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CHAPTER 9: GENERAL REGRESSION MODELS

We begin by considering the class of non-linear mixed effects models

(NLMEMs) before turning to Generalized Linear Mixed Models (GLMMs).

In this chapter we will again consider both a conditional approach to modeling,

via the introduction of random effects, and a marginal approach using GEEs.

Likelihood and Bayesian methods will be used for inference in the conditional

approach.

Non-linear Mixed Effects Models

Example: Pharmacokinetics of Indomethacin

Six human volunteers received bolus intravenous doses (of the same size) of

Indomethacine, and subsequently 11 blood samples were taken, and the drug

concentrations recorded.

Figure 27 shows the concentration-time data – the curves follow a similar

pattern but there is clearly person to person variability.
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Figure 27: Concentration time data for Indomethacin.
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Non-Linear Mixed Effects Models

Consider the two-stage model:

Stage 1: Response model, conditional on random effects:

yi = fi(β, bi, xij) + εi, (43)

where fi = [fi1, ..., fini
]T are a set of functions that are non-linear in the

parameters β and bi, and εi is an ni × 1 zero mean vector of error terms.

Stage 2: Model for random terms:

E[εi] = 0, var(εi) = Ei(α),

E[bi] = 0, var(bi) = D(α),

cov(bi, εi) = 0

where α is the vector of variance-covariance parameters.

A common model assumes

εi ∼ind N(0, σ2
ε Ini

), bi ∼iid N(0, D),
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A particular form that covers a lot of longitudinal situations is to assume

fi(ηij , tij) where

ηij = xijβ + zijbi,

where

• a (k + 1) × 1 vector of fixed effects, β,

• a (q + 1) × 1 vector of random effects, bi, with q ≤ k.

• xi = (xi1, ..., xini
)T, the design matrix for the fixed effect with

xij = (1, xij1, ..., xijk)T, and

• zi = (zi1, ..., zini
)T, and design matrix for the random effects with

zij = (1, zij1, ..., zijq)T.

Let α represent σ2
ε and the parameters of D and N =

P
i ni.
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Example: Pharmacokinetics of Indomethacin

Let Yij represent the concentration of drug on individual i at time tij ,

i = 1, ..., 6, j = 1, ..., 11 The compartmental model that has previously been

used for this drug is the two-compartment bi-exponential model:

E[Yij | β] = A1i exp{−α1itij} + A2i exp{−α2itij},

where Yij is concentration and A1i, A2i, α1i, α2i > 0.

An obvious NLMEM would take

log A1i = β1 + b1i

log A2i = β2 + b2i

log α1i = β3 + b3i

log α2i = β4 + b4i

with bi = [b1i, b2i, b3i, b4i]
T ∼iid N4(0, D).
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Likelihood Inference

See Pinheiro and Bates (2000, Chapter 7).

The likelihood is, as usual, obtained by integrating out the random effects:

L(β, α) = (2πσ2
ε )−N/2(2π)−m/2|D|−m/2

×
mY

i=1

Z
exp

»
− (yi − fi)

T(yi − fi)

2σ2
ε

− bT
i D−1bi

2

–
dbi.

where fi is made up of terms f(ηij , tij), i = 1, ..., m, j = 1, ..., ni.
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Difficulties

1. The first difficulty is how to calculate the required integrals, which for

non-linear models are analytically intractable, recall for linear models they

were available in closed form. Even the first two moments are not available

in closed form in general:

E[Yij | β, α] = Ebi|D[f(β, bi, xij)] 6= f(β,0, xij)

var(Yij | β, α) = σ2
ε + varbi|D

[f(β, bi, xij)]

cov(Yij , Yij′ | β, α) = covbi|D
(f(β, bi, xij), f(β, bi, xij′)]

cov(Yij , Yi′j′ | β, α) = 0, i 6= i′

Note that

Ebi|D
[f(β, bi, xij)] 6= f(β,0, xij)

we had equality for the linear model.

The data do not have a known marginal distribution.

2. How do we then maximize the resultant likelihood? For the linear model

we used EM or Newton-Raphson algorithms.

216

2006 Jon Wakefield, Stat/Biostat 571

Overview of Integration Techniques

We describe a number of generic integration techniques, in particular:

• Laplace approximation (an analytical approximation).

• Quadrature (numerical integration).

• Importance sampling (a Monte Carlo method).

