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CHAPTER 8: LINEAR MODELS

The effect of ignoring dependence is two-fold. First, standard errors reported

from independent data methods are calculated under the assumption of

independence and so, if the data are truly dependent, will be inaccurate.

Second, and more subtly, models for dependence may control for confounding,

e.g. by time in the air pollution example.

While making inference for dependent data is more difficult than for

independent data, designs that collect dependent data can be very efficient. For

example, in a longitudinal data setting applying different treatments to the

same patient over time can be very beneficial since each patient acts as their

own control.

While in the Bayesian approach to inference all parameters are viewed as

random variables, in the frequentist approach there is a distinction between

fixed effects (unknown constants) and random effects (random variables from a

distribution).

For longitudinal data there are two extreme fixed effects approaches.

Proceeding naively we could assume a single “marginal” curve for all of the

data, and carry out a standard analysis assuming independent data.
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Example: Dental Growth Data

Suppose bβm
0 and bβm

1 are the marginal intercept and slope estimates, and let

em
ij = Yij − bβm

0 − bβm
1 tj ,

i = 1, ..., 11; j = 1, ..., 4, denote marginal residuals, and
2
666664

σ1

ρ12 σ2

ρ13 ρ23 σ3

ρ14 ρ24 ρ34 σ4

3
777775

(9)

represent the standard deviation/correlation matrix of the residuals, where

σj =
q

var(em
ij ),

is the variance of the length at time tj , j = 1, ..., 4, and

ρjk =
cov(em

ij , em
ik)

q
var(em

ij )var(em
ik)

,

is the correlation between residual measurements at times tj and tk taken on

the same girl, j 6= k, j, k = 1, ..., 4.
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Across girls we may empirically estimate the entries of (9) by

2
666664

2.12

0.83 1.90

0.86 0.90 2.36

0.84 0.88 0.95 2.44

3
777775

(10)

illustrating that there is a suggestion that the variance is increasing with the

mean, and clear correlation between residuals at different times on the same

girl.

The fitting of a single curve, and using methods for independent data, ignores

the correlations within each child’s data and so standard errors will clearly be

inappropriate.

Fitting a marginal model such as this is appealing in one sense, however, since

it allows the direct comparison of the average responses in different (in this

example the populations of girls at different ages) and forms the basis of the

generalized estimating equations (GEE) approach
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An alternative fixed effects approach is to assume a fixed curve for each child

and analyze each set of data separately.

While providing valid inference for each curve, there is no “borrowing of

strength” across children, that is, each girl’s fit is based only on their data

alone, and not on those of other girls.

We would hope that if there is similarity between the curves, and that the

totality of data will aid in the estimation of each individual curve. In some

instances this may be vital, for example, if ni = 1 for a particular individual,

then their own data alone will not allow parameter estimation.

We will also often be interested in making formal inference for the population

of girls from which the eleven in the data are viewed as a random sample. This

forms the basis of the mixed effects model approach.

Figure 5(b) displays the lines corresponding to each of these fixed effects

approaches.
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Figure 5: Dental plots for girls only: (a) Individual observed data (with plotting

symbol girl index), (b) Individual fitted curves (dashed) and overall fitted curve
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Linear Mixed Effects Models

The basic idea behind mixed effects models is to assume that each unit has a

regression model characterized by unit-specific parameters, with these

parameters being a combination of fixed effects that are common to all units in

the population, and then unit-specific perturbations, or random effects (hence

“mixed” effects refers to the combination of fixed and random effects).

Given data yi = (yi1, ..., yini)
T on unit i a mixed effects model is characterized

by a combination of

• a (k + 1) × 1 vector of fixed effects, β,

• a (q + 1) × 1 vector of random effects, bi, with q ≤ k.

• xi = (xi1, ..., xini)
T, the design matrix for the fixed effect with

xij = (1, xij1, ..., xijk)T, and

• zi = (zi1, ..., zini)
T, and design matrix for the random effects with

zij = (1, zij1, ..., zijq)T.
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We then have the following (two stage) Linear Mixed Effects Model (LMEM):

Stage 1: Response model, conditional on random effects:

yi = xiβ + zibi + εi, (11)

where εi is an ni × 1 zero mean vector of error terms.

Stage 2: Model for random terms:

E[εi] = 0, var(εi) = Ei(α),

E[bi] = 0, var(bi) = D(α),

cov(bi, εi) = 0

where α is the vector of variance-covariance parameters.

The two stages define the marginal model:

E[yi] = µi(β) = xiβ,

var(yi) = V i(α) = ziDzT
i + Ei,

cov(yi, yi′) = 0, i 6= i′.

We describe likelihood and Bayesian approaches to inference.
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Likelihood Inference

We need to specify a complete probability distribution for the data, and this

follows by specifying distributions for εi and bi, i = 1, ..., m. A common model

is

εi ∼ind N(0, σ2
ε Ini), bi ∼iid N(0, D),

where

D =

2
666664

σ2
00 σ2

01 ... σ2
0q

σ2
10 σ2

11 ... σ2
1q

... ... ... ...

σ2
q0 σ2

q1 ... σ2
qq

3
777775

.

Here α = (σ2
ε , D) denote the variance-covariance parameters. Here

V = zDzT + σ2
ε IN , where N =

Pm
i=1 ni.

Likelihood methods are designed for fixed effects, and so we integrate the

random effects from the two-stage model:

p(y|β, α) =

Z

b
p(y|b, β, α) × p(b|β, α) db.
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Exploiting conditional independencies we have:

p(y|β, α) =
mY

i=1

Z

bi

p(yi|bi, β, σ2
ε ) × p(bi|D) dbi.

Since a convolution of normals is normal we obtain

y|β, α ∼
mY

i=1

N{µi(β), V i(α)}.

The log-likelihood is

l(β, α) = − N

2
log 2π − 1

2

mX

i=1

log |V i(α)|

− 1

2

mX

i=1

(Y i − xiβ)TV (α)−1
i (Y i − xiβ). (12)
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Example: One-way ANOVA

Consider the simple ANOVA model

Yij = β0 + bi + εij ,

with bi and εij independent and distributed as

• bi ∼ind N(0, σ2
0),

• εij ∼ind N(0, σ2
ε )

for i = 1, ..., m, j = 1, ..., ni, with
Pm

i=1 ni = N . This model can also be

written as

Y i = 1nβ0 + 1nbi + εi,

with E[Y ] = 1Nβ0, var(Y ) = V = 1N1T
N σ2

0 + INσ2
ε = JNσ2

0 + INσ2
ε .
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The marginal variance V is the N × N matrix

σ
2

2
6666666666666666666666666664

1 ρ ρ ρ . . . . 0 0 0 0

ρ 1 ρ ρ . . . . 0 0 0 0

ρ ρ 1 ρ . . . . 0 0 0 0

ρ ρ ρ 1 . . . . 0 0 0 0

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 0 0 . . . . 1 ρ ρ ρ

0 0 0 0 . . . . ρ 1 ρ ρ

0 0 0 0 . . . . ρ ρ 1 ρ

0 0 0 0 . . . . ρ ρ ρ 1

3
7777777777777777777777777775

with σ2 = σ2
ε + σ2

0 and

ρ =
σ2
0

σ2
=

σ2
0

σ2
ε + σ2

0

.
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Here we have a total of 3 regression parameters and variance components

(β0, σ0, σε), but m + 3 if we count the random effects.

A fixed effects model with a separate parameter for each group would have

m + 1 parameters (and corresponds to the above model with σ2
0 = ∞).

In some situations we may have more fixed and random effects than data

points, but the random effects have a special status, since they are tied

together through a common distribution.

Random effects may be viewed as a means by which dependencies are induced

in marginal models.
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Inference for Regression Parameters

The score equation for β is

∂l

∂β
=

mX

i=1

xT
i V −1

i Y i −
mX

i=1

xT
i V −1

i xiβ,

and yields the MLE for β as

bβ =

 
mX

i=1

xT
i V −1

i xi

!−1 mX

i=1

xT
i V −1

i yi

!
, (13)

which is a weighted least squares estimator. If D = 0 then V = σ2
ε IN and bβ

corresponds to the ordinary least squares estimator.

The variance of bβ may be obtained either directly from (13), or from the

second derivative of the log-likelihood. Since

∂2l

∂β∂βT
= −

mX

i=1

xT
i V −1

i xi,

the observed and expected information matrices coincide with

Iββ = −E

»
∂2l

∂β∂βT

–
=

mX

i=1

xT
i V −1

i xi.
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The estimator, bβ is a linear combination of Y i and so, under correct

specificiation of the model bβ is linear also and

bβ ∼ Nk+1

8
<
:β,

 
mX

i=1

xiV
−1
i xi

!−1
9
=
; .

In practice, α is never known, but asymptotically, as m → ∞ (it is not

sufficient to have m fixed and ni → ∞ for i = 1, ..., m):

 
mX

i=1

xiV i(bα)−1xi

!1/2

(bβm − β) →d Nk+1 (0k+1, Ik+1) ,

where bα is a consistent estimator of α. This result is also relevant if the data

and random effects are not normal, so long as the second moment assumptions

are correct.

Various t and F -like approaches have been suggested for correcting for the

estimation of α, see Verbeke and Molenberghs (2000, Chapter 6), but if the

sampling size is not sufficiently large for reliable estimation of α, we

recommend following a Bayesian approach to inference.
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So far as the MLE is concerned, the expected information matrix is partitioned

as

I(β, α) =

2
4 Iββ 0

0 Iαα

3
5 .

Standard ML theory gives the asymptotic distribution for the MLE bβ, bα, as
2
4
bβ
bα

3
5 ∼ Nk+1+r+1

0
@
2
4 β

α

3
5 ,

2
4 I−1

ββ 0

0 I−1
αα

3
5
1
A ,

where r is the number of distinct elements in D.

We have already seen the form of Iββ ; the form of Iαα is not pleasant.

The diagonal form of the expected information has a number of implications.

Firstly, we may carry out separate maximization of the log-likelihood with

respect to β and α. Secondly, asymptotically we have independence between bβ
and bα, so any consistent estimator of α will give an asymptotically efficient

estimator for β.

Likelihood ratio tests are available for regression parameters.
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Inference for Variance Components by MLE

The MLE of α follows from maximization of (12), and in general there is no

closed-form solution.

The maximization may produce a negative variance estimate, in which case this

variance is set equal to zero (MLEs must lie in the parameter space).

Maximum likelihood for variance components give estimators that do not

acknowledge the estimation of β.

For the simple linear model, the MLE of σ2 is RSS/n, and not the unbiased

version RSS/(n − k − 1).

An alternative and often preferable method is provided by restricted maximum

likelihood.
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Hypothesis tests for variance components

Testing whether random effect variances are zero requires care since the null

hypothesis lies on the boundary, and so the usual regularity conditions are not

satisfied.

As an example, in the model

Yij = β0 + bi + xijβ + εij

with bi ∼ N(0, σ2
0), consider the test of H0 : σ2

0 = 0 versus HA : σ2
0 > 0, where

σ2
0 is a non-negative scalar. In this case the asymptotic null distribution is a

50:50 mixture of χ2
0 and χ2

1 distributions, where the former is the distribution

that gives probability mass 1 to the value 0.

If the usual χ2
1 distribution is used then the null would be accepted too often,

leading to a variance component structure that is too simple.

Estimating σ2
0 is equivalent to estimating ρ = σ2

0/σ2, and setting equal to zero

if the estimated correlation is negative, and under the null this will happen half

the time.

Setting bρ = 0 gives the null, and so the likelihood ratio will be one.
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Inference for Variance Components by REML

Restricted maximum likelihood (REML) is a method that has been proposed as

an alternative to ML, there are a number of justifications; we later provide a

Bayesian justification, and here provide another based on marginal likelihood.

Marginal Likelihood

Let S1, S2, A be a minimal sufficient statistic where A is ancillary, and for

which

p(y | λ, φ) ∝ p(s1, s2, a | λ, φ)

= p(a)p(s1 | a, λ)p(s2 | s1, a, λ, φ)

where λ are parameters of interest and φ are the remaining (nuisance)

parameters.

38



2006 Jon Wakefield, Stat/Biostat 571

Inference for λ may be based on the marginal likelihood

Lm(λ) = p(s1 | a, λ).

This is desirable if inference is simplified or if it avoids problems encountered

with standard likelihood methods. For example dim(φ) may increase with n.

The marginal likelihood has similar properties to a regular likelihood.

These advantages may outway the loss of efficiency in ignoring the

p(s2 | s1, a, λ, φ) term. If there is no ancillary statistic then the marginal

likelihood is

Lm(λ) = p(s1 | λ).
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Example: Normal linear model

Assume Y | β, σ2 ∼ind Nn(xβ, σ2I) where dim(β) = k + 1. Suppose the

parameter of interest is λ = σ2, with remaining parameters φ = β. Minimal

sufficient statistics are: s1 = s2 = RSS/(n − k − 1), and s2 = bβ. We have

p(y | σ2, β) = p(s1, s2 | σ2, β)p(s1 | σ2)p(s2 | β, σ2).

Hence the marginal likelihood is

Lm(σ2) = p(s2 | σ2).

We know
(n − k − 1)s2

σ2
∼ χ2

n−k−1 = Ga

„
n − k − 1

2
,
1

2

«
,

and so

p(s2 | σ2) =

„
n − k − 1

2σ2

«(n−k−1)/2
`
s2
´(n−k−1)/2−1

Γ
“

n−k−1
2

” × exp

»
− (n − k − 1)s2

2σ2

–
,

to give

lm = log Lm = −(n − k − 1) log σ − (n − k − 1)s2

2σ2
,

and

bσ2 = s2.
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REML for LMEM

To use marginal likelihood we need to find a function of the data, U = f(Y ),

whose distribution does not depend upon β, and then base inference for α on

this distribution.

A natural function to choose is the vector of residuals following an ordinary

least squares fit:

R = Y − xbβo = Y − x(xTx)−1xTY

= (I − x(xTx)−1xT)Y = (I − H)Y ,

where bβo = (xTx)−1xTY is the OLS estimator.

We have

R = (I − H)Y = (I − H)(xβ + zb + ε) = (I − H)(zb + ε),

and so the distribution of R does not depend on β.
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Unfortunately the distribution of R is degenerate as it has rank N − k − 1.

Consider the (N − k − 1) × 1 random variables

U = BTY

where B is an N × (N − k − 1) matrix with BBT = I − H and BTB = I

(such a matrix always exists).

Then

U = BTY = BTBBTY = BT(I − H)Y = BTR,

and BTY is a linear combination of residuals.

Further BTX = 0, so that

U = BTY = BTzb + BTε,

and the distribution of U does not depend upon β, and E[U] = 0.

We now derive the distibution of U. To do this we consider the transformation

from Y → (U, bβG) = (BTY , GTY ), where

bβG = GTY = (xTV −1x)−1xTV −1Y ,

is the generalized least squares estimator.
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We derive the Jacobian of the transformation. To do this we need the following

two facts:

1. det(ATA) = det(AT)det(A) = det(A)2.

2.

