child?

9

2006 Jon Wakefield, Stat/Biostat 571

Example 2: Spatial Data

Dependent data may result from studies with a significant spatial component.

Split Plot Data

Example: Three varieties of oats, four nitrogen concentrations.

Agricultural land was grouped into six blocks, each with three plots, and with

each plot further sub-divided into four sub-plots. Within each subplot a

combination of oats and nitrogen was planted. Hence we have 6 × 3 × 4 = 72

observations.

We would expect observations within the same block to be correlated.
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Example: Lung and Brain cancer in the North-West of England

Study details:

• Study period is 1981–1991.

• Incidence data by postcode, but the analysis is carried out at the ward

level of which there are 144 in the study region. For brain cancer the

median number of cases per ward over the 11 year period is 6 with a range

of 0 to 17. For lung the median number is 20 with range 0–60.

• Expected counts were based on ward-level populations from the 1991

census, by 5-year age bands and sex.

• Standardized Incidence Rates (SIRs) for area i are calculated as Yi/Ei

where Yi and Ei are observed and expected cases.
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Figure 2: SIRs for (a) lung cancer, and (b) brain cancer.
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Figure 3: Smoothed SIRs for lung cancer under two spatial models.

Notice that the smoothed area-level relative risk estimates are not dramatically

different from the raw versions in Figure 2(a) – the large number of cases here

mean that the raw SIRs are relatively stable.
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Figure 4: Smoothed SIRs for brain cancer under two spatial models.

In this case we see a much greater smoothing of the estimates as compared to

the raw relative risks in Figure 2(b).
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Revision Material

Let Y = (Y1, ..., Yn), represent n observations from a distribution indexed by a

p-dimensional parameter θ, with cov(Yi, Yj | θ) = 0, i 6= j.

In the following, for ease of presentation, we assume that Yi, i = 1, ..., n are

independent and identically distributed (i.i.d.).

An estimating function is a function

Gn(θ) =
1

n

nX

i=1

G(θ, Yi) (1)

of the same dimension as θ for which

E[Gn(θ)] = 0 (2)

for all θ. The estimating function Gn(θ) is a random variable because it is a

function of Y .

The corresponding estimating equation that defines the estimator bθn has the

form

Gn(bθn) =
1

n

nX

i=1

G(bθn, Yi) = 0. (3)
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Result: Suppose that bθn is a solution to the estimating equation

Gn(θ) =
1

n

nX

i=1

G(θ, Yi) = 0,

i.e. Gn(bθn) = 0. Then bθn →p θ (consistency) and

√
n (bθn − θ) →d Np(0, A−1BAT−1) (4)

(asymptotic normality) where

A = A(θ) = E

»
∂

∂θ
G(θ, Y )

–

and

B = B(θ) = E[G(θ, Y )G(θ, Y )T] = cov{G(θ, Y )}.

The form of the variance in (4) has lead to it being named a sandwich

estimator.
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Least Squares Estimation

For the ordinary least squares/maximum likelihood estimator bβ = (xTx)−1xY

with

var(bβ) = (xTx)−1σ2

if var(Y | x) = σ2I.

Suppose that var(Y | x) = σ2V so that the model from which the estimator

was derived was incorrect.

Then the estimator is still unbiased but the appropriate variance estimator is

var(bβ) = (xTx)−1xTvar(Y | x)x(xTx)−1

= (xTx)−1xTV x(xTx)−1σ2 (5)
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Expression (5) can also be derived directly from the estimating function

G(β) = xT(Y − xβ),

from which we know that

(A−1
n BnAT

n
−1

)1/2(bβ − β) →d Nk+1(0, I),

where

Bn = var(G) = xTV xσ2

and

An = E

»
∂G

∂β

–
= −xTx,

to give

var(bβ) = (xTx)−1xTV x(xTx)−1σ2.

We still need to know V though.

18



2006 Jon Wakefield, Stat/Biostat 571

Sandwich estimator with uncorrelated errors

We relax the constant variance assumptions. Consider the estimating function

G(β) = xT(Y − xβ).

The “bread” of the sandwich, A−1, remains unchanged since A does not

depend on Y .

The “filling” becomes

B = var{G} = xTvar(Y )x =
nX

i=1

σ2
i xT

i xi, (6)

where σ2
i = var(Yi) and we have assumed that the data are uncorrelated.

Unfortunately σ2
i is unknown – we now discuss various estimation methods.
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An obvious estimator is given by

bBn =
nX

i=1

xT
i xi(Yi − xi

bβ)2, (7)

and its use provides a consistent estimator of (6), if the data are uncorrelated.

For linear regression the estimator

bσ2 =
1

n

nX

i=1

(Yi − xi
bβ)2 =

1

n

nX

i=1

bσ2
i ,

is downwardly biased, with bias −pσ2/n.

The sandwich estimator is therefore also downwardly biased.

Using

eσ2
i =

n

n − k − 1
(Yi − xi

bβ)2 (8)

provides a simple correction, but in general the estimator of the variance has

finite bias since the bias in bσ2 changes as a function of the design points xi –

various corrections have been suggestions (see Kauermann and Carroll, 2001,

JASA).
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