Before the MCMC revolution these techniques were used in a Bayesian context.
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Laplace Approximation

Let

I =

Z
exp{ng(θ)}dθ,

denote a generic integral of interest and suppose m is the maximum of g(·).
We have

ng(θ) = n
∞X

k=0

(θ − m)k

k!
g(k)(m),

where g(k)(m) represents the k−th derivative of g evaluated at m. Hence

I =

Z
exp

(
n

∞X

k=0

(θ − m)k

k!
g(k)(m)

)
dθ

≈ eng(m)

Z
exp


(θ − m)2

2/[ng(2)(m)]

ff
dθ

= eng(m)(2πv)1/2n−1/2

wherev = −1/[g(2)(m)], and we have ignored terms in cubics or greater in the

Taylor series.
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Laplace Approximation in the NLMEM

See Pinheiro and Bates, Chapter 7.

We wish to evaluate

p(yi | β, α) = (2πσ2)−ni/2(2π)−(q+1)/2 | D |−1/2

Z
exp{nig(bi)} dbi,

where

−2nig(bi) = [yi − fi(β, bi, xi)]
T[yi − fi(β, bi, xi)]/σ2

ε + bT
i D−1bi.

A Laplace approximation is a second-order Taylor series expansion of g about

bbi = arg min
bi

−g(bi)

which will not be available in closed form for a non-linear model.
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Gaussian Quadrature

A general method of integration is provided by quadrature (numerical

integration) in which an integral

I =

Z
f(u) du,

is approximated by

bI =

nwX

i=1

f(ui)wi,

for design points u1, ..., unw and weights w1, ..., wnw . Different choices of

(ui, wi) lead to different integration rules.

In mixed model applications we have integrals with respect to a normal density,

Gauss-Hermite quadrature is designed for problems of this type.

Specifically, it provides exact integration of
Z ∞

−∞
g(u)e−u2

du,

where g(·) is a polynomial of degree 2nw − 1.
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The design points are the zeroes of the so-called Hermite polynomials.

Specifically, for a rule of nw points, ui is the i−th zero of Hnw (u), the Hermite

polynomial of degree nw, and

wi =
wnw−1nw!

√
π

n2
w[Hnw−1(ui)]2

.

Now suppose θ is two-dimensional and we wish to evaluate

I =

Z
f(θ)dθ =

Z Z
f(θ1, θ2)dθ2dθ1 =

Z
f∗(θ1)dθ1,

where

f∗(θ1) =

Z
f(θ1, θ2)dθ2.

Now form

bI =

m1X

i=1

wi
bf∗(θ1i),

where

bf∗(θ1i) =

m2X

j=1

ujf(θ1i, θ2j).
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Then we have

bI =

m1X

i=1

m2X

j=1

wiujf(θ1i, θ2j),

which is known as the Cartesian Product.

Scaling and reparameterization

To implement this method the function must be centered and scaled in some

way, for example we could center and scale by the current estimates of the

mean, m, and variance-covariance matrix, V – known as adaptive quadrature.

We then form

X = L(θ − m)

where L′L = V −1 and carry out integation in the space of X.

There is no guarantee that the most efficient rule is obtained by scaling in

terms of the posterior mean and variance, but we note that the ‘best’ normal

approximation to a density (in terms of Kullbach-Leibler divergence) has the

same mean and variance.
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Gauss-Hermite Code in R

Nodes and weights for n = 4:

> n <- 4

> quad <- gauss.quad(n,kind="hermite")

> quad$nodes

[1] -1.6506801 -0.5246476 0.5246476 1.6506801

> quad$weights

[1] 0.08131284 0.80491409 0.80491409 0.08131284

Nodes and weights for n = 5:

> n <- 5

> quad <- gauss.quad(n,kind="hermite")

> quad$nodes

[1] -2.0201829 -0.9585725 0.0000000 0.9585725 2.0201829

> quad$weights

[1] 0.01995324 0.39361932 0.94530872 0.39361932 0.01995324
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Importance Sampling

Rather than deterministically selecting points we may randomly generate

points from some density h(θ).

We have

I =

Z
f(θ)dθ =

Z
f(θ)

h(θ)
h(θ)dθ = E[w(θ)],

where w(θ) = f(θ)/h(θ).

Hence we have the obvious estimator

bI =
mX

i=1

w(θi),

where θi ∼iid h(·). We have E[bI] = I and

V = var(bI) =
1

m
var{w(θ)}.

From this expression it is clear that a good h(·) produces an approximately

constant w(θ).
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We may estimate V via

bV =
1

m

mX

i=1

f2(θi)

h2(θi)
− 1

m
bI2,

and (appealing to the central limit theorem) Î is asymptotically normal and so

a 100(1 − α)% confidence interval is given by

Î ± Zα/2V̂ 1/2

where Zα/2 is the α/2 point of an N(0, 1) random variable.