˛̨
˛̨
˛̨

T U

V W

˛̨
˛̨
˛̨ =| T || W − V T−1U | .

Then

| J | =

˛̨
˛̨
˛
∂(U, bβG)

∂Y

˛̨
˛̨
˛ =| B G |=

˛̨
˛̨
˛̨

2
4 BT

GT

3
5 [B G]

˛̨
˛̨
˛̨

1/2

=

˛̨
˛̨
˛̨

2
4 BTB BTG

GTB GTG

3
5
˛̨
˛̨
˛̨

1/2

= | BTB |1/2| GTG− GTB(BTB)−1BTG |1/2

= 1× | GTG− GT(I − H)G |1/2

= | xTx |−1/2 6= 0

which implies that (U, bβg) is of full rank (= N). The vector (U, bβG) is a linear

combination of normals and so is normal.
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We have

p(y | α, β) = p(U, bβG | α, β) | J |= p(U | bβG, α, β)p(bβG | α, β) | J |

and

cov(U, bβG) = E[U(bβG − β)T] = 0,

and so U and bβG are uncorrelated, and since normal therefore independent.

Hence

p(y | α, β) = p(U | α)p(bβG | α, β) | J | .

Let S1, S2, be minimal sufficient statistics for which

p(y | λ, φ) ∝ p(s1, s2 | λ, φ)

= p(s1 | λ)p(s2 | s1, λ, φ)

where λ is a parameter of interest and φ are the remaining (nuisance)

parameters.

Inference for λ may be based on the marginal likelihood

Lm(λ) = p(s1 | λ).

In the REML context we have s1 = u, s2 = bβG, λ = α, φ = β, and p(U | α)

is a marginal likelihood.
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Hence

p(U | α) =
p(y | α, β)

p(bβG | α, β)
| J |−1 .

We have

p(y | α, β) = (2π)−N/2 | V |−1/2 exp


−1

2
(y − xβ)TV −1(y − xβ)

ff
,

and

p(bβG | α, β) = (2π)−(k+1)/2 | xTV −1x |1/2

× exp


−1

2
(bβG − β)TxTV −1x(bβG − β)

ff

This leads to

p(U | α) = (2π)−(N−k−1)/2 | xTx |1/2| V |−1/2

| xTV −1x |1/2

× exp


−1

2
(y − xbβG)TV −1(y − xbβG)

ff
(14)

which does not depend upon B, hence we can choose any linear combination of

the residuals.
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• To summarize: the “data” U (a linear combination of residuals from an

OLS fit), has a distribution that depends on α only – this defines a

marginal likelihood (the REML likelihood) which may then be maximized

as a function of α.

• The log marginal (restricted) likelihood is, upto a constant,

lm(α) = −1

2
log | xTV −1x | −1

2
log | V | −1

2
(y − xbβG)TV −1(y − xbβG).

The profile log-likelihood based on Y is:

lP (α) = −1

2
log | V | −1

2
(y − xbβG)TV −1(y − xbβG),

and so we have the additional term − 1
2

log | xTV x | that accounts for the

degrees of freedom in estimation of β.

• In terms of computation calculating REML estimators can be carried out

with ML code, altered to include the extra term.
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• In general, REML estimators have finite sample bias, but they are

preferable to ML estimators, particularly for small samples.

• So far as estimation of the variance components are concerned, the

asymptotic distribution of the ML/REML estimator is normal, with

variance given by Fisher’s information.

• Suppose we fit two (nested) models using REML. Different sets of

observations are used in each and so we cannot use a likelihood ratio on

regression parameters to test whether the smaller model is a valid

statistical simplification of the larger model.

• Likelihood ratio tests for variance components are valid.
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Implementation of MLE and REML

MLE and REML require iteration between bβ|bα and bα|bβ.

Originally the EM algorithm was used, e.g., Laird and Ware (1982,

Biometrics). We illustrate for MLE and, for example, suppose Ei = Iniσ
2.

The “missing data” here are the random effects bi and the errors εi.

The M-step: Given bi and εi, obtain estimates bα = (bσ2, bD):

bσ2
=

Pm
i=1 εT

i εiPm
i=1 ni

=
t1

N

bD =
1

m

mX

i=1

bib
T
i =

t2

m
,

where t1 and t2 are the sufficient statistics.

The E step: Estimate the sufficient statistics given the current values bα, via their

expected values:

bt1 = E

"
mX

i=1

ε
T
i εi|yi,

bβ(bα), bα
#

bt2 = E

"
mX

i=1

b
T
i bi|yi,

bβ(bα), bα
#

.
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Closed form fixed and random effect estimates are available once we know α.

Slow convergence has been reported so that now the Newton-Raphson method

is more frequently used.

Let θ be a p × 1 parameter vector containing the variance components, l(·) the

log-likelihood, G the p × 1 score vector, and I?(·) the p × p observed

information matrix. Then a second order Taylor series expansion of l(·) about

θ(t), the estimate at iteration t gives:

g(t)(θ) = l(θ) + G(t)T(θ − θ(t)) +
1

2
(θ − θ(t))TI?(t)(θ − θ(t)),

differentiating and setting equal to zero:

∂g(t)

∂θ
= G(t) + I?(t)(θ − θ(t)) = 0,

gives the next estimate

θ(t+1) = θ(t) − {I?(t)}−1G(t).

The use of the expected information gives Fisher’s scoring method.

See Lindstrom and Bates (1988, JASA) for details.

Lack of convergence of the algorithm/negative estimates, may sometimes

indicate that a poor model is being fitted.
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Dental Example

The simplest possible mixed effects model is given by

Yij = β0 + bi + β1tj + εij ,

where εij are iid with E[εij ] = 0 and var(εij) = σ2
ε and bi represent random

effects with bi ∼iid N(0, σ2
0), and represent perturbations for girl i from the

population intercept β0.

Girl-specific intercepts β0i = β0 + bi.

We could write b0i, but use bi for simplicity.

After conditioning on the random effect we have independent observations on

each girl, we have assumed that allowing the intercepts to vary has removed all

within-girl correlation.
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The marginal distribution is normal with mean

E[Y |β0, β1, σ2
ε , σ2

0 ] = µ,

where

µ = (µ1, ..., µm)T

is 4m × 1 vector and

µi = (β0 + β1t1, β0 + β1t2, β0 + β1t3, β0 + β1t4)T.

The variance is given by

var(Y |β0, β1, σ2
ε , σ2

0) = V ,

where V is the 4m × 4m block diagonal matrix with

V i = var(Y i) = σ2[Jniρ + Ini(1 − ρ)],

with σ2 = σ2
ε + σ2

0 and ρ =
σ2
0

σ2 =
σ2
0

σ2
ε +σ2

0
. Hence the random intercepts model

induces a marginal form with constant correlations on measurements on the

same child, regardless of the time between observations.
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We analyze the dental data using LMEMs. To do this we use the nlme package

which is described in Pinheiro and Bates (2000) – very flexible, but the syntax

is not always obvious...

The groupedData function is useful for plotting and modeling (attaches a model

function as an attribute to a dataset).

> library(nlme)

> data(Orthodont) # Dental data is one of the data sets in the package.

> Orthgirl <- Orthodont[Orthodont$Sex=="Female",]

> trelldat <- groupedData( distance ~ age | Subject, data=Orthgirl )

> plot(trelldat)

Figure 6 shows the data plotted using a “trellis” plot – note that data are not

plotted in the original order.
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Figure 6: Length versus age (in years) for 11 girls.
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We now carry out parameter estimation, first naively, and then using LMEM

via REML.

> summary(lm(distance~age,data=Orthgirl))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.3727 1.6378 10.608 1.87e-13 ***

age 0.4795 0.1459 3.287 0.00205 **

> summary(lme( distance ~ age, data = Orthgirl, random = ~1 | Subject ))

Linear mixed-effects model fit by REML

Random effects:

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 2.06847 0.7800331

Fixed effects: distance ~ age

Value Std.Error DF t-value p-value

(Intercept) 17.372727 0.8587419 32 20.230440 0

age 0.479545 0.0525898 32 9.118598 0
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Notice the standard error for β1 is smaller for the REML analysis – slopes are

being estimated from within-girl comparisons (for the intercept correct

standard errors are larger due to dependence).

The REML estimates of the variance components are bσε = 0.78, bσ0 = 2.07 so

that bρ = 0.875 which ties in with the empirical correlations (10). The marginal

standard deviation is given by (bσ2
ε + bσ2

0)1/2 = 2.21, in agreement with the

diagonal elements of (10).
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Now for comparison carry out with ML:

> summary(lme( distance ~ age, data = Orthgirl, random = ~1 | Subject, method = "ML" ))

Linear mixed-effects model fit by maximum likelihood

Random effects:

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 1.969870 0.7681235

Fixed effects: distance ~ age

Value Std.Error DF t-value p-value

(Intercept) 17.372727 0.8506287 32 20.423397 0

age 0.479545 0.0530056 32 9.047078 0

Note that the MLEs of the variance components are smaller than the REML

counterparts. Slight differences in the standard errors of the fixed effects (but

not a big difference here).
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Bayesian Inference

In the Bayesian approach to inference all unknown quantities contained in a

probability model for the observed data are treated as random variables.

These unknowns may include, for example, missing data, the true covariate

value in an errors-in-variables setting, or the failure time of a censored survival

observation.

Inference is made through the posterior probability distribution of θ after

observing y, and is determined from Bayes theorem:

p(θ | y) =
p(y | θ) × π(θ)

p(y)
,

where, for continuous θ, the normalizing constant is given by

p(y) =

Z

θ
p(y | θ)p(θ) dθ,

and is the marginal probability of the observed data given the model

(likelihood and prior). Ignoring this constant gives

p(θ | y) ∝ p(y | θ) × π(θ)

Posterior ∝ Likelihood × Prior

57

2006 Jon Wakefield, Stat/Biostat 571

The use of the posterior distribution for inference is very intuitively appealing

since it probabilistically combines information on the parameters arising from

the data and from prior beliefs.

An important observation is that for all θ for which π(θ) = 0 we have

p(θ | y) = 0 also, regardless of any realization of the observed data. This has

important consequences for prior specification and clearly shows that great care

should be taken in excluding parts of the parameter space a priori.
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Sequential Updating

Suppose first that y1 and y2 represent the current totality of data. Then the

posterior is given by

p(θ | y1, y2) =
p(y1, y2 | θ)π(θ)

p(y1, y2)
. (15)

Now suppose that we are at a previous time point at which only y1 are

available, the posterior in this case is

p(θ | y1) =
p(y1 | θ)π(θ)

p(y1)
.

When y2 becomes available, the “prior” for these data corresponds to p(θ | y1)

since it represents the current beliefs concerning θ. We then update via

p(θ | y1, y2) =
p(y2 | y1, θ)π(θ | y1)

p(y2 | y1)
. (16)

Identical inference in each case; hence consistent inference is reached regardless

of whether we produce the posterior in one stage or two, corresponding to

whether all of the data are analyzed simultaneously.
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Inference

To summarizes the typically multivariate posterior distribution, p(θ | y),

marginal distributions for parameters of interest may be considered.

For example the univariate marginal distribution for a component θi is given by

p(θi | y) =

Z

θ−i

p(θ | y) dθ−i, (17)

where θ−i is the vector θ excluding θi.

Posterior moments may be evaluated from the marginal distributions; for

example the posterior mean is given by

E[θi | y] =

Z

θi

θip(θi | y) dθi. (18)

Further summarization may be carried out to yield the 100×q% quantile, θi(q)

(0 < q < 1) by solving Z θi(q)

−∞
p(θi | y) dθi. (19)

In particular, the posterior median, θi(0.5), will often provide an adequate

summary of the location of the posterior marginal distribution.
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A 100×p% equi-tailed credible interval (0 < p < 1) is provided by

[ θi{(1 − p)/2}, θi{(1 + p)/2} ].

Such intervals are usually reported though in some cases it which the posterior

is skewed one may wish to instead calculate a highest posterior density (HPD)

interval in which points inside the interval have higher posterior density than

those outside the interval (such an interval is also the shortest credible interval).

Another useful inferential quantity is the predictive distributions for future

observations z which is given, under conditional independence, by

p(z | y) =

Z

θ
p(z | θ)p(θ | y) dθ. (20)

This clearly assumes that the system under study is stable so that the

likelihood for future observations is still the relevant data generation

mechanism.

Bayesian inference is deceptively simple to describe probabilistically, but there

have been two major obstacles to its routine use. The first is how to specify

prior distributions and the second is how to evaluate the integrals required for

inference, for example, (17)–(20), given that for most models, these are

analytically intractable
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Simple Example: Suppose we have

Yi|θ ∼i.i.d. N(θ, σ2), i = 1, ..., n,

with σ2 assumed known and θ unknown.

Estimation

Recall that the MLE

Ȳ ∼ N

„
θ,

σ2

n

«
.

Suppose the prior distribution for θ can be described by a normal distribution

with mean m and variance v (m and v are known). Then the posterior

distribution p(θ|y) is given by

N

„
ȳ × w + m × (1 − w),

σ2

n
× w

«
,

where w = v
v+σ2/n

.

Think about cases: n = 0 (recover the prior), v = 0 (posterior=prior), v−1 = 0

(improper prior, frequentist and Bayesian estimates coincide), n → ∞ (w → 1

unless v = 0).
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One useful way of specifying the prior is as

θ ∼ N

„
m,

σ2

k

«
,

in which case k may be regarded as a prior sample size. It is ‘as if’ we carried

out an experiment with k observations and we observed a mean of m. This

gives w = n/(n + k).
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Figure 7: Normal likelihood (ȳ=1.5,n=10,σ=1), normal prior (m=1, k=5) and

the resultant normal posterior.
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Prediction

Suppose we wish to obtain the predictive density for a new random variable

Z ∼ N(θ, σ2).

Then

p(z|y) =

Z
p(z|θ) × p(θ|y)dθ.

It may be shown that

z|y ∼ N
˘
E[θ|y], σ2 + var(θ|y)

¯
,

so that the mean of the predictive distribution is the posterior mean and the

variance is given by the sum of the ‘measurement error’ and the uncertainty in

the posterior mean.
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Prior Choice

We distinguish between two prior specification situations. In the first, which we

label as a baseline prior an analysis is required in which the prior distribution

has minimal impact, so that the information in the likelihood dominates the

posterior.

The second situation, which we label as a substantive prior is one in which it is

desired to incorporate more substantial prior information into the analysis.

Baseline Priors

On first consideration it would seem that the specification of a baseline prior is

straightforward, one simply takes the choice

π(θ) ∝ 1 (21)

so that the posterior distribution depends solely on the data through the

likelihood p(y | θ).

There are two difficulties with this.
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The first difficulty is that the prior (21) is improper (it does not integrate to a

positive constant < ∞) unless the range of each element of θ is finite.

In some instances this is not a problem since the posterior corresponding to the

prior is proper. Philosophically a posterior arising from an improper prior may

be justified as a limiting case of proper priors. More practically we may instead

assume that the prior is integrable over its support but is “locally uniform”, so

that the likelihood dominates.