Hence the accuracy of the approximation may be directly assessed, providing

an advantage over analytical approximations and quadrature methods.

Notes on Importance Sampling

• We require an h(·) with heavier tails than the integrand. We can carry out

importance sampling with any h but if the tails are lighter we will have an

estimator with infinite variance (and hence an inconsistent procedure).

Many suggestions for h have been made including Student t distributions

and mixtures of Student t distributions.

• Iteration may again be used to obtain an estimator with good properties.
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Notes on Implementation

• If the number of parameters is small then numerical integration techniques

(e.g. quadrature) are highly efficient in terms of the number of function

evaluations required. Hence if, for example, obtaining a point on the

likelihood surface is computationally expensive (as occurs if a large

simulation is required) then such techniques are preferable to Monte Carlo

methods.

• The method employed will depend on whether it is for a one-off

application, in which case ease-of-implementation is a consideration, or for

a great deal of use, in which case an efficient method may be required.

• In general it is difficult to assess the accuracy of Laplace/numerical

integration techniques.

• For simulation methods we note that independent samples are ideal for

assessing Monte Carlo error since standard errors on expectations of

interest may be simply calculated.

• Evans and Swartz (1995, Statistical Science) provide a good review of

integration techniques.
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The nlme algorithm

Within nlme an algorithm, introduced by Lindstrom and Bates (1990) is used.

The algorithm alternates between two steps:

Penalized Non-linear Least Squares (PNLS)

Condition on the current estimates of bD and bσ2
ε and then minimize

1

bσ2
ε

mX

i=1

(yi − fi)
T(yi − fi) + bi

bD−1
bi,

to obtain estimates bβ,bb1, ...,bbm, which may be viewed as finding the posterior

mode for β and b1, ..., bm.
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Linear Mixed Effects (LME)

Carry out a first-order Taylor series of fi about bβ,bbi.

This results in a linear mixed effects model which can be maximized to obtain

estimates of D and σ2
ε .

We have likelihood

L(β, α) =| D |−m/2 σ−N
ε

Z
exp

(
−1

2

mX

i=1

(yi − fi)
T(yi − fi) − bT

i D−1bi

)
dbi

where fi = f(β, bi, xi), i = 1, ..., m.

Carry out a first-order Taylor series expansion of fi about the estimates,

obtained in the PNLS step at iteration k, of β and bi, call these bβ(k)
and bb(k)

i .
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Specifically

f i(β, bi) ≈ f i

“
bβ(k)

,bb(k)

i

”
+ bx(k)

i

“
β −

bβ(k)
”

+ bz(k)
i

“
bi −

bbi
(k)
”

where

bx(k)
i =

∂fi

∂βT

˛̨
˛̨
bβ

(k)
,bb

(k)

i

bz(k)
i =

∂fi

∂bT
i

˛̨
˛̨
bβ

(k)
,
bb
(k)

i

This gives

yi − f i(β, bi) ≈ y
(k)
i

− bx(k)
i

β − bz(k)
i

bi

where

y
(k)
i

= yi − f i

“
bβ(k)

,bb(k)

i

”
+ bx(k)

i
bβ(k)

+ bz(k)
i
bb(k)

i
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The integral can now be evaluated in closed-form to give the log-likelihood

l(α) = −1

2

mX

i=1

log | bV i| −
1

2

mX

i=1

(y
(k)
i − bx(k)

i β)T bV −1
i (Y i − bxiβ)

where
bV i = bz(k)

i Dbz(k)T
i + σ2

ε Ii,

which may be maximized to give ML estimates. REML estimates are obtained

by adding the term

−1

2

mX

i=1

log | bx(k)T
i

bV i(α)bx(k)
i |

The Laplace approximation is generally more accurate than the LB algorithm,

it is, however, more computationally expensive.
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Asymptotic Inference

Under the LB algorithm, the asymptotic distribution of the REML estimator bβ
is  

mX

i=1

bxT
i
bV −1

i bxi

!1/2

(bβ − β) →d Np+1(0, Ip+1),

where bxi = bx(k)
i with k the final iteration, i = 1, ..., m

Similarly, the asymptotic distribution of α is based on the information as

calculated from the linear approximation to the likelihood.

The LB estimator is inconsistent if the ni’s are fixed and m → ∞.