For nonlinear models in particular, care must be taken to ensure that the

posterior corresponding to a particular prior choice is proper. Some general

guidelines are available, for example, improper priors for the regression

parameters in a generalized linear model will usually lead to a proper posterior

although not for some pathological cases.

For example suppose Y | p ∼ Binomial(n, p), and a uniform prior is used on the

logit of p, log{p/(1 − p)} which implies the prior on p is π(p) = [p(1 − p)]−1.

Then an improper posterior results if y = 0 (or y = n) since the non-integrable

spike at p = 0 (or p = 1) remains in the posterior. For n = 1 one of these events

will always occur and so an improper posterior always results.
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To illustrate the non-propriety in another non-linear situation consider the

model

Yi | θ ∼ind N{exp(−θxi), σ
2}, (22)

i = 1, ..., n, with θ > 0 and σ2 assumed known. With an improper uniform

prior on θ we have the posterior

p(θ | y) ∝ exp

(
− 1

2σ2

nX

i=1

(yi − e−θxi )2

)
.

As θ → ∞,

p(θ | y) → exp

(
− 1

2σ2

nX

i=1

y2
i

)
,

a constant, so that the posterior is improper.
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The second is that if we reparameterize the model in terms of φ = g(θ) where

g(·) is a one-one mapping, then the prior for φ corresponding to (21) is given by

π(φ) =

˛̨
˛̨ dθ

dφ

˛̨
˛̨ ,

which, unless g is linear, is not constant.

As an example, consider a variance σ2, the prior π(σ2) ∝ 1 corresponds to a

prior for the standard deviation of π(σ) ∝ σ; the problem is that we cannot be

“flat” on different scales.

This indicates that a desirable property in constructing baseline priors is there

invariance to parameterization, so that we obtain the same prior regardless of

the starting parameterization. In the example just considered suppose the data

are normally distributed with variance σ2. The improper prior

π(σ) ∝ 1

σ

has a number of justifications including invariance to parameterization.
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Example: Normal linear regression, variance unknown

Suppose we have Yi | β, σ2 ∼ind N(xiβ, σ2), i = 1, ..., n. dim(β) = p.

MLE: bβ ∼ tp(β, (xTx)−1s2, n − p), a Student t distribution with n − p degrees

of freedom.

Improper prior: π(β, σ2) ∝ σ−2.

Marginal posterior:

p(β | y) =

Z
p(β, σ2 | y)dσ2,

where

p(β, σ2 | y) ∝ l(β, σ2) × π(β, σ2).

Hence

p(β | y) =

Z
(2πσ2)−n/2

σ2
exp

(
−

[(n − p)s2 + (bβ − β)TxTx(bβ − β)]

2σ2

)
dσ

2

∝

Z
(σ

2
)
−(n/2+1)

exp


−

c

2σ2

ff
dσ

2

where

c = (n − p)s2 + (bβ − β)TxTx(bβ − β).
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We have the kernel of an inverse Gamma distribution IGa(n/2, c).

An inverse gamma r.v. X has density

p(x) =
βα

Γ(α)
x−(α+1) exp(−β/x), x > 0.

Hence

p(β | y) ∝
“ c

2

”−n/2

∝ {(n − p)s2 + (bβ − β)TxTx(bβ − β)}−n/2

∝
(

1 +
(bβ − β)TxTx(bβ − β)

(n − p)s2

)[−(n−p)+p]/2

=

(
1 +

(bβ − β)TΣ−1(bβ − β)

n − p

)[−(n−p)+p]/2

where Σ = (xTx)−1s2.
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Hence the posterior

β | y ∼ tp(bβ, (xTx)−1s2, n − p).

A p dimensional multivariate Student’s t r.v. X with degrees of freedom d has

density

p(x) =
Γ{(d + p)/2}
Γ(d/2)(dπ)p/2

| Σ |−1/2 ×
ˆ
1 + (x− µ)TΣ−1(x− µ)/d

˜−(d+p)/2
.
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Bayesian Justification for REML

Another justification is to assign a flat improper prior to the regression

coefficients and then integrate these from the model.

Example: Normal Linear Model

Consider the linear regression for independent data: Y |β, σ2 ∼ N(xβ, Inσ2),

with dim(β) = k + 1.

Consider

p(y|σ2) =

Z
p(y|β, σ2)π(β)dβ,

and assume π(β) ∝ 1.
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Hence

p(y|σ2) =

Z
(2πσ2)−n/2 exp

»
− 1

2σ2
(y − xβ)T(y − xβ)

–
dβ

= (2πσ2)−n/2

Z
exp

»
− 1

2σ2
(y − xbβ + xbβ − xβ)T

× (y − xbβ + xbβ + xβ)
i

dβ

= (2πσ2)−(n−k−1)/2 exp

»
−RSS

2σ2

–
|xTx|−1/2

where the residual sum of squares

RSS = (y − xbβ)T(y − xbβ).

Maximization of l(σ2) = log p(y|σ2) yields the unbiased estimator

bσ2 =
RSS

n − k − 1
.
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Example: LMEM

Again obtain the distribution of the data as a function of α only, by integrating

β from the model, and assuming an improper flat prior for β.

We have

p(y|α) =

Z

β
p(y|β, α) × π(β) dβ,

leading to

l(α) = log p(y|α) = −1

2

mX

i=1

log |V i(α)|

− 1

2

mX

i=1

log |xT
i V i(α)xi| −

1

2

mX

i=1

(yi − xi
bβ)TV −1(α)(yi − xi

bβ),

which differs from the “usual” likelihood by the term

−1

2

mX

i=1

log |xT
i V −1

i (α)xi|.

This expression as the same as that which results from the maximization of the

distribution of the residuals.

Estimates of β change since they are a function of bα.
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Inference for Random Effects

Examples:

• Pharmacokinetics: individualization of a profile.

• Dairy herds: genetic merit of a particular bull – data are in the form of the

milk yields of his daughters.

• Psychology: inference for the IQ of an individual from a set of test scores.

• Industrial applications: operating characteristics of a particular machine.

From a frequentist perspective, inference for random effects is often viewed as

prediction rather than estimation, since b are random variables.

The usual frequentist optimality criteria for a fixed effect θ, are based upon

unbiasedness:

E[bθ] − θ = 0,

where θ is a fixed constant, and upon the variance of the estimator

var(bθ).

These need to be adjusted when inference is required for a random effect b.
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We wish to find a predictor eb = f(Y ) of b.

An unbiased predictor eb is such that

Ey,b[eb− b] = E[eb− b] = 0,

to give

E[eb] = E[b]

so that the expectation of the predictor is equal to the expectation of the

random variable that it is predicting.

The variance of a random variable is defined with respect to a fixed number,

the mean. In the context of prediction of a random variability, a more relevant

summary of the variability is

var(eb− b) = var(eb) + var(b) − 2cov(eb, b).

77

2006 Jon Wakefield, Stat/Biostat 571

There are many different criteria that may be used to find a predictor.

Since we are predicting a random variable it is natural to use minimum mean

squared error (MSE) as a criteria, rather than minimum variance.

The MSE of eb is given by

MSE(eb) = Ey,b[(eb− b)TA(eb− b)],

for non-singular A.

This leads to eb = E[b | y], irrespective of A (see Exercises 2). Hence the best

prediction is that which estimates the random variable by its conditional mean.

We now examine properties of eb.

Unbiasedness

We have

Ey [eb] = Ey{Eb|y [b | y]} = Eb[b]

where we first step follows on substitution of eb and the second from iterated

expectation. (Note: Eu[U ] = Eu,v [U ] = Ev{Eu|v [U |V ]}.)
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Variability

Recall an appropriate measure of variability:

var(ebi − bi) = var(ebi) + var(bi) − 2cov(ebi, bi).

We have

coveb,b
(ebi, bi) = Ey [cov(ebi, bi | y)] + covy(E[ebi | y], E[bi | y])

= Ey [cov(ebi, bi | y)] + covy(ebi,ebi) (23)

= var(ebi)

The first term in (23) is the covariance between a constant E[eb | y] (since y is

conditioned upon), and eb, and so is zero (because the covariance between a

constant and any quantity is zero). In the second term we have used

E[ebi | y] = E[E[bi | y] | y] = ebi.

Hence

var(ebi − bi) = var(bi) − var(ebi).
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Application to the LMEM

The predictor, eb = E[b | y], is a random variable, since it a function of y, and

so we need to know something about p(b | y) in order to derive its form.

Definitions: Suppose U is an n × 1 vector of random variables, and V is an

m × 1 vector of random variables. Then cov(U, V ) = C is an n × m matrix

with (i, j)-th element cov(Ui, Vj), i = 1, ..., n; j = 1, ..., m. Also

cov(V , U) = CT. Now suppose V = AU where A is an m × n matrix. Then

cov(U, AU) = WAT where W = cov(U), and cov(AU, U) = AW .

Consider the LMEM

y = xβ + zb + ε,

and assume b and ε are independent and bi ∼ N(0, D), ε ∼ N(0, σ2
ε I) then,

using the above results:
2
4 bi

yi

3
5 ∼ Nq+1+ni

0
@
2
4 0

xiβ

3
5 ,

2
4 D DzT

i

ziD V i

3
5
1
A .

since

cov(bi, yi) = cov(bi, xiβ + zibi + εi) = cov(bi, zibi) = DzT
i ,

and similarly cov(yi, bi) = ziD.
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Using properties of the multivariate normal distribution, the predictor takes

the form:
ebi = E[bi|yi] = DzT

i V −1
i (yi − xiβ) (24)

This is known as the best linear unbiased predictor (BLUP), where unbiased

refers to it satisfying E[ebi] = E[bi].

The random effect predictor is a shrinkage estimator since it pulls the data

towards zero, as we see in examples later.

The form (24) is not of practical use since it depends on the unknown β and α;

instead we use
ebi = E[bi|yi] = bDzT

i
bV −1

i (yi − xi
bβ). (25)

Substitution of bβ is not such a problem (since it is an unbiased estimator, and

appears in (24) in a linear fashion), but bα is more problematic.
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The uncertainty in the prediction is given by

var(ebi − bi) = var(bi) − var(ebi) = D − var(ebi)

We have
ebi = DzT

i V −1
i (Y i − xi

bβ) = Ki(Y i − xi
bβ),

and

var(Y i − xi
bβ) = var(Y i) + xivar(bβ)xT

i − 2cov(Y i, xi
bβ).

Since

bβ = (xTV −1x)−1
mX

i=1

xT
i V −1

i Y i,

we have

cov(Y i, xi
bβ) = xi(x

TV −1x)−1xT
i V −1

i var(Y i) = xivar(bβ)xT
i ,

and so

var(ebi) = Ki[var(Y i) − xivar(bβ)xT
i ]KT

i = Ki[V i − xivar(bβ)xT
i ]KT

i

to give

var(ebi − bi) = D − DzT
i V −1

i ziD + DzT
i V −1

i xi(x
TV −1x)−1xT

i V −1
i ziD.

The variability of the prediction does not acknowledge the uncertainty in bα.
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We now examine fitted values:

bY i = xi
bβ + zi

bbi

= xi
bβ + zi{DzT

i V −1
i (Y i − xi

bβ)}
= (Ini − ziDzT

i V −1
i )xi

bβ + ziDzT
i V −1

i Y i,

a weighted combination of the population profile, and the unit’s data.

Note that if D = 0 we obtain bY i = xi
bβ.

We can also write

bY i = σ2
ε V −1

i xi
bβ + (Ini − σ2

ε V −1
i )Y i

so that as σ2
ε → 0, bY i → Y i.
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Example: One-way ANOVA

For the simple balanced ANOVA model previously considered

ebi =
nσ2

0

σ2
ε + nσ2

0

(yi − β0).

In practice we have an estimate bβ0, and the predictor is a weighted

combination of the distance yi − bβ0 and zero. Hence for finite n the predictor is

biased towards zero (recall our definition of unbiasedness is in terms of b).

As n → ∞, ebi → yi − bβ0, so that

bβ0 +ebi → yi → E[Yi].
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The form of (24) can be justified in a number of ways, other than MSE.

Rather than assume normality we could consider estimators that are linear in

y. In Exercises 2 we show that this again leads to

ebi = DzT
i V −1

i (yi − xiβ).

Hence the best linear predictor is identical to the best predictor under

normality.

For general distributions, E[bi|yi] is not necessarily linear in y. Once we plug

α into the BLUP we don’t even have a linear predictor.

The BLUP is an empirical Bayes estimator. We should be considering E[b | y],

with

p(b | y) =

Z Z
p(b, β, α | y) dβdα =

Z Z
p(b | β, α, y)p(β, α | y) dβdα,

but instead the BLUP is the mean of the distribution

p(b | bβ, bα, y),

so that rather than integrating over β, α, estimates have been conditioned

upon.
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Example: Dental Growth

We again fit a LMEM with random intercepts only.

> remlelm <- lme(distance~I(age-11),data = Orthgirl,random = ~1 | Subject)

> summary(remlelm)

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 2.06847 0.7800331

Value Std.Error DF t-value p-value

(Intercept) 22.647727 0.6346568 32 35.6850 0

I(age - 11) 0.479545 0.0525898 32 9.1186 0

> coef(remlelm)

(Intercept) I(age - 11)

F10 18.64240 0.4795455

F09 21.17728 0.4795455

F06 21.17728 0.4795455

F01 21.41869 0.4795455

F05 22.62578 0.4795455

F07 22.98791 0.4795455

F02 22.98791 0.4795455

F08 23.35003 0.4795455

F03 23.71216 0.4795455

F04 24.79853 0.4795455

F11 26.24704 0.4795455
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Left: LS estimates, Right: Smoothed estimates
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Figure 8: Least squares estimates and smoothed estimates, bβ0 + ebi; not much

shrinkage here since bσ0 is large relative to bσε.
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Figure 9: Individual fits: solid line is LS, broken line from LMEM.
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Figure 10: Individual fits: Solid lines are LS, broken line from LMEM.
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Dental Example: Boys and Girls Joint Analyses

Table 2 describes a variety of LMEMs to the dental data and Table 3 results.

Model Description

1 Separate fits, random intercepts

2 Separate fits, random intercepts and slopes, uncorrelated

3 Separate fits, random intercepts and slopes, correlated

4 Combined fit, separate intercepts, common slope, random intercepts

5 Combined fit, separate intercepts and slopes, random intercepts

6 Combined fit, separate intercepts and slopes, random intercepts and slopes, uncorrelated

7 Combined fit, separate intercepts and slopes, random intercepts and slopes, correlated

Table 2: Various LMEMs.

Boys Girls

Model bβ0
bβ1 bσ0 bσ1 bρ01 bσε bβ0

bβ1 bσ0 bσ1 bρ01 bσε

1 25.0 0.78 1.63 – – 1.68 22.7 0.48 2.07 – – 0.78

2 25.0 0.78 1.64 0.19 – 1.61 22.6 0.48 2.08 0.16 – 0.67

3 25.0 0.78 1.64 0.19 -0.01 1.61 22.6 0.48 2.08 0.16 0.53 0.67

4 25.0 0.66 1.81 – – 1.43 22.6 0.66 1.81 – – 1.43

5 25.0 0.78 1.82 – – 1.39 22.6 0.48 1.82 – – 1.39

6 25.0 0.78 1.83 0.18 – 1.31 22.6 0.48 1.83 0.18 – 1.31

7 25.0 0.78 1.83 0.18 0.21 1.31 22.6 0.48 1.83 0.18 0.21 1.31

Table 3: Various LMEM analyses.
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R code for models

# Set parameterization (to corner point)

> options(contrasts=c("contr.treatment","contr.poly"))

# Separate fits - intercept only, model 1

> remlF <- lme( distance ~ I(age-11), data = Orthgirl, random = ~1 )

> remlM <- lme( distance ~ I(age-11), data = Orthboy, random = ~1 )

# Separate fits - intercept and age, diagonal, model 2

> remlF2d <- lme( distance ~ I(age-11), data = Orthgirl,random = pdDiag(~I(age-11)))

> remlM2d <- lme( distance ~ I(age-11), data = Orthboy,random = pdDiag(~I(age-11)))

# Separate fits - intercept and age, non-diagonal, model 3

> remlF2 <- lme( distance ~ I(age-11), data = Orthgirl, random = ~I(age-11))

> remlM2 <- lme( distance ~ I(age-11), data = Orthboy, random = ~I(age-11))

# Combined fit - common slope, intercept only, model 4

> remlMF <- lme( distance ~ I(age-11)+Sex, data = Orthodont, random = ~1 )

# Combined fit - seperate intercepts and slopes, intercept only - model 5

> remlMFi <- lme( distance ~ I(age-11)+Sex+I(age-11):Sex, data = Orthodont,

random = ~1 )

# Combined fit -sep intercepts and slopes, uncor random intercepts and slopes - model 6

> remlMF2 <- lme( distance ~ I(age-11)+Sex+I(age-11):Sex, data = Orthodont,

random=pdDiag(~I(age-11)) )

# Combined fit - sep intercepts and slopes, cor random intercepts and slopes - model 7

> remlMF3 <- lme( distance ~ I(age-11)+Sex+I(age-11):Sex, data = Orthodont,

random=~I(age-11) )
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Example of Output (model 4)

> summary(remlMF)

Random effects:

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 1.807425 1.431592

Fixed effects: distance ~ I(age - 11) + Sex

Value Std.Error DF t-value p-value

(Intercept) 24.968750 0.4860008 80 51.37595 0.0000

I(age - 11) 0.660185 0.0616059 80 10.71626 0.0000

SexFemale -2.321023 0.7614168 25 -3.04829 0.0054

Correlation:

(Intr) I(-11)

I(age - 11) 0.000

SexFemale -0.638 0.000

Number of Observations: 108

Number of Groups: 27

Figure 11 gives normal QQ plots of the LS estimates of intercepts and slopes,

for boys and girls.

Figure 12 gives a scatter plot of the LS estimates of intercepts and slopes, for

boys and girls.
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Figure 11: QQ plot of the LS estimates.
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Bayesian Inference for the LMEM

Consider the model

yi = xiβ + zibi + εi

with bi ∼iid N(0, D), εi ∼ind N(0, Iniσ
2
ε ), with bi and εi independent.

The form of the posterior follows from exploiting conditional independencies:

p(β, α, b | y) ∝ p(y | β, α, b)π(β, α, b) =
mY

i=1

p(yi | β, α, bi)π(b | α)π(β)π(α)

=

mY

i=1

{p(yi | β, α, bi)π(bi | α)}π(β)π(α) (26)

Alternatively, we can derive the posterior for β, α directly:

p(β, α | y) ∝ p(y | β, α)π(β, α) =
mY

i=1

p(yi | β, α)π(β, α)

=
mY

i=1

Z
p(yi, bi | β, α) dbiπ(β, α)

where the integrand is giving by the term in curly brackets in (26).

The prior on bi is justified by the context, formally via exchangeability.

95

2006 Jon Wakefield, Stat/Biostat 571

Exchangeability

Definition: A finite set Y1, ..., Yn of random variables is said to be

exchangeable if every permutation (Y1, ..., Yn) has the same joint distribution as

every other permutation. An infinite collection is exchangeable if every finite

subcollection is exchangeable.

Every collection of independent and identically distributed random variables is

exchangeable.

Theorem: De Finetti’s representation Theorem for 0/1 random variables.

If Y1, Y2, ... is an infinitely exchangeable sequence of 0/1 random variables,

there exists a distribution π(·) such that the joint mass function Pr(y1, ..., yn)

has the form

Pr(y1, ..., yn) =

Z 1

0

nY

i=1

θyi (1 − θ)1−yiπ(θ) dθ,

where Z θ

0
π(u) du = lim

n→∞
Pr

„
Zn

n
≤ θ

«
,

with Zn = Y1 + ... + Yn, and θ = limn→∞ Zn/n.
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Proof: See Bernardo and Smith (1994) for more details.

Let zn = y1 + ... + yn be the number of 1’s (which we label “successes”) in the

first n observations. Then, due to exchangeability,

Pr(y1 + ... + yn = zn) =

0
@ n

zn

1
APr(Yπ(1), ..., Yπ(n)),

for all permutations π of {1, ..., n} such that yπ(1) + ... + yπ(n) = zn. Then we

can embed the event y1 + ...+yn = zn within a sequence, y1, ..., yN , N ≥ n, and

Pr

 
nX

i=1

yi = zn

!
=

N−(n−zn)X

ZN=zn

Pr(y1 + ... + yn = zn, y1 + ... + yN = zN )

=

N−(n−zn)X

zN =zn

Pr(y1 + ... + yn = zn | y1 + ... + yN = zN )

× Pr(y1 + ... + yN = zN ).

To obtain the conditional probability we observe that it is as if we have a

population of N people of which zN are successes, and N − zN failures, from

which we draw n people, the probability of zn successes is then hypergeometric.
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Hence

Pr(y1 + ... + yn = zn) =

N−(n−zn)X

zN =zn

0
@ zN

zn

1
A
0
@ N − zN

n − zn

1
A

0
@ N

n

1
A

Pr(zN )

Here Pr(zN ) is the “prior” belief in the number of successes out of N .

Let N → ∞ and by the strong law of law numbers θ = limN→∞ zN /N .

The hypergeometric tends to a binomial with parameters n and θ, and the

prior Pr(zN ) is translated into a prior for θ, π(θ). Hence we have

Pr(y1 + ... + yn = zn) →

0
@ n

zn

1
A
Z

θzn (1 − θ)n−znπ(θ) dθ,

as N → ∞.
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Implications

The interpretation of this theorem is of great significance:

• We may view the Yi to be independent, Bernoulli random variables,

conditional on a random variable θ.

• θ is itself assigned a probability distribution π().

• π may be interpreted as ‘beliefs about the limiting relative frequency of 1’s’.

In conventional language, we have the likelihood function

p(Y1, ..., Yn|θ) =
nY

i=1

p(Yi|θ) =
nY

i=1

θYi (1 − θ)1−Yi ,

where the parameter θ is assigned a prior distribution π(θ).
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Corollary: If Y1, Y2, ... is an infinitely exchangeable sequence of 0/1 random

variables, then we have the conditional probability function

p(ym+1, ..., yn | y1, ..., ym) =

Z 1

0

nY

i=m+1

θYi(1 − θ)1−Yiπ(θ | y1, ..., ym) dθ,

for 1 ≤ m < n where

π(θ | y1, ..., ym) =

Qm
i=1 θyi (1 − θ)1−yiπ(θ)

R 1
0

Qm
i=1 θyi(1 − θ)1−yi π(θ) dθ

and Z θ

0
π(u) du = lim

n→∞
Pr
“ zn

n
≤ θ
”

.

Proof

Write

Pr(ym+1, ..., yn | y1, ..., ym) =
Pr(y1, ..., yn)

Pr(y1, ..., ym)
,

and then use the previous result on numerator and denominator.

Interpretation: the prior distribution π(θ) for θ has been revised, via Bayes’

Theorem, into the posterior distribution π(θ|y1, ..., ym).
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Further results

General Representation Theorem:

If Y1, Y2, ... is an infinitely exchangeable sequence of random variables with

probability measure P , there exists a distribution function Q such that the

joint mass function p(Y1, ..., Yn) has the form

p(Y1, ..., Yn) =

Z nY

i=1

p(Yi|θ)π(θ)dθ,

with p(·|θ) denoting the density function corresponding to the ‘unknown

parameter’ θ.

Further assumptions on Y1, Y2, ... are required to identify p(·|θ).
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Relevance of Exchangeability

If we believe a priori that θ1, ..., θm are exchangeable (and are considered

within a hypothetical infinite sequence of such random variables), then it can be

shown using representation theorems that the prior can be written in the form

p(θ1, ..., θm) =

Z mY

i=1

p(θi|φ)π(φ) dφ,

that is, they are conditionally independent, given hyperparameters φ, with the

hyperparameters having a hyperprior distribution.

Hence we have a two-stage (hierarchical) prior:

Stage A: θi|φ ∼iid p(·|φ), i = 1, ..., m.

Stage B: φ ∼iid π(·).
Parametric choices for p(·|φ) and π(·) are usually made for computational

convenience.

Contrast with the sampling theory approach in which the random effects are

assumed to be a random sample from a hypothetical infinite population.
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Bayesian Computation

We have seen that to summarize posterior distributions integration is required

and, in all but the simplest (conjugate) models, these integrals are not

analytically tractable.

Integration is also required to integrate out the random effects in nonlinear

mixed effects models, to obtain the likelihood, and later we will review a

number of analytical and numerical approaches, for now we concentrate on

Markov chain Monte Carlo (MCMC).

The first key idea is the duality between densities and samples from that

density: given a density we can always generate samples, and given samples we

can reconstruct the density.

Simulation-based techniques have revolutionized Bayesian statistics, by

allowing the fitting of very complex models.
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Example

Suppose we have Yj | pj ∼ Binomial(nj , pj), j = 1, 2, with independent priors

pj ∼ U(0, 1). The posteriors are available analytically as

pj | yj ∼ Beta(yj + 1, nj − yj + 1), but suppose we are interested in inference

for the odds ratio φ = p1
1−p1

/ p2
1−p2

and for the relative risk θ = p1
p2

.

The following is R code to simulate from φ | y1, y2 when n1 = 35, n2 = 45,

y1 = 30, y2 = 10:

> n1 <- 35; n2 <- 45; y1 <- 30; y2 <- 10

> nsamp <- 1000

> p1 <- rbeta(nsamp,y1+1,n1-y1+1); p2 <- rbeta(nsamp,y2+1,n2-y2+1)

> odds <- (p1/(1-p1))/(p2/(1-p2)); rr <- p1/p2

> par(mfrow=c(2,2))

> hist(p1,xlim=c(0,1))

> hist(p2,xlim=c(0,1))

> hist(odds)

> hist(rr)

> sum(odds[odds>10])/sum(odds) # Posterior prob that odds ratio is > than 10

[1] 0.945683
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Figure 13: Posterior distributions for p1, p2, the odds ratio p1
1−p1

/ p2
1−p2

and for

the relative risk θ = p1
p2

.
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The Composition Method

A useful technical for simulating from joint posterior distributions is the

following.

Write the joint posterior distribution for θ1, θ2 as

p(θ1, θ2 | y) = p(θ1 | y)p(θ2 | θ1, y)

Then a simulating algorithm to produce independent samples from p(θ1, θ2 | y)

is, for s = 1, ..., S:

1. Simulate θ
(s)
1 ∼ind p(θ1 | y).

2. Simulate θ
(s)
2 ∼ind p(θ2 | θ

(s)
1 , y).
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Markov chain Monte Carlo

MCMC is a very general technique that has revolutionized practical Bayesian

statistics.

In the usual derivation of Markov chains over a discrete sample space we are

given a transition matrix and the aim is to find the stationary distribution (if it

exists). Probabilities of movement depend on the current state only, hence the

name.

In the context of sampling from a distribution π(·), the aim is to construct a

Markov chain whose stationary distribution is π.

Samples θ(s), s = 1, ..., S, produced by a Markov chain “look” more and more

like dependent samples from π as S → ∞. The dependency does not cause a

problem in terms of estimation since

1

S

SX

s=1

f(θ(s)) → E{f(θ)},

as S → ∞ (provided the expectation exists).

The only difficulty with the dependency is establishing an appropriates Monte

Carlo error on the resultant estimator. We discuss two (related) Markov chains

– the Gibbs sampler, and the Metropolis-Hastings algorithm.
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Markov chains over a discrete parameter space

Consider a random variable that may take on K values, and consider a Markov

chain defined by a K × K transition matrix P .

Then the stationary distribution π is defined by

π = πP ,

where π is a 1 × K row vector.

Roughly speaking, if P is irreducible and aperiodic (i.e. ergodic) then the

stationary distribution is unique.
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Gibbs Sampling

Consider a two-parameter problem in which the (intractable) posterior is:

π(θ1, θ2|y) ∝ l(θ1, θ2) × π(θ1, θ2).

We have

π(θ1, θ2|y) = p(θ1|y) × p(θ2|θ2, y),

but p(θ1|y) will typically be unavailable.

Gibbs sampling proceeds by iterating between the steps:

θ
(s)
1 ∼ p(θ1|θ(s−1)

2 , y),

and

θ
(s)
2 ∼ p(θ2|θ(s)

1 , y),

to produce the sequence

(θ
(0)
1 , θ

(0)
2 ), (θ

(1)
1 , θ

(1)
2 ), ..., (θ

(s)
1 , θ

(s)
2 ), ...

which may be viewed as a draw from π(θ1, θ2|y)
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Gibbs Sampling over a discrete parameter space

Let θ = (θ1, θ2) and suppose that the parameters θ1 and θ2 can each take one

of the two values, 0 and 1. The posterior distribution is given in Table 4.

p(θ1, θ2|y) θ2 = 0 θ2 = 1

θ1 = 0 π00 π01

θ1 = 1 π10 π11

Table 4: Joint posterior distribution.

In this case the Gibbs sampler defines a 4 × 4 transition matrix P . The

elements of this matrix are given by

Pr{(i, j), (k, l)} = Pr{θ(s) = (k, l)|θ(s−1) = (i, j)}

= Pr(θ
(s)
1 = k|θ(s)

2 = j) Pr(θ
(s)
2 = l|θ(s)

1 = k)

=
πkj

π+j
× πkl

πk+

It is straigtforward to show that P is such that π = πP .
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Example: Normal likelihood, unknown mean and variance

Likelihood:

Yi|β, σ2 ∼ N(xiβ, σ2), i = 1, ..., n.

Prior:

β ∼ N(µ, V ), σ−2 ∼ Ga(a, b).