Empirical Bayes estimates for the random effects are available, but caution

should be given to using these for checking assumptions since they are strongly

influenced by the assumption of normality being correct. If ni is large then this

will be less of a problem.
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Approaches for NLMEMs

Various other approaches to likelihood inference have been suggested, we briefly

summarize.

In general we need to carry out m integrals of dimension q + 1 for each

likelihood evaluation, so with large m and q this can be computationally

expensive.

First-Order Approximation

Let βi = xiβ + bi, and then carry out a first-order Taylor series about

E[bi] = 0 to give

yi = fi(βi) + εi ≈ fi(xiβ) +
∂fi

∂βi

∂βi

∂bi
bi + εi.

In contrast to the LB algorithm which considered an expansion about the

subject-specific mean, the expansion here is about the population-averaged

mean. The first-order estimator is inconsistent and has bias even if ni and m

go to infinity, see Demidenko (2004, Chapter 8)

Adaptive Gaussian quadrature may also be used.
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Example: Pharmacokinetics of Indomethacin

The compartmental model that has previously been used for this drug is the

two-compartment bi-exponential model:

E[Y ] = A1 exp{−α1t} + A2 exp{−α2t},

where Y is concentration, and t is time, and A1, A2, α1, α2 > 0.

Note: this model is unidentifiable since the parameter set (A1, α1, A2, α2) gives

the same fitted curve (and hence likelihood) as the set (A2, α2, A1, α1). If this

is a practical problem for a particular dataset (say α1 ≈ α2) then we may

parameterize in terms of α1 and α2 − α1.

Figure 28 gives the log concentrations versus time – such a plot can be useful

for picking the number of exponentials (and modeling the log concentration can

provide initial estimates). Certainly not linear in time so more than a single

exponential needed.
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Figure 28: Log concentration time data for Indomethacin.
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Individual fits

Let Yij be the drug concentration at time tij on indvidual i, j = 1, ..., 11,

i = 1, ..., 6. We first fit bi-exponential models to each individual, using

non-linear least squares.

We parameterize as

E[Yij | βi] = β1i exp{−eβ3i tij} + β2i exp{−eβ4i tij},

for i = 1, ..., 6.

Even though the data are balanced, the standard errors are different for

different individuals, as we see in Figure 29.
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R code for fitting individual models:

> indiv.lis <- nlsList( conc ~ SSbiexp(time,A1,lrc1,A2,lrc2),data=Indometh )

> indiv.lis

Call:

Model:conc~SSbiexp(time,A1,lrc1,A2,lrc2)|Subject

Data: Indometh

Coefficients:

A1 lrc1 A2 lrc2

1 2.029277 0.5793887 0.1915475 -1.7877849

4 2.198132 0.2423124 0.2545223 -1.6026859

2 2.827673 0.8013195 0.4989175 -1.6353512

5 3.566103 1.0407660 0.2914970 -1.5068522

6 3.002250 1.0882119 0.9685230 -0.8731358

3 5.468312 1.7497936 1.6757522 -0.4122004

Degrees of freedom: 66 total; 42 residual

Residual standard error: 0.0755502

> plot( intervals(indiv.lis) )
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Figure 29: Asymptotic 95% CIs for elements of βi, i = 1, ..., 6.
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Now we fit some NLMEMs, we first assume a diagonal D with random effects
for first three elements only.

> nlme.indo <- nlme( indiv.lis,random=pdDiag(A1+lrc1+A2~1))

> summary(nlme.indo)

Nonlinear mixed-effects model fit by maximum likelihood

Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)

Random effects:

Formula: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1)

Level: Subject

Structure: Diagonal

A1 lrc1 A2 Residual

StdDev: 0.57135 0.1581214 0.1115283 0.08149631

Fixed effects: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)

Value Std.Error DF t-value p-value

A1 2.8276029 0.2639744 57 10.711656 0e+00

lrc1 0.7732529 0.1100086 57 7.029021 0e+00

A2 0.4610197 0.1127560 57 4.088648 1e-04

lrc2 -1.3450041 0.2313139 57 -5.814627 0e+00

Correlation:

A1 lrc1 A2

lrc1 0.055

A2 -0.102 0.630

lrc2 -0.139 0.577 0.834
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Now assume a non-diagonal D for all four parameters.