Posterior

π(β, σ2|y) ∝ l(β, σ2)π(β)π(σ2),

is intractable unless p(β) is improper uniform and the prior for σ2 is inverse

gamma.
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Gibbs sampling iterates between β|y, σ2 and σ−2|y, β where

p(β|y, σ2) ∝ l(β, σ2)π(β)

∼ N(µ∗, V ∗),

p(σ−2|y, β) ∝ l(β, σ2)π(σ−2)

∼ Ga

„
a +

n

2
, b +

(y − xβ)T(y − xβ)

2

«
.

where

µ∗ = (xTxσ−2 + µTV −1)−1(xTxβ̂σ−2 + bV −1),

and

V ∗ = (xTxσ−2 + V −1)−1.
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Metropolis Algorithm – discrete parameter space

Suppse we have a discrete sample space Ω and we wish to construct a Markov

chain whose stationary distribution is π(·).
Let Q be an irreducible transition matrix on Ω, satisfying the symmetry

condition

Q(x, y) = Q(y, x), x, y ∈ Ω.

We may then define a Markov chain {θ(s), s = 0, 1, 2, ...} via the following steps.

• Suppose we are currently at state x.

• Generate a proposal from Q(x, y).

• Accept θ(s+1) = y with probability

min

„
1,

π(y)

π(x)

«
,

otherwise stay at x.

This results in the transition matrix

P (x, y) = Q(x, y) × min

„
1,

π(y)

π(x)

«
.
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Metropolis Algorithm – continuous parameter space

Suppose the stationary distribution is π(θ) and consider the symmetric

probability density function

g(θa|θb) = g(θb|θa).

Suppose θ(0) denotes the initial point. The Metropolis algorithm then consists

of, at iteration s

• Sample θ∗|θ(s−1) ∼ g(·|θ(s−1)).

• Calculate r = π(θ∗)/π(θ(s−1)).

• Set

θ(s) =

8
<
:

θ∗ with probability min(r, 1),

θ(s−1) otherwise.

At iteration s the transition density P (θ(s)|θ(s−1)) is a mixture of g(·|θ(s−1))

and the point θ(s−1).

Important point: the calculation of r does not depend on the normalizing

constant of the target density π.
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Metropolis-Hastings Algorithm

Generalizes the Metropolis algorithm to allow a non-symmetric proposal

density.

Suppose θ(0) denotes the initial point. The Metropolis-Hastings algorithm then

consists of, at iteration s:

• Sample θ∗|θ(s−1) ∼ g(·|θ(s−1)).

• Calculate

r =
π(θ∗)/g(θ∗|θ(s−1))

π(θ(s−1))/g(θ(s−1)|θ∗)
.

• Set

θ(s) =

8
<
:

θ∗ with probability min(r, 1),

θ(s−1) otherwise.
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Issues:

• Convergence of the Markov chain?

• Parameterization.

Convergence

• Early iterations θ(1), θ(2), ..., θ(m) reflect the (arbitrary) starting value θ(0).

• These iterations are called the burn-in.

• Chain will gradually ‘forget’ its initial state and converge to the unique

stationary distribution which is independent of θ(0).

• Burn-in samples should be ignored when summarizing the samples for

posterior inference via Monte Carlo integration, i.e.

E[g(θ)] ≈ 1

n − m

nX

s=m+1

g(θ(s))
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Convergence Diagnosis

• Strictly speaking, convergence is only achieved for n = ∞.

• But we only need Markov chain to be ‘approaching’ convergence for Monte

Carlo integration to yield a consistent estimate of the true expectation.

• How do we determine m, the number of ‘burn-in’ iterations?

• Informal examination of time series plots and running of multiple chains is

a must.

• Two issues: have we ‘found’ the posterior? Do we have enough samples to

answer the inferential questions? Some chains may be very slow mixing

(examination of autocorrelation is important).
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Parameterization

The Markov chain will display better mixing properties if the parameters are

approximately independent in the posterior.

In an extreme case, if we have independence then

p(θ1, ..., θk|y) =

kY

i=1

p(θi|y),

and Gibbs sampling via the conditional distributions p(θi|y), i = 1, ..., n, is

equivalent to direct sampling from the posterior.

In general it is better to sample ‘blocks’ of parameters that are approximately

independent.
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Hyperpriors

Consider the LMEM

yi = xiβ + zibi + εi,

with bi ∼ Nq+1(0, D), and εi ∼ Nni(0, σ2
ε Ini), i = 1, ..., m. A Bayesian

analysis requires prior distributions on β, D, σ2
ε ; it is common to assume

independent priors

π(β, D, σ2
ε ) = π(β)π(D)π(σ2

ε ).

For β a multivariate normal distribution and for σ2
ε an inverse gamma

distribution are often specified since they lead to conditional distributions of

convenient form for Gibbs sampling, but other choices are possible.

If D is a diagonal matrix with elements σ2
k, k = 0, 1, ..., q, then a prior that

leads to conjugate conditional distributions in a Gibbs sampling algorithm is

π(σ2
0 , ..., σ2

q ) =

qY

k=0

IGa(ak, bk),

where IGa(ak, bk) denotes the inverse gamma distribution with pre-specified

parameters ak, bk, k = 0, ..., q.
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The Wishart Distribution

A prior for a non-diagonal D is more troublesome; there are (q + 2)(q + 1)/2

elements, with the restriction that the resultant matrix is positive definite.

The inverse Wishart distribution is the conjugate choice, and is the only

distribution for which any great practical experience has been gained.

Suppose Z1, ..., Zr ∼iid Np(0, S), with S a non-singular variance-covariance

matrix, and let

W =
rX

j=1

ZjZT
j . (27)

Then W follows a Wishart distribution, denoted Wp(r, S), and

p(w) = c−1 | w |(r−p−1)/2 exp


−1

2
tr(wS−1)

ff

where

c = 2rp/2Γp(r/2) | S |r/2, (28)

with

Γp(r/2) = πp(p−1)/4
pY

j=1

Γ((r + 1 − j)/2)

the generalized gamma function, and r ≥ p for a proper density.
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The mean is given by

E[W ] = rS.

The Wishart distribution is a multivariate version of the gamma distribution.

Taking p = 1 yields

p(w) =
(2S)−r/2

Γ(r/2)
wr/2−1 exp(−w/2S),

for w > 0, the gamma distribution Ga(r/2, 1/(2S)). Further, taking S = 1 gives

a χ2
r random variable, which is clear from (27).
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The Inverse Wishart Distribution

If W ∼ Wp(r, S), the distribution of D = W−1 is known as the inverse

Wishart distribution, and is given by

p(d) = c−1 | d |−(r+p+1)/2 exp


−1

2
tr(d−1S)

ff

where c is again given by (28). The mean is given by

E[D] =
S−1

r − p − 1

and is defined for r > p + 1. If p = 1 we recover the inverse gamma distribution

IGa(r/2, 1/2S) with E[D] = 1/[s(r − 2)] and var(D) = 1/[S2(r − 2)(r − 4)] (so

that small r gives a larger spread).

Thinking ahead to application in the LMEM if W ∼ Wq+1(r, R
−1), then

E[W ] = rR−1,

and

E[D] = R/(r − q − 1 − 1),

so that R, may be scaled to be a prior estimate of D, with r acting as a

strength of belief in the prior.
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Issues with the Wishart Prior

• A problem with the Wishart distribution is that it is deficient in second

moment parameters since there is only a single degrees of freedom

parameter r. So, for example, it is not possible to have differing levels of

certainty in the tightness of the prior distribution for different elements of

D. With diagonal D and independent inverse gamma priors we have a

precision parameter for each variance.

• The form of the conditional distribution suggests that it may be better to

err on the side of picking R too small (if m small, prior always influential).

• Intuition: as if our prior data for the precision consists of observing r

normal random variables with variance-covariance matrices R.

• We need to take r ≥ q + 1 for a proper prior, with the flattest prior

corresponding to r = q + 1. A proper prior is required to ensure propriety

of the posterior distribution.

• Figure 14 displays samples from the Wishart distribution W2{20, (20S)−1}

where S =

"
0.4 0

0 1.0

#
. The mean is E[W ] = S−1 =

"
2.5 0

0 1.0

#
.
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Figure 14: Histograms of (a) w11, (b) w12, (c) w22, scatterplots of (d) w11, w12,

(e) w11, w22, w12, w22
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Conditional Conjugacy

We now consider a Gibbs sampling scheme and assume for simplicity that

xi = zi. It is computational more convenient to reparameterize in terms of the

set {β1, ..., βm, τ, β, W} where βi = β + bi, τ = σ−2
ε , W = D−1.

The joint posterior is

p(β1, ..., βm, τ, β, W , b | y) ∝
mY

i=1

{p(yi | βi, τ)p(βi | β, W)}π(β)π(τ)π(W),

with priors:

β ∼ Nq+1(β0, V 0)

τ ∼ Ga(a0, b0)

W ∼ Wq+1(r, R
−1)

and derive the required conditional distributions:

• p(β | τ, W , β1, ..., βm, y)

• p(τ | β, W , β1, ..., βm, y)

• p(W | β, τ, β1, ..., βm, y)

• p(βi | β, τ, W , y), i = 1, ..., m.

125

2006 Jon Wakefield, Stat/Biostat 571

Conditional for β

β | β1, ..., βm, W ∼ Nq+1

(“
mW + V −1

0

”−1
 

W

mX

i=1

βi + V −1
0 β0

!
,
“
mW + V −1

0

”−1
)

Conditional for τ

τ | βi, y ∼ Ga

 
a0 +

Pm
i=1 ni

2
, b0 +

1

2

mX

i=1

(yi − xiβi)
T(yi − xiβi)

!

Conditional for βi

βi | τ, W , y ∼ Nq+1

˘
(τxT

i xi + W)−1(τxT
i yi + Wβ), (τxT

i xi + W)−1
¯

Note the way that the conditional independencies have been exploited so that

in each case we condition on only a subset of the parameters.
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Conditional for W

First note that

(βi − β)TW(βi − β) = tr((βi − β)TW(βi − β)) = tr(W(βi − β)(βi − β)T).

Then

W | y, βi, β ∝
mY

i=1

p(βi | W) × π(W)

∝ | W |(m+r−q−1−1)/2 exp

(
−1

2

"
mX

i=1

(βi − β)TW(βi − β) + tr(WR)

#)

= | W |(m+r−q−1−1)/2 exp

(
−1

2
tr

 
W

"
mX

i=1

(βi − β)(βi − β)T + R

#!)

Hence the conditional distribution is

W | β1, ..., βm, β, y ∼ Wq+1

8
<
:r + m,

 
R +

mX

i=1

(βi − β)(βi − β)T

!−1
9
=
; .
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Example: Dental Data for Girls

Three-Stage Hierarchical Model:

First Stage:

yij = β0i + β1i(tj − 11) + εij ,

with εiid ∼ N(0, τ−1), j = 1, ..., 4, i = 1, ..., 11.

Second Stage: Let

βi =

2
4 β0i

β1i

3
5 β =

2
4 β0

β1

3
5 D =

2
4 D00 D01

D10 D11

3
5 ,

and then

βi | β, D ∼ N2(β, D),

i = 1, ..., m.

Third Stage:

π(τ, β, D−1) ∝ Ga(0, 0) × N2

0
@
2
4 0

0

3
5 ,

2
4 106 0

0 106

3
5
1
A× W2(r, R−1).

128



2006 Jon Wakefield, Stat/Biostat 571

Results below are for priors, with prior mean

E[D] =
1

r − q − 2
R =

1

r − 3
R =

2
4 1.0 0

0 0.1

3
5

(since q = 1) and different degrees of freedom r.

We see sensitivity to the prior in inference for D, but not for β.

Note the greater shrinkage to the prior mean for the second and third priors.

r R β0 β1

4 1.0 0 0 0.1 22.6 (21.4,23.8) 0.48 (0.33,0.63)

7 4.0 0 0 0.4 22.6 (21.5,23.7) 0.48 (0.31,0.65)

28 25 0 0 2.5 22.6 (21.8,23.5) 0.48 (0.28,0.67)

Table 5: Posterior medians and 95% intervals for population means, under three

priors.
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r Diag R D00 D01 D11

4 1.0 0.1 3.48 (1.66, 8.75) 0.13 (-0.10,0.54) 0.03 (0.01,0.10)

7 4.0 0.4 2.97 (1.51, 6.63) 0.10 (-0.14,0.46) 0.05 (0.02,0.12)

28 25 2.5 1.78 (1.14, 2.97) 0.04 (-0.10,0.20) 0.08 (0.05,0.14)

Table 6: Posterior medians and 95% intervals for population variances, under

two priors.
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The code below is for the analysis with r = 4, BUGS parametrizes the Wishart

in terms of R−1 and r.

model

{

for( i in 1 : N ) {

for( j in 1 : T ) {

Y[i , j] ~ dnorm(mu[i , j],eps.tau)

mu[i , j] <- beta[i,1] + beta[i,2] * (x[j]-11)

}

beta[i,1:2] ~ dmnorm(beta.mu[1:2],iSigma[1:2,1:2])

}

beta.mu[1:2] ~ dmnorm(mean[1:2], prec[1:2, 1:2])

iSigma[1:2, 1:2] ~ dwish(R[1:2, 1:2], r)

Sigma[1:2, 1:2] <- inverse(iSigma[1:2, 1:2])

eps.tau <- exp(logtau)

logtau ~ dflat()

sigma <- 1 / sqrt(eps.tau)

}
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list(x = c(8,10,12,14), N = 11, T = 4,

Y = structure(

.Data = c(21,20,21.5,23,

21,21.5,24,25.5,

20.5,24,24.5,26,

23.5,24.5,25,26.5,

21.5,23,22.5,23.5,

20,21,21,22.5,

21.5,22.5,23,25,

23,23,23.5,24,

20,21,22,21.5,

16.5,19,19,19.5,

24.5,25,28,28),

.Dim = c(11,4)),mean = c(0, 0),r=4,

R = structure(.Data = c(1, 0, 0, 0.1),

.Dim = c(2, 2)),

prec = structure(.Data = c(1.0E-6, 0,0,1.0E-6),

.Dim = c(2, 2))))

list(beta = structure(.Data = c(18,.5,18,.5,18,.5,18,.5,18,.5,18,.5,18,.5,18,

.5,18,.5,18,.5,18,.5), .Dim=c(11,2)), beta.mu = c(18,.5),

iSigma = structure(.Data = c(1, 0, 0, 0.1), .Dim = c(2, 2)), logtau = 0)
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Quasi-Likelihood

We now describe a method for inference, generalized estimating equations, that

attempts to make minimal assumptions about the data-generating process.

We begin with a recap of the related quasi-likelihood procedure, which is an

alternative to MLE, when we do not wish to commit to specifying the full

distribution of the data and we can assume independent data. The resultant

estimators are known as quasi-MLE (QMLE).

The approach is based on specifying the first two moments of the data only,

and assuming they take the form:

E[Y | β] = µ(β)

cov(Y | β) = αV {µ(β)}

where µ(β) = [µ1(β), ..., µn(β)]T represents the regression function and V is a

diagonal matrix (so the observations are uncorrelated), with

var(Yi | β) = αV {µi(β)},

and α > 0 a scalar which is independent of β.
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Consider the sum of squares

(Y − µ)TV −1(Y − µ)/α, (29)

where µ = µ(β) and V = V (β). To minimize this sum of squares there are two

ways to proceed.