> nlme2.indo2 <- update( nlme.indo, random=A1+lrc1+A2+lrc2~1)

> summary(nlme.indo2)

Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)

Random effects: Formula: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

A1 0.77583020 A1 lrc1 A2

lrc1 0.26863662 0.963

A2 0.38707000 0.459 0.682

lrc2 0.48253192 0.153 0.414 0.948

Residual 0.06962038

Fixed effects: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)

Value Std.Error DF t-value p-value

A1 2.8531611 0.3485825 57 8.185039 0e+00

lrc1 0.8755645 0.1253269 57 6.986245 0e+00

A2 0.6357872 0.1715520 57 3.706091 5e-04

lrc2 -1.2757709 0.2161119 57 -5.903288 0e+00

Correlation:

A1 lrc1 A2

lrc1 0.907

A2 0.411 0.676

lrc2 0.108 0.378 0.912
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Figure 30: Comparison of non-linear LS and nlme estimates, with

the latter from the model nlme.indo Created using the command

plot(compareFits(coef(indiv.lis),coef(nlme.indo))).
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Figure 31: Data with fitted curves from nlme analysis superim-

posed from the model nlme.indo. Created with the command

plot(augPred(nlme.indo),aspect=’’xy’’,grid=T).
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The following commands produced Figures 32–34.

> plot(nlme.indo,resid(.,type="n")~fitted(.),id=0.05,adj=-1) # id=0.05 gives

# outliers outside of 95% of distn, adj=-1 adjusts the text which

# labels these outliers

> plot(nlme.indo,resid(.,type="n")~time,id=0.05,adj=-1)

> qqnorm(nlme.indo)

> plot(augPred(nlme.indo,level=0:1)) # Obtain predictions at population and

# individual level of hierarchy
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Figure 32: Standardized residuals versus fitted values.
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Figure 33: Standardized residuals versus time.
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Figure 34: QQ plot of normalized residuals.
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Bayesian Approach

A Bayesian approach adds a prior distribution for β, α, to the likelihood

L(β, α). As with the linear model proper prior is required for the matrix D. In

general a proper prior is required for β also, to ensure the propriety of the

posterior distribution. Closed-form inference is unavailable, but MCMC is

almost as straightforward as in the LMEM case. The joint posterior is

p(β1, ..., βm, τ, β, W , b | y) ∝
mY

i=1

{p(yi | βi, τ)p(βi | β, W)}π(β)π(τ)π(W).

Suppose we have priors:

β ∼ Nq+1(β0, V 0)

τ ∼ Ga(a0, b0)

W ∼ Wq+1(r, R
−1)

The conditional distributions for β, τ , W are unchanged from the linear case.

There is no closed form conditional distribution for βi, which is given by:

p(βi | β, τ, W , y) ∝ p(yi | βi, τ) × p(βi | β, W)

but a Metropolis-Hastings step can be used.
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Generalized Estimating Equations

If interest lies in population parameters then we may use the estimator bβ that

satisfies

G(β, bα) =
mX

i=1

DT
i W−1

i (Y i − µi) = 0,

where Di = ∂µi

∂β
, W i = W i(β, bα) is the working covariance model, µi = µi(β)

and bα is a consistent estimator of α. Sandwich estimation may be used to

obtain an empirical estimate of the variance, V β :

 
mX

i=1

DT
i W−1

i Di

!−1( mX

i=1

DT
i W−1

i cov(Y i)W
−1
i Di

) 
mX

i=1

DT
i W−1

i Di

!−1

.

We then have

V
−1/2
β (bβ − β) →d N(0, I).

In practice an empirical estimator of cov(Y i) is substituted to give bV β .

GEE has not been extensively used in a non-linear (non-GLM) setting. This is

probably because in many settings (e.g. pharmacokinetic/pharmacodynamic)

interest focuses on understanding between individual-variability, and explaining

this in terms of individual-specific covariates.
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Generalized Linear Mixed Models

A GLMM is defined by

1. Random Component: Yij |θij , α ∼ p(·) where p(·) is a member of the

exponential family, that is

p(yij |θij , α) = exp[{yijθij − b(θij)})/a(α) + c(yij , α)],

for i = 1, ..., m units, and j = 1, ..., ni, measurements per unit.

2. Systematic Component: If µij = E[Yij |θij , α] then we have a link function

g(·), with

g(µij) = xijβ + zijbi,

so that we have introduced random effects into the linear predictor. The

above defines the conditional part of the model. The random effects are

then assigned a distribution, and in a GLMM this is assumed to be

bi ∼iid N(0, D).

We also have

var(Yij |θij , α) = αv(µij).
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Marginal Moments

Mean:

E[Yij ] = E{E[Yij |bi]}
= E[µij ] = Eb[g

−1(xijβ + zijbi)].

Variance:

var(Yij) = E[var(Yij |bi)] + var(E[Yij |bi])

= αEb[v{g−1(xijβ + zijbi)}] + varb[g
−1(xijβ + zijbi)].

Covariance:

cov(Yij , Yik) = E[cov(Yij , Yik|bi)] + cov(E[Yij |bi],E[Yik|bi])

= cov{g−1(xijβ + zijbi), g
−1(xikβ + zikbi)}

6= 0,

for j 6= k due to shared random effects, and

cov(Yij , Ylk) = 0,

for i 6= l, as there are no shared random effects.
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Example: Log-Linear Regression for Seizure Data

Data on seizures were collected on 59 epileptics. For each patient the number

of epileptic seizures were recorded during a baseline period of eight weeks, after

which patients were randomized to treatment with the anti-epileptic drug

progabide, or to placebo. The number of seizures was then recorded in four

consecutive two-week periods. The age of the patient was also available.

Let

Yij = number of seizures on patient i at occasion j

tij = observation period on patient i at occasion j

xi1 = 0/1 if patient i was assigned placebo/progabide

xij2 = 0/1 if j = 0/1, 2, 3, 4

with tij = 8 if j = 0 and tij = 2 if j = 1, 2, 3, 4, i = 1, ..., 59.

The question of primary scientific interest here is whether progabide reduces

the number of seizures.

A marginal mean model is given by

E[Yij ] = tij exp(β0 + β1xij1 + β2xi2 + β3xij1xi2)
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Figure 36: Number of seizures for selected individuals over time for placebo

group.
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Figure 37: Number of seizures for selected individuals over time for progabide

group.
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Figure 38: Summaries for seizure data.

254

2006 Jon Wakefield, Stat/Biostat 571

Mixed Effects Model for Seizure Data

Stage 1: Yij |β, bi ∼ind Poisson(µij), with

g(µij) = log µij = log tij + xijβ + bi,

where

xijβ = β0 + β1xij1 + β2xi2 + β3xij1xi2.

Hence

E[Yij |bi] = µij = tij exp(xijβ + bi), var(Yij |bi) = µij .

Stage 2: bi ∼iid N(0, σ2).

The marginal mean is given by

E[Yij ] = tij exp(xijβ + σ2/2),

and the marginal median by

tij exp(xijβ).
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The marginal variance is given by

var(Yij) = E[µij ] + var(µij)

= E[Yij ]{1 + E[Yij ](e
σ2 − 1)} = E[Yij ](1 + E[Yij ] × κ)

where κ = eσ2 − 1 > 0 illustrating excess-Poisson variation which increases as

σ2 increases.

For the marginal covariance

cov(Yij , Yik) = cov{tij exp(xijβ + bi), tij exp(xikβ + bi)}

= tij exp(xijβ + xikβ) × eσ2{eσ2 − 1}
= E[Yij ]E[Yik]κ.

Hence for individual i we have variance-covariance matrix
2
666664

µi1 + µ2
i1κ µi1µi2κ ... µi1µini

κ

µi2µi1κ µi2 + µ2
i2κ ... µi2µini

κ

... ... ... ...

µini
µi1κ µini

µi2κ ... µini
+ µ2

ini
κ

3
777775

,

where κ = eσ2 − 1 > 0.
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Likelihood Inference

In general there are two approaches to inference from a likelihood perspective:

1. Carry out conditional inference in order to eliminate the random effects.

2. Make a distributional assumption for bi, and then carry out likelihood

inference (using some form of approximation to evaluate the required

integrals).

We first consider the conditional likelihood approach.
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Conditional Likelihood

Recall the definition of conditional likelihood. Suppose the distribution of the

data may be factored as

p(y | β, γ) = h(y) × p(t1, t2 | β, γ) = h(y) × p(t1 | t2, β) × p(t2 | β, γ),

where we choose to ignore the second term and consider the conditional

likelihood

Lc(β) = p(t1 | t2, β) =
p(t1, t2 | β, γ)

p(t2 | β, γ)
.

Maximizing the conditional likelihood yields an estimator, bβc with the usual

properties, for example

Ic(β)1/2(bβc − β) →d N(0, I),

and Ic(β) is the expected information derived from the conditional likelihood.
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Conditional Likelihood for GLMMs

In the context of GLMMs we have

Lc(β) =
mY

i=1

p(t1i | t2i, β) =
mY

i=1

p(t1i, t2i | β, bi)

p(t2i | β, bi)

where

p(t1i, t2i | β, bi) ∝ p(yi | β, bi)

and

p(t2i | β, bi) =
X

S2i

p(u1i, t2i | β, bi),

and S2i is the set of values of yi such that T2i = t2i, a set of disjoint events.