First approach: differentiate and obtain

−2DTV −1(Y − µ)/α + (Y − µ)T
∂V −1

∂β
(Y − µ)/α,

where D is the n × p matrix of derivatives with elements ∂µi/∂βj ,

i = 1, ..., n; j = 1, ..., p. Unfortunately the expectation of this expression is not

zero, and so an inconsistent estimator of β will result.

Second approach: pretend V is not a function of β, so that bβ is the root of:

D(bβ)TV (bβ)−1{Y − µ(bβ)}/α = 0.
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As shorthand we write this estimating function as

U(β) = DTV −1{Y − µ}/α. (30)

This estimating function is linear in the data and so its properties are

straightforward to evaluate. In particular:

1. E[U(β)] = 0.

2. cov{U(β)} = DTV −1D/α.

3. −E
h

∂U
∂β

i
= cov{U(β)} = DTV −1D/α.

Applying the earlier result on properties of estimators arising from estimating

functions:

(DTV −1D)1/2(bβn − β) →d Np(0, αIp),

where we have so far assumed that α is known.

Since the root of (30) does not depend on α, bβ is consistent regardless. For

appropriate standard errors we require an estimator of α however.
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Unknown α

Since

E[(Y − µ)TV −1(µ)(Y − µ)] = nα,

an unbiased estimator of α would be

bα = (Y − µ)TV −1(µ)(Y − µ)/n,

a degrees of freedom corrected (but not in general, unbiased) estimate is given

by the Pearson statistic divided by its degrees of freedom:

bα =
1

n − p

nX

i=1

(Yi − bµi)
2

V (bµi)
,

where bµi = bµi(bβ).

The asymptotic distribution that is used in practice is therefore given by

( bDT bV −1 bD/bα)1/2(bβn − β) →d Np(0, Ip),

In general we may use sandwich estimation with quasi-likelihood. We have

var(bβ) = (DTV −1D)−1DTV −1var(Y )V −1D(DTV −1D)−1α2,

and var(Y ) may be estimated by the diagonal matrix with elements (Yi − bµi)
2.
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Why “Quasi”

Integration of the quasi-score (30) gives

l(µ, α) =

Z µ

y

y − t

αV (t)
dt

which, if it exists, behaves like a log-likelihood. As an example, for the model

E[Y ] = µ and var(Y ) = αµ we have

l(µ, α) =

Z µ

y

y − t

αt
dt =

1

α
[y log µ − µ + c],

where c = −y log y − y and y log µ − µ is the log likelihood of a Poisson random

variable.

The word “quasi” refers to the fact that the score may or not correspond to a

probability function.

For example, the variance function µ2(1 − µ)2 does not correspond to a

probability distribution.
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Example: Air Pollution Data

We examine the association between daily mortality, Yi, and the daily value of

PM10 (particulate matter less than 10 micrometers, which is about 0.0004

inches, in diameter), xi, with i = 1, ..., 335, indexing the 335 days on which

there are no missing PM10 is to be investigated.

Figure 15 shows the association between log daily counts and PM10.

Assume the model

E[Yi | β] = exp(xiβ), var(Yi | β) = αE[Yi | β].
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Figure 15: Log daily deaths versus PM10.
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Fitting the quasi-likelihood model yields bβ = (4.71, 0.0015)T and bα = 2.77 so

that the quasi-likelihood standard errors are
√
bα = 1.67 times larger than the

Poisson model-based standard errors.

The variance-covariance matrix is given by

( bDT bV −1 bD)−1bα =

2
4 0.0192 ?

−0.89 × 0.019 × 0.00056 0.000562

3
5 .

Standard errors of bβ0 and bβ1 are 0.019 and 0.00056.

Asymptotic 95% confidence interval for β1 is given by (0.00040, 0.0026).

A more useful summary is a confidence interval for the relative risk associated

with a 10-unit increase in PM10, which is

(e0.00040×10, e0.026×10) = (1.004, 1.026)

so that the interval suggests that the increase in daily mortality associated with

a 10-unit increase in PM10 is between 0.4% and 2.6%.
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Extension to Quasi-Likelihood

Suppose we have

E[Yi | β] = µi(β)

var(Yi | β) = Vi(α, β)

where α is a k × 1 vector of parameters that appear only in the variance model.

Previously, in quasi-likelihood method, we had “separable” mean and variance

models, that is, var(Yi | β) = αVi(µi) (which is why we obtained a consistent

estimator even if the form of the variance was wrong).

Let bαn be a consistent estimator of α. We state without proof the following

result. The estimator bβn that satisfies

G(bβn, bαn) = D(bβn)TV −1(bαn, bβn)
n

Y − µ(bβn)
o

(31)

has asymptotic distribution

( bDT bV 1/2 bD)−1(bβn − β) →d Np(0, Ip) (32)

where bD = D(bβn) and bV = V (bαn, bβn). Sandwich estimation may be used to

obtain empirical standard errors which are correct even if the variance model is

wrong, so long as we have a consistent estimator of α.
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Computation

Previously we assumed var(Yi) = αVi(µi), and the estimating function did not

depend on α and so, correspondingly, bβ did not depend on α, though the

standard errors did.

In general iteration is convenient to simultaneously estimate β and α.

Let bα(0) be an initial estimate.

Then set j = 0 and iterate between

1. Solve G(bβ, bα(j)) = 0 to give bβ(j+1)
,

2. Estimate bα(j+1) with bµi = µi

“
bβ(j+1)

”
. Set j → j + 1 and return to 1.
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Example: Air Pollution Data

Consider the random effects formulation:

E[Yi | β, θi] = var(Yi | β, θi) = µi(β)θi (33)

with

E[θi] = 1, var(θi) = 1/α. (34)

Assuming θi ∼iid Ga(α, α), we could derive the marginal distribution of the

data (which is negative binomial) and proceed with likelihood.

As an alternative we consider the model

E[Yi | β] = µi(β)

var(Yi | α, β) = µi(β){1 + µi(β)/α}. (35)

that are the marginal first two moments of the data given (33) and (34).

The form (35) suggests the estimating function for β (with α assumed known):

nX

i=1

D(β)Ti V −1
i (α, β){yi − µi(β)}

For a fixed α we can solve this estimating equation to obtain an estimator bβ.
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We describe a method-of-moments estimator for α for the quadratic variance

model we have

var(Yi | β, α) = E[(Yi − µi)
2] = µi(1 + µi/α),

and so

α−1 = E

»
(Yi − µi)

2 − µi

µ2
i

–
,

i = 1, ..., n, leading to the method-of-moments estimator

bα =

(
1

n − p

nX

i=1

(Yi − bµi)
2 − bµi

bµ2
i

)−1

. (36)
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If we have a consistent estimator bα, and the mean is correctly specified then

valid inference follows from

( bDT bV (bα)−1 bD)1/2(bβ − β) →d N(0, Ip).

We fit this model to the air pollution data.

The estimates (standard errors) are bβ0 = 4.71 (0.018) and
bβ1 = 0.0014 (0.00056).

The moment-based estimator is bα = 65.20.

This analysis therefore produces virtually identical inference with the

quasi-likelihood approach in which the variance was a linear function of the

mean.

In Figure 16 we plot the linear and quadratic variance functions (over the range

of the mean for these data) and we see that they are very similar.

Examination of the residuals did not clearly indicate the superiority of either

variance model; it is typically very difficult to distinguish between the two

models, unless the mean of the data has a large spread.
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Figure 16: Linear and quadratic variance functions for the air pollution data.
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Example: Rcode for Quasi-Poisson Regression

We run the Poisson regression and then evaluate the method-of-moments

estimator of α “by hand”.

> mod1 <- glm(ynew~x1new,family=poisson)

> summary(mod1)

Coefficients:

Value Std. Error t value

(Intercept) 4.705062304 0.0113962988 412.85880

x1new 0.001458115 0.0003348748 4.35421

(Dispersion Parameter for Poisson family taken to be 1 )

Null Deviance: 927.372 on 334 degrees of freedom

Residual Deviance: 908.6531 on 333 degrees of freedom

Number of Fisher Scoring Iterations: 3

Correlation of Coefficients:

(Intercept)

x1new -0.8949913

> resid1 <- (ynew - mod1$fit)/sqrt(mod1$fit)

> alphahat <- sum(resid1 * resid1)/(length(ynew) - 2)

> alphahat

[1] 2.772861
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We now fit the Quasi-Likelihood model with

E[Yi|β] = µi = exp(β0 + β1xi)

and

var(Yi|β) = αµi = α exp(β0 + β1xi).

> mod2 <- glm(ynew~x1new,quasi(link=log,variance=mu))

> summary(mod2)

Coefficients:

Value Std. Error t value

(Intercept) 4.705062304 0.018976351 247.943468

x1new 0.001458115 0.000557611 2.614932

(Dispersion Parameter for Quasi-likelihood

family taken to be 2.772667 )

Null Deviance: 927.372 on 334 degrees of freedom

Residual Deviance: 908.6531 on 333 degrees of freedom

Number of Fisher Scoring Iterations: 3

Correlation of Coefficients:

(Intercept)

x1new -0.8949913

The standard errors are multiplied by
√

α̂ (=1.67 here), but the estimates are

unchanged.
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Example: Rcode for Quadratic Variance Model

The glm.nb function carries out MLE for the negative binomial model (it is

part of the MASS library).

We find the MLE of α, and then use this as a starting value for the iterative

strategy in which a method-of-moments estimator is used.

> library(MASS)

> modnegbinmle <- glm.nb(y~x)

> summary(modnegbinmle)

Call:

glm.nb(formula = y ~ x, init.theta = 67.7145, link = log)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.7055974 0.0188269 249.941 <2e-16 ***

x 0.0014405 0.0005577 2.583 0.0098 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Coefficients:

(Intercept)

x -0.90

Theta: 67.71

Std. Err.: 8.27

> alphahat <- 67.61
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Now iterate to a solution by estimating β for fixed α, and then re-estimating α.

> alphanew <- 0

> counter <- 0

> for (i in 1:5){

fit <- glm(y~x,family=negative.binomial(alphahat))

mu <- fit$fitted

alphanew <- 1/(sum(((y-mu)^2-mu)/mu^2)/(length(y)-2))

alphahat <- alphanew

cat("Iteration ",i,alphahat,"\n")

}

Iteration 1 65.19642

Iteration 2 65.19649

Iteration 3 65.19649

Iteration 4 65.19649

Iteration 5 65.19649

> summary(fit)

Call:

glm(formula = y ~ x, family = negative.binomial(alphahat))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.705605 0.019071 246.747 <2e-16 ***

x 0.001440 0.000565 2.549 0.0112 *

(Dispersion parameter for Negative Binomial(65.1965)

family taken to be 1.001560)
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Generalized Estimating Equations

Suppose we assume

E[Y i | β] = xiβ,

and consider the ni × ni working variance-covariance matrix:

var(Y i | β, α) = W i.

To motivate GEE we begin by assuming that W i is known. In this case the

GLS estimator minimizes

mX

i=1

(Y i − xiβ)TW−1
i (Y i − xiβ),

and is given by the solution to the estimating function

mX

i=1

xT
i W−1

i (Y i − xiβ),

which is

bβ =

 
mX

i=1

xT
i W−1

i xi

!−1 mX

i=1

xT
i W−1

i Y i.

We now examine the properties of this estimator.
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We have

E[bβ] =

 
mX

i=1

xT
i W−1

i xi

!−1 mX

i=1

xT
i W−1

i E[Y i] = β,

so long as the mean is correctly specified.

If the information about β grows with increasing m, then bβ is consistent.

The variance, var(bβ), is given by

 
mX

i=1

xT
i W−1

i xi

!−1 mX

i=1

xT
i W−1

i var(Y i)W
−1
i xi

! 
mX

i=1

xT
i W−1

i xi

!−1

.

If the assumed variance-covariance matrix is correct, i.e. var(Y i) = W i, then

var(bβ) =

 
mX

i=1

xT
i W−1

i xi

!−1

,

and a Gauss-Markov Theorem shows that, in this case, the estimator is efficient

amongst linear estimators.

If m is large then a multivariate central limit theorem shows that bβ is

asymptotically normal.
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We now suppose that var(Y i) = W i(α, β) is of so that α are parameters in

the variance-covariance model. The regression parameters are contained in W i

to allow, mean-variance relationships, e.g.

var(Yij | α, β) = α1µ2
ij

cov(Yij , Yik | α, β) = α1α
|tij−tik|

2 µijµik

where

• µij = xijβ,

• α1 is the variance (which is assumed constant across time and across

individuals), and

• α2 is the correlation (which is assumed to be the same for all individuals),

and

• α = (α1, α2).
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For known α we would minimize

mX

i=1

(Y i − xiβ)TW−1
i (α, β)(Y i − xiβ),

with solution given by the root of the estimating equation

mX

i=1

xT
i W−1

i (α, β)(Y i − xiβ) = 0.

In general the roots of this equation are not available in closed form (because β

occurs in W).

However, if W i(α, β) = W i(α) we have

bβ =

 
mX

i=1

xT
i W−1

i (α)xi

!−1 mX

i=1

xT
i W−1

i (α)Y i.
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Finally, suppose that α is unknown but we have a method by which a

consistent estimator bα is produced (e.g. method of moments).

We then solve the estimator function

G(β) =
mX

i=1

xT
i W−1

i (bα, β)(Y i − xiβ).

In general iteration is needed to simultaneously estimate β and α.

Let bα(0) be an initial estimate, then set t = 0 and iterate between

1. Solve G(bβ, bα(t)) = 0 to give bβ(t+1)
,

2. Estimate bα(t+1) with bµi = µi

“
bβ(t+1)

”
. Set t → t + 1 and return to 1.
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We have

var(bβ)
1/2

(bβ − β) ∼ Nk+1 (0, I) ,

where

cvar(bβ) =

 
mX

i=1

xT
i W−1

i (bα, bβ)xi

!−1

×
 

mX

i=1

xT
i W−1

i (bα, bβ)var(Y i)W
−1
i (bα, bβ)xi

!

×
 

mX

i=1

xT
i W−1

i (bα, bβ)xi

!−1

.

We have assumed that cov(Y i, Y i′ ) = 0 for i 6= i′, and this is required for the

asymptotic distribution to be appropriate.
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The final element of GEE is sandwich estimation of var(bβ). In particular

cov(Y i) is estimated by

(Y i − xi
bβ)(Y i − xi

bβ)T,

may be multiplied by N/(N − p) to account for estimation of β (N =
P

i ni).

Empirical would be a better word than robust (which is sometimes used) for

the estimator of the variance – not robust to sample size, in fact could be

highly unstable.