The different notation is to emphasize that T1i takes on values different to t1i.
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For simplicity we assume the canonical link function,

g(µij) = θij = xijβ + zijbi

and assume α = 1. Viewing bi as fixed effects we have the likelihood

L(β, b) = exp

8
<
:

mX

i=1

niX

j=1

yijxijβ + yijzijbi − b(xijβ + zijbi)

9
=
; ,

so that

t1 =
mX

i=1

t1i =
mX

i=1

niX

j=1

yijxij

and

t2i =

niX

j=1

yijzij .

We emphasize that no distribution has been specified for the bi, and they are

being viewed as fixed effects.
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Conditional Likelihood for the Poisson GLMM

Assume for simplicity that zijbi = bi, so that we have the random intercepts

only model. Also, in an obvious change in notation

xijβ + xiβ1 + bi = xijβ + γi

so that β are the regression associated with covariates that change within an

individual.

Then

p(y | β, γ) =
mY

i=1

p(yi | β, γi) =
mY

i=1

exp
“
−Pm

j=1 µij +
Pm

j=1 yij log µij

”

Qni
j=1 yij !

= c1

mY

i=1

exp

0
@−µi+ + yi+γi +

niX

j=1

yij log (tij exp(xijβ))

1
A

where c−1
1 =

Q
i

Q
j yij ! and µi+ =

Pm
j=1 tij exp(xijβ).
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In this case the distribution of the conditioning statistic is straightforward:

yi+ | β, γi ∼ Poisson(µi+)

so that

p(yi+ | β, γi) = c2

mY

i=1

exp(−µi+ + yi+ log µi+)

= c2

mY

i=1

exp

0
@−µi+ + yi+γi + yi+ log

0
@

niX

j=1

tij exp(xijβ)

1
A
1
A

where c−1
2 = yi+!

Hence

p(y | y1+, ..., yni+, β) =
p(y | β, γ)

p(y1+, ..., yni+ | β, γ)

which is given by

c1
Q

i exp
“
−µi+ + yi+γi +

Pni
j=1 yij log(tij exp(xijβ)

”

c2
Qm

i=1 exp
“
−µi+ + yi+γi + yi+ log

“Pni
j=1 tij exp(xijβ)

””
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After simplification:

p(y | y1+, ..., yni+, β) =
c1
Qm

i=1

Qni
j=1 (tij exp(xijβ))yij

c2
Qm

i=1

“Pni
j=1 tij exp(xijβ)

”yi+

=

0
@ yi+

yi1...yini

1
A

mY

i=1

niY

j=1

 
tij exp(xijβ)Pni

l=1 til exp(xilβ)

!yij

which is a multinomial likelihood (we have conditioned a set of Poisson counts

on their total so obvious!):

yij | yi+, β ∼ Multni
(yi+, πi)

where πT
i = (πi1, ..., πini

) and

πij =
tij exp(xijβ)Pni

l=1 til exp(xilβ)
.
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Conditional Likelihood for the Seizure Data

Recall

Yij = number of seizures on patient i at occasion j

tij = observation period on patient i at occasion j

xi1 = 0/1 if patient i was assigned placebo/progabide

xij2 = 0/1 if j = 0/1, 2, 3, 4

with tij = 8 if j = 0 and tij = 2 if j = 1, 2, 3, 4, i = 1, ..., 59.

A log-linear random intercept model is given by

log E[Yij | bi] = log tij + β0 + β1xi1 + β2xij2 + β3xi1xij2 + bi

Group j = 0 period j = 1, 2, 3, 4 period

Placebo β0 β0 + β2

Progabide β0 + β1 β0 + β1 + β2 + β3

Table 9: Parameter interpretation.
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Precise definitions:

• exp(β0) is the expected number of seizures for a typical individual in the

placebo group in time period 0;

• exp(β1) is the ratio of the expected seizure rate in the progabide group,

compared to the placebo group, for a typical individual, i.e. one with

bi = 0, in time period 0;

• exp(β2) is the ratio of the expected seizure rate at times j = 1, 2, 3, 4, as

compared to j = 0, for a typical individual in the placebo group;

• exp(β3) is the ratio of the expected seizure rates in the progabide group in

the j = 1, 2, 3, 4 period, as compared to the placebo group, in the same

period for a typical individual. Hence exp(β3) is the parameter of interest.