We can write the (k + 1) × 1 estimating function as

xTW−1(Y − xβ)
mX

i=1

xT
i W−1

i (Y i − xiβ)

mX

i=1

niX

j=1

[xi1 · · · xini ]

2
664

W 11
i · · · W

1ni
i

· · · · · · · · ·
W

ni1
i · · · W

nini
i

3
775

2
664

Yi1 − xi1β

· · ·
Yini − xiniβ

3
775

where W ij
i denotes entry (i, j) of the inverse W i. We use the middle form

since this emphasizes that the basic unit of replication is indexed by i.
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Example: Suppose for simplicity that we have a balanced design, with ni = n

for all i, and assume a working variance-covariance matrix with

var(Yij) = E[(Yij − xijβ)2] = E[ε2ij ] = α1

cov(Yij , Yik) = E[(Yij − xijβ)(Yik − xikβ)] = E[εijεik] = α1α2jk,

for i = 1, ..., m; j, k = 1, ..., n; j 6= k. Hence we have n + n(n − 1)/2 elements of

α.

Letting

eij = Yij − xij
bβ,

method-of-moments estimators are given by

bα1 =
1

mn

mX

i=1

nX

j=1

e2
ij ,

and

bα1bα2jk =
1

m

mX

i=1

eijeik.
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Generalized Estimating Equation (GEE) Summary

We have:

• Regression parameters (of primary interest) β and,

• Variance-covariance parameters α.

We have considered the GEE

G(β, α) =

mX

i=1

DT
i W−1

i (Y i − µi) = 0,

where

• µi = µi(β) = xiβ.

• Di = Di(β) = ∂µi

∂β
= xT

i ,

• W i = W i(α, β) is the “working” covariance model,

Three important ideas:

1. Separate estimation of β and α.

2. Sandwich estimation of var(bβ).

3. Replication across units in order to estimate covariances – so we have

assumed that observations on different units are independent.
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Notes:

• We have seen the first and second ideas in independent data situations –

e.g. estimation of the α parameter in the quadratic negative binomial

model.

• We may use method of moments estimators for α (or set up another

estimating equation, see later).

• We could go with model-based standard errors:

var(bβ) =

 
mX

i=1

DT
i W−1

i Di

!−1

. (37)

If we have an independence working model (W i = I) then no iteration

necessary (since no α in the GEE) – in this case we’d want to use sandwich

estimation, however.
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Dental Example

Look at various estimators of β for girls only. Note here that we might question

the asymptotics for GEE since we only have replication across m = 11 units

(girls) (check with simulation – see coursework).

Start with ordinary least squares – unbiased estimator for β, but standard

errors are wrong because independence is assumed.

> summary(lm(distance~age,data=Orthgirl))

Call:

lm(formula = distance ~ age, data = Orthgirl)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.3727 1.6378 10.608 1.87e-13 ***

age 0.4795 0.1459 3.287 0.00205 **

Residual standard error: 2.164 on 42 degrees of freedom

Multiple R-Squared: 0.2046, Adjusted R-squared: 0.1856

F-statistic: 10.8 on 1 and 42 DF, p-value: 0.002053
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Now implement GEE with working independence – the following is an R

implementation.

> library(nlme); data(Orthodont); Orthgirl <- Orthodont[Orthodont$Sex=="Female",]

> install.packages("geepack")

> library(geepack)

> summary(geese(distance~age,id=Subject,data=Orthgirl,corstr="independence"))

Call:

geese(formula = distance ~ age, id = Subject, data = Orthgirl,corstr = "independence")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.3727273 0.7819784 493.56737 0.000000e+00

age 0.4795455 0.0666386 51.78547 6.190604e-13

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 4.470403 1.373115 10.59936 0.001131270

Correlation Model:

Correlation Structure: independence

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4
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Next we examine an exchangeable correlation structure in which all pairs of

observations on the same unit have a common correlation:

> summary(geese(distance~age,id=Subject,data=Orthgirl,corstr="exchangeable"))

geese(formula = distance ~ age, id = Subject, data = Orthgirl,

corstr = "exchangeable")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.3727273 0.7819784 493.56737 0.000000e+00

age 0.4795455 0.0666386 51.78547 6.190604e-13

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 4.470403 1.373115 10.59936 0.001131270

Correlation Model:

Correlation Structure: exchangeable

Correlation Link: identity

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.8680178 0.1139327 58.04444 2.564615e-14

Number of clusters: 11 Maximum cluster size: 4
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Notes:

• Independence estimates are always identical to OLS because we have

assumed working independence, which means that the estimating equation

is the same as the normal equations.

• Standard error for β1 is smaller with GEE because regressor (time) is

changing within an individual.

• Here we obtain the same estimates for exchangeable as working

independence but only because balanced and complete (i.e. no missing)

data.
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Finally we look at AR(1) and unstructured errors – this time we see slight
differences in estimates and standard errors.

> summary(geese(distance~age,id=Subject,data=Orthgirl,corstr="ar1"))

geese(formula = distance ~ age, id = Subject, data = Orthgirl, corstr = "ar1")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.3049830 0.85201953 412.51833 0.000000e+00

age 0.4848065 0.06881228 49.63692 1.849965e-12

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 4.470639 1.341802 11.101 0.0008628115

Correlation Model:

Correlation Structure: ar1

Correlation Link: identity

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.9298023 0.07164198 168.4403 0

Number of clusters: 11 Maximum cluster size: 4
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Now delete last two observations from girl 11 to illustrate that identical
answers before were consequence of balance and completeness of data.

> Orthgirl2<-Orthgirl[1:42,]

> summary(lm(distance~age,data=Orthgirl2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.0713 1.5102 11.966 8.56e-15 ***

age 0.3963 0.1357 2.921 0.00571 **

Residual standard error: 1.964 on 40 degrees of freedom

> summary(geese(distance~age,id=Subject,data=Orthgirl2,

corstr="independence"))

Coefficients:

estimate san.se wald p

(Intercept) 18.0713312 0.82603439 478.61250 0.000000e+00

age 0.3962971 0.06934195 32.66253 1.096304e-08

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 3.674926 1.317669 7.778294 0.005287771

Correlation Model:

Correlation Structure: independence

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4
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> summary(geese(distance~age,id=Subject,data=Orthgirl2,corstr="exchangeable"))

Call:

geese(formula = distance ~ age, id = Subject, data = Orthgirl2,

corstr = "exchangeable")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.6050097 0.79007168 496.52320 0.000000e+00

age 0.4510122 0.06641218 46.11913 1.112765e-11

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 3.706854 1.320019 7.88589 0.004982194

Correlation Model:

Correlation Structure: exchangeable

Correlation Link: identity

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.7968515 0.09367467 72.36198 0

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4
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Comparison of Analyses

In Table 7 summaries are presented under likelihood, Bayesian and GEE

analyses.

Two Bayesian models were fitted, a normal model:

βi | β, D ∼iid N(β, D), var(βi | β, D) = D

D−1 ∼ W(r, R−1), E[var(βi | β, D)] =
R

r − 3

R =

"
1.0 0

0 0.1

#
, r = 4

and a Student t4 model:

βi | β, D ∼iid St4(β, D), var(βi | β, D) = 2D

D−1 ∼ W(r, R−1
t ), E[var(βi | β, D)] = 2

Rt

r − 3

Rt =

"
0.5 0

0 0.05

#
, r = 4
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Approach bβ0 s.e.(bβ0) bβ1 s.e.(bβ1)

LMEM ML 22.65 0.62 0.480 0.065

LMEM REML 22.65 0.63 0.479 0.066

Bayes Normal 22.65 0.60 0.479 0.075

Bayes t4 22.65 0.58 0.475 0.073

GEE Independence 22.65 0.55 0.480 0.067

GEE AR(1) 22.64 0.58 0.485 0.069

Table 7: Summaries for fixed effects.

• Overall, the analyses are in good correspondence.
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Approach cvar(β0i) cvar(β1i) dcorr(β0i, β1i) bσε

LMEM ML 1.98 0.15 0.55 0.67

LMEM REML 2.08 0.16 0.53 0.67

Bayes Normal 1.93 (1.29,2.96) 0.18 (0.10,0.31) 0.39 (-0.32,0.85) 0.70 (0.52,0.93)

Bayes t4 2.06 (1.18,3.46) 0.20 (0.11,0.35) 0.42 (-0.34,0.88) 0.71 (0.54,0.95)

Table 8: Summaries for variance components.

GEE with working independence gives α1 = 4.47.

GEE with working AR(1) gives α1 = 4.47, α2 = 0.93.

The parameterization adopted for the linear model changes the interpretation

of D. For example:

Model 1: (β0 + b0i) + (β1 + b1i)tj , bi ∼ N(0, D).

Model 2: (γ0 + b?
0i) + (γ1 + b?

1i)(tj − t), b?
i ∼ N(0, D?).

Giving β0 = γ0 − γ1t, β1 = γ1.

b0i = b?
0i − tb?

1i, b1i = b?
1i.

Moral: D 6= D?; D00 = D?
00 − 2tD?

01 + t
2
D?

11, D01 = D?
01 − tD11, D11 = D?

11.
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Covariance Models for Clustered Data

Whether we take a GEE or LME approach (with inference from the likelihood

or from the posterior) we require flexible yet parsimonious covariance models.

In GEE we require a working covariance model

cov(Y i) = W i,

i = 1, ..., m.

With LME we have so far assumed the model

yi = xiβ + zibi + εi, (38)

with bi ∼ind N(0, D) and εi ∼ind N(0, Ei), with Ei = Iniσ
2.

With zibi = 1nibi we obtained an exchangeable (also known as compound

symmetry):

var(Y i) = σ2

2
666664

1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1

3
777775

This model is particularly appropriate for clustered data with no time ordering

(e.g. ANOVA).
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An obvious extension for longitudinal data is to assume

yi = xiβ + zibi + δi + εi,

with:

• Random effects bi ∼ind N(0, D).

• Serial correlation δi ∼ind N(0, Riσ
2
δ ), with Ri an ni × ni correlation

matrix with elements

Rijj′ = corr(Yij , Yij′ |bi),

j, j′ = 1, ..., ni.

• Measurement error εi ∼ind N(0, Iniσ
2
ε ).

In general it is difficult to identify all three sources of variability – but the

above provides a useful conceptual model.

See DHLZ, Chapter 5; Verbeke and Molenberghs, Chapter 10; Pinheiro and

Bates, Chapter 5.
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Within-Unit Covariance Models

Autoregressive errors

A widely-used time series model is the autoregressive, AR(1), process

δij = ρδi,j−1 + uij , (39)

for j ≥ 2, |ρ| ≤ 1 where uij ∼iid N(0, σ2
u) and are independent of δik, k > 0.

For LMEM we require a likelihood and hence the joint distribution of δi, for

GEE the first two moments.

Repeated application of (39) gives, for k > 0,

δij = uij + ρui,j−1 + ρ2ui,j−2 + ... + ρk−1uj−k+1 + ρkδi,j−k. (40)

Assume the process has been running since j = −∞ and that it is ‘stable’ so

that |ρ| < 1 and the δij all have the same distribution.

Then, from (40)

var(δij) = σ2
u(1 + ρ2 + ρ4 + ... + ρ2(k−1)) + ρ2kvar(δi,j−k).
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As k → ∞, since
P∞

l=1 xl−1 = 1/(1 − x),

var(δij) =
σ2

u

(1 − ρ2)
= σ2

δ ,

and, by substitution of (40),

cov(δij , δi,j−k) = E[δijδi,j−k] =
σ2

uρk

(1 − ρ2)
= σ2

δρk.

Hence under this model we have

Ri =

2
66666664

1 ρ ρ2 ... ρni−1

ρ 1 ρ ... ρni−2

ρ2 ρ 1 ... ρni−3

... ... ... ... ...

ρni−1 ρni−2 ρni−3 ... 1

3
77777775

as the correlation matrix for δi.

Often this model is written in the form

cov(Yij , Yik) = σ2
δ exp(−φdijk),

(ρ = eφ) with dijk = |tij − tik| which is valid for unequally-spaced times also.
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Toeplitz: Unstructured correlation:

var(Y i) = σ2

2
666664

1 ρ1 ρ2 ρ3

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ3 ρ2 ρ1 1

3
777775

Heterogeneous versions with non-constant variance can also be fitted.

For example, the heterogenenous exchangeable model is given by:

var(Y i) =

2
666664

σ2
1 ρσ1σ2 ρσ1σ3 ρσ1σ4

ρσ2σ1 σ2
2 ρσ2σ3 ρσ2σ4

ρσ3σ1 ρσ3σ2 σ2
3 ρσ3σ4

ρσ4σ1 ρσ4σ2 ρσ4σ3 σ2
4

3
777775

Note that we should be careful when specifying the covariance structure –

identifiability problems may arise if we try to be too flexible.
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Assessment of Assumptions

Each of the approaches to modeling that we have described depend upon

assumptions concerning the structure of the data; to ensure that inference is

appropriate we need to attempt to check that these assumptions are valid.

We first recap the assumptions:

GEE

Model:

Y i = xiβ + ei,

with working covariance model var(ei) = W i(α), i = 1, ..., m.

G1 Marginal model E[Y i] = xiβ is appropriate.

G2 m is sufficiently large for asymptotic inference to be appropriate.

G3 m is sufficiently large for robust estimation of standard errors.

G4 The working covariance W i(α) is not far from the “true” covariance

structure; if this is the case then the analysis will be very inefficient

(standard errors will be much bigger than they need to be).
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LMEM via Likelihood Inference

Model:

Y i = xiβ + zibi + εi,

with bi ∼ N(0, D), εi ∼ N(0, Ei), bi and εi independent (Ei may have

complex structure depending on both independent and dependent terms),

i = 1, ..., m.

L1 Mean model for fixed effects xiβ is appropriate.

L2 Mean model for random effects zibi is appropriate.

L3 Variance model for εi is correct.

L4 Variance model for bi is correct.

L5 Normality of εi.

L6 Normality of bi.

L7 m is sufficiently large for asymptotic inference to be appropriate.

LMEM via Bayesian Inference

Model as for LMEM, plus priors for β and α.

Each of L1–L6 (asymptotic inference is not required if, for example, MCMC is

used, though “appropriate” priors are needed).
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Overall strategy

Before any formal modeling is carried out the data should be examined, in

table and plot form, to see if the data have been correctly read in and to see if

there are outliers.

For those individuals with sufficient data, individual-specific models should also

be fitted, to allow examination of the appropriateness of initially hypothesized

models in terms of the:

• linear component (which covariates, including transformations and

interactions),

• and assumptions about the errors, such as constant variance and serial

correlation.

Following fitting of marginal, mixed models, the assumptions should then be

re-assessed, primarily through residual analysis.
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Residual Analysis

Residuals may be defined with respect to different levels of the model.

A vector of unstandardized population-level (marginal) residuals is given by

ei = Y i − xiβ.

A vector of unstandardized unit-level (Stage One) residuals is given by

εi = Y i − xiβ − zibi.

The vector of random effects, bi, is also a form of (Stage Two) residual.

Estimated versions of these residuals are given by

bei = Y i − xi
bβ

bεi = Y i − xi
bβ − zi

bbi

and bbi, i = 1, ..., m.

Recall from consideration of the ordinary linear model that estimated residuals

have dependencies induced by the estimation procedure; in the dependent data

context the situation is much worse as the “true” residuals have dependencies

due to the dependent error terms of the models used.

Hence standardization is essential to remove the dependence.
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Standardized Population Residuals

If V i(α) is the true error structure then

var(ei) = V i, and var(bei) ≈ V i(bα),

so that the residuals are dependent under the model, which means that it is not

possible to check whether the covariance model is correctly specified (both form

of the correlation structure and mean-variance model).

Plotting beij versus xij may also be misleading due to the dependence within

the residuals.

As an alternative, let bV i = LiL
T
i be the Cholesky decomposition of

bV i = V i(bα), the estimated variance-covariance matrix.
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We can use this decomposition to form

be?
i = L−1

i bei = L−1
i (Y i − xi

bβ).

so that var(e?
i ) ≈ Ini . We have the model

Y ?
i = x?

i β + e?
i

where Y ?
i = L−1

i Y i, x?
i = L−1

i xi, e?
i = L−1

i ei.

Hence plots of be?
ij against columns of x?

ij should not show systematic patterns,

if the assumed form is correct.

QQ plots of be?
ij versus the expected residuals from a normal distribution can be

used to assess normality (normal residuals are not required for GEE, but will

help asymptotics).

Unstandardized versions will still be normally distributed if the ei are (since

the e?
ij are linear combinations of ei), though the variances may be

non-constant, and there may be strong dependence between different points.

The correctness of the mean-variance relationship can be assessed via

examination of e?2
ij versus bµ?

ij = x?
ij
bβ.

Local smoothers can be added to plots to aid interpretation. Plotting symbols

also useful – unit number, or observation number.
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Stage One Residuals

If εi ∼ N(0, σ2
i Ini) then residuals

bεi = Y i − xi
bβ − zi

bbi

may be formed. Standardized versions are given by bεi/bσi.

The standardized versions should be used if the σi are unequal across i. Some

uses:

• Plot residuals against covariates. Departures may suggest adding in

covariates, both to xi and zi.

• To provide QQ plots – mean-variance relationship is more important to

detect than lack of normality (so long as sample size is not small).

• assess constant variance assumption – one useful plot is versus

bµij = xij
bβ + zij

bbi.

• assess if serial correlation present in residuals

may be plotted against covariates to assess the form of the model, with QQ

plots assessing normality of the measurement errors.

If εi ∼ N(0, σ2
ε Ri) with Ri a correlation matrix then the residuals should be

standardized, as with population residuals.
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Stage Two Residuals

Predictions of the random effects bbi may be used to assess assumptions

associated with the random effects distribution, in particular:

• Are the random effects normally distributed?

• If we have assumed independence between random effects, does this appear

reasonable?

• Is the variance of the random effects independent of covariates xi?

It should be born in mind that interpretation of random effects predictions is

more difficult since they are functions of the data.

Recall that bbi are shrinkage estimators, and hence assumptions about bi may

not be reflected in bbi.

We may fit curves for particular individuals with ni large, and then check the

assumptions from these.

For the LMEM it is better to examine first and second stage residuals –

population residuals are a mixture so if something wrong not clear at which

stage there is trouble.
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Model refinement

A big problem is over-fitting in which models become too dataset-specific as

they are refined on the basis of the examination of diagnostics.

In practice, if refinement is carried out through the fitting of alternative models

(e.g. transformation of covariates, choice of distribution for the responses), then

interval estimates will often be too narrow since they are produced by

conditioning on the final model, and hence do not reflect the mechanism by

which the model was selected.

From a frequentist standpoint estimators and test statistics should be

examined via their long-run behaviour given the model-fitting process,

including refinement. To be more explicit, let P denote the procedure by which

a final model M is decided upon. Then suppose it is of interest to examine the

bias of a statistic T ,

E[T |P ] = EM|P {E[T |M ]}. (41)

In general it will be incorrect to report E[T | M̂ ] where M̂ is the final model

chosen, since this does not reflect the procedure by which M̂ was chosen, but

rather acts as if the final model is the “truth”.
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From a Bayesian standpoint the same problem exists because the posterior

distribution should reflect all sources of uncertainty and a priori all possible

models that may be entertained should be explicitly stated, with prior

distributions being placed upon different likelihoods and the parameters of

these likelihoods; model averaging should then be carried out across the

different possibilities.

One solution to this difficulty is to never refine the model for a given data set.

This approach is operationally pure but pragmatically dubious (unless one is in

the context of a randomized experiment) since we may obtain appropriate

inference for a model that is a very poor description of the phenomenon under

study.

The philosophy suggested here is to think as carefully as possible about the

initial model class before the analysis proceeds, but after fitting to carry out

model checking and refine the model in the face of clear model misspecification,

with refinement ideally being carried out within distinct a priori known classes.

So that, for example, examining quantile-quantile plots for different t

distributions and picking the one that produces the straightest line would not

be a good idea. Inference then proceeds as if the final model were the one that

were chosen initially. This is clearly a subjective procedure but can be

informally justified via either philosophical approaches.
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Under a frequentist approach inference follows from the behaviour of an

estimator under repeated sampling from the true model, and if an initial model

is clearly wrong on the basis of a residual plot (say), then it is very unlikely to

be close to the “true” model and hence it is more appropriate to obtain

properties of estimators under the assumed model. With reference to (41), if a

model is chosen because it is clearly superior to the alternatives, then it may be

reasonable to assume that E[T | P ] ≈ E[T | M̂ ], because M̂ would be

consistently chosen in repeated sampling under these circumstances.

In a similar vein, under a Bayesian approach the above procedure is consistent

with model-averaging but with the posterior model weight being concentated

upon the chosen model (since alternative models are only rejected on the basis

of clear inadequacy). The aim is to provide probability statements, from either

philosophical standpoints that are “honest” representations of uncertainty. The

above approach is relevant to analyses that are more confirmatory in their

outlook, as opposed to being used for prediction, or for more exploratory

purposes (for example, to gain clues to models that may be appropriate for

future data analyses).

If aim of analysis is simply exploratory, then we can do what we like (as soon

as we quote CIs or significance levels ... trouble!).
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Example: Dental Growth Curves – Initial Plots

We now present some initial plots for the dental data – should not be viewed as

comprehensive.

• Initial plots: QQ plots of LS estimates, both univariate (Figure 17) and

bivariate (Figure 18).

• Estimates of σε: 0.97, 0.59, 0.95, 0.30, 0.58, 0.43, 0.47, 0.19, 0.58, 0.85, 0.89

– not a great deal of variability, so common variance assumption seems

reasonable.

• No apparent mean-variance relationship (Figure 19).

• Figure 20 shows that there are clear differences in intercepts, and some

variability in slopes.
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Figure 17: QQ plots of LS estimates: bβ0 (left), bβ1 (right).
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Figure 18: Bivariate plot of LS estimates.
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Figure 19: LS residuals versus fitted values
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Figure 20: Fitted curves for all data.
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Example: Dental Growth Curves – Initial Plots

We now present some residual plots for the dental data.

> cnt1 <- rep(4,11); cnt2 <- 1:11

> lme1 <- lme(distance ~ I(age-11), data = Orthgirl, random = ~1 | Subject )

> lmeres1ind <- resid( lme1, level = 1, resType="n") # ind-level resids

> lmefit1ind <- fitted( lme1 )

> plot(I(Orthgirl$age-11),lmeres1,xlab="Centered age",ylab="LME indiv residuals",

ylim=c(-max(abs(range(lmeres1))),max(abs(range(lmeres1)))),type="n")

> text(I(Orthgirl$age-11),lmeres1,labels=c(rep(cnt2,cnt1))); abline(0,0)

> lines(lowess(I(Orthgirl$age-11),lmeres1))

> qqnorm(lmeres1,main="")

> plot(lmefit1ind,lmeres1ind^2)

> lines(lowess(lmefit1ind,lmeres1ind^2))

Figure 21 shows no syystematic deviations between residuals with time. Figure

22 that normality reasonable, and Figure 23 that there is no mean variance

relationship.
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Figure 21: LME normalized residuals versus time.
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Figure 22: QQ plot of LME normalized residuals.
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Figure 23: LME normalized residuals versus fitted values.
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Assessing Adequacy of the Temporal Covariance Structure

An informal method for assessing whether there is residual temporal

dependence is to plot residuals versus time, we now consider more formal tools

such as the correlgram and the variogram.

We begin with some definitions.

Consider a stochastic process Y (t) and let

γ(t, s) = cov{Y (t), Y (s)} = E[{Y (t) − µ(t)}{Y (s) − µ(s)}],

denote the autocovariance function of Y (t).

The term serial dependence signifies that there is dependence between Y (t) and

Y (s) for at least some pairs (s, t) with s 6= t.
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We write

Y (t) = µ(t) + e(t),

where µ(t) is the deterministic trend component.

Definition: A process e(t) is second-order stationary if E[e(t)] is constant, for

all t, and γ(t, s) depends only on |t − s|. For a residual process any non-zero

constant has been absorbed into µ(t).

Example: The simplest example of a stationary random sequence is white noise

which consists of a sequence of mutually independent random variables, each

with mean 0 and finite variance σ2.

There is a fundamental difficulty with trying to decompose Y (t) into the trend

and the stochastic component in a single series because the two are

unidentifiable without further assumptions.

Is it serial dependence in the residuals, or a high-order polynomial trend for

example?

197

2006 Jon Wakefield, Stat/Biostat 571

The Autocorrelation Function

For a second-order stationary random process, the autocovariance function is

cov{Y (t), Y (t + u)} = cov{e(t), e(t + u)},

so that C(0) is the variance of Y (t) for all t.

The autocorrelation function is defined as

ρ(u) =
C(u)

C(0)
.

For equally-spaced data we could fit a model and then examine the

autocorrelation function (ACF) of the residuals,

et =
yt − byt

cvar(Yt)1/2
.
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Consider a stochastic process e(t), and realizations et, t = 1, ..., n. The

emprical autocorrelation is defined as

bρ(u) = dcorr{e(t), e(t + u)} =

Pn−u
t=1 etet+u/(n − u)Pn

t=1 e2
t /n

,

for u = 0, 1, ....

A correlogram plot is bρ(u) versus u. If the residuals are a white noise process,

we have the asymptotic result

√
n et →d N(0, 1),

to give confidence bands ±2/
√

n.
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The Variogram

For unequally-spaced data the ACF is not so convenient, unless we round the

observations.

An alternative is provided by the semi-variogram which is defined, for a process

et and d ≥ 0.

γ(d) =
1

2
var (et − et−d) =

1

2
E
h
{et − et−d}2

i
.

Recall that for a second-order stationary process, E[et] = µ for all t and

cov(et, et−d) only depends on the distance d (which implies constant variance).

A smooth process is L2-continuous, i.e.

E{(et − et−d)2} → 0

as d → 0. For a second-order stationary smooth process

γ(d) =
1

2

˘
E[e2

t ] + E[e2
t−d] − 2E[etet−d]

¯

= σ2
e{1 − ρ(d)},

where var(e) = σ2
e .
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The semi-variogram is also well-defined for an intrinsically stationary process

for which E[et] = µ and for which

E[(et − et−d)2] = 2γ(d).

As d increases then for observatons far apart in time

γ(d) → var(et) = σ2
e ,

which (recall) is assumed constant.

Consider measurement error, εt with E[εt] = 0, var(εt) = σ2
ε , and

Yt = µt + et + εt,

so that we no longer have a smooth process. Then

γ(d) =
1

2
E
h
{Yt − Yt−d}2

i
= σ2

e{1 − ρ(d)} + σ2
ε ,

and we have a “nugget” effect σ2
ε s.
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The Variogram in Longitudinal Data Analysis

Define the semi-variogram of the population residuals, eij = Yij − xijβ, as

γi(dijk) =
1

2
E
h
{eij − eik}2

i
,

for dijk =| tij − tik |≥ 0. We emphasize that we are examining differences on

the same individual.

The sample semi-variogram uses the empirical halved differences between pairs

of population residuals

vijk =
1

2
(eij − eik)2,

along with the spacings uijk = tij − tik.

With highly-irregular sampling times the variogram can be estimated from the

pairs (uijk, vijk), i = 1, ..., m, j < k = 1, ..., ni, with the resultant plot being

smoothed.
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The marginal distribution of each vijk is χ2
1, and this large variability can make

the variogram difficult to interpret.

The total variance is estimated as the average of 1
2
(eij − elk)2, for i 6= l, since

1

2
E
ˆ
(eij − elk)2

˜
=

1

2

˘
E[e2

ij ] + E[e2
lk]
¯

= σ2,

assuming that observations on different individuals are independent (and the

variance is constant over time, and for different individuals).

Consider the interpretation of the variogram for the model

Yij = xijβ + bi + δij + εij ,

where bi ∼ind N(0, σ2
0) (note, univariate), εij ∼ind N(0, σ2

ε ), and δij represent

error terms with serial dependence.

A simple and commonly-used form for serial dependence is the AR(1) model

given by

cov(δij , δik) = σ2
δρ|tij−tik|.

Under this model

var(Yij |β) = σ2 = σ2
0 + σ2

δ + σ2
ε .
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Consider the theoretical variogram for the residuals

eij = Yij − xijβ = bi + δij + εij ,

i = 1, ..., m; j = 1, ...ni, with the AR(1) model.

For differences in residuals on the same individual

eij − eik = bi + δij + εij − bi − δik − εik = δij + εij − δik − εik,

and so

γi(dijk) =
1

2
E
ˆ
(eij − eik)2

˜
= σ2

δ (1 − ρdijk ) + σ2
ε . (42)

As dijk → 0, γi(dijk) → σ2
ε and bi is the mean of eij and so its variance does

not appear in (42).

Figure 24 shows the theoretical semi-variogram under this model and for the

population residuals.
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The variogram is limited in its use for population residuals for the LMEM, as

we now illustrate.

Consider, the mixed effects model with random intercepts and independent

random slopes:

bi0 ∼ N(0, υ2
00), bi1 ∼ N(0, υ2

11)

leads to non-constant marginal variance

var(Yij |β) = υ2
00 + 2υ2

11t2ij ,

so that we would not want to look at a variogram of population residuals

because we do not have second-order stationarity. However, we could look at

individual residuals after the random intercepts and slopes model has been

fitted.

In my experience the variogram is often dominated by sampling variability

(and there can be strong dependence in the plot since each residual contributes

many points).
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Figure 24: Theoretical variogram for a model with a random intercept, serial

correlation, and measurement error.
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Example: Air Pollution Data

We illustrate the correlogram and variogram for the air pollution data.

We fit a Poisson log-linear regression model in PM10 and ozone.

In Figure 25 we clearly see strong dependence in the Pearson residuals, hence

the quasi-likelihood standard errors quoted earlier will be wrong.

The dependence is confirmed by the dependence in the variogram in Figure 26.

In the left-hand panel we have only plotted 1000 of the 53301 (327 × 326/2)

points.
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Figure 25: Time series plots and correlogram of residuals for air pollution data.
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Figure 26: Variogram of residuals for air pollution data.
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