More colloquially:

• β0 INTERCEPT

• β1 BASELINE TREATMENT EFFECT

• β2 PERIOD EFFECT

• β3 TREATMENT × PERIOD EFFECT
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In the conditional likelihood notation:

log E[Yij | γi] = log tij + γi + β2xij2 + β3xi1xij2

where γi = β0 + β1xi1 + bi so that we cannot estimate β1, which is not a

parameter of primary interest.

Since xi1 = xi2 = xi3 = xi4 and ti0 = 8 =
P4

j=1 tij , we effectively have two

observation periods which we label (slightly abusing our previous notation),

j = 0, 1. Let Yi1 =
P4

j=1 Yij .

For the placebo group:

Yi1 ∼ind Binomial(Yi+, πi1)

for i = 1, ..., 29, with

πi1 =
exp(β2)

1 + exp(β2)
.

For the progabide group:

Yi1 ∼ind Binomial(Yi+, πi1)

for i = 30, ..., 59, where

πi1 =
exp(β2 + β3)

1 + exp(β2 + β3)
.

.
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This model is straightforward to fit in R:

> xcond <- c(rep(0,28),rep(1,31))

> condmod <- glm(cbind(y1,y0)~xcond,family=binomial)

> summary(condmod)

Call:

glm(formula = cbind(y1, y0) ~ xcond, family = binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.11080 0.04689 2.363 0.0181 *

xcond -0.10368 0.06505 -1.594 0.1110

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 306.50 on 58 degrees of freedom

Residual deviance: 303.96 on 57 degrees of freedom

Hence the treatment effect is exp(−.10) = 0.90 so that the rate of seizures is

estimated as 10% less in the progabide group, though this change is not

statistically significant.
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Conditional Likelihood for the Seizure Data

The overall fit of the random intercept model is poor (304 on 57 degrees of

freedom).

Once possibility is to extend the model to allow a random slope for the effect of

treatment xi2, i.e. β2i = β2 + b2i, but a conditional likelihood approach for this

model will condition away the information relevant for estimation of β3.

We will examine such a model using a mixed effects approach.
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Likelihood Inference in the Mixed Effects Model

As with the linear mixed effects model (LMEM) we maximize L(β, α) where α

denote the variance components in D, and

L(β, α) =

mY

i=1

Z
p(yi|β, bi) × p(bi|α) dbi.

As with the NLMEM the required integrals are not available in closed form and

so some sort of analytical or numerical approximation is required.
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Example: Log-linear Poisson regression GLMM

With a single random effect we have α = σ2.

L(β, α) =
mY

i=1

Z niY

j=1

exp(−µij)µ
yij

ij

yij !
× (2πσ2)−1/2 exp

„
− 1

2σ2
b2i

«
dbi

=
mY

i=1

(2πσ2)−1/2 exp

 
niX

i=1

yijxijβ

!

×
Z

exp

0
@−ebi

niX

j=1

exijβ +

niX

j=1

yijbi −
1

2σ2
b2i

1
A dbi

=
mY

i=1

exp

 
niX

i=1

yijxijβ

!
×
Z

h(bi)
exp{−b2i /(2σ2)}

(2πσ2)−1/2
dbi,

an integral with respect to a normal random variable (which is analytically

intractable).
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Integration in the GLMM

As with the NLMEM there are a number of possible approaches for integrating

out the random effects including:

• Analytical approximations, including Laplace, and the closely-related

penalized quasi-likelihood approach.

• Gaussian quadrature.

• Importance sampling Monte Carlo
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Penalized Quasi-Likelihood

Breslow and Clayton (1993) introduced the method of Penalized

Quasi-Likelihood (PQL) which was an attempt to extend quasi-likelihood to

GLMMs. One justification of the method is a Laplace approximation.

If we write the required integration in the form

log L(β, α) = −1

2
log |D| + log

„Z
exp{−g(b)}db

«
,

and use a Laplace approximation to the second term to obtain

log L(β, α) ≈ −1

2
log |D| − 1

2
log |g′′(b̂)| − g(b̂),

where b̂ maximizes g(b), and so satisfies g′(b̂) = 0.

PQL is very poor for binary data but may be OK for binomial and Poisson

data (as long as the counts are not too small).

Within the MASS package the glmmPQL function obtains PQL estimates.
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GLMM for the Seizure Data

We begin with the random intercepts model only:

> summary(glmmPQL(y~x1+x2+x3+offset(log(time)),random=~1|ID,family=poisson,data=seiz))

iteration 1

...

iteration 8

Linear mixed-effects model fit by maximum likelihood

Random effects:

Formula: ~1 | ID

(Intercept) Residual

StdDev: 0.7479965 1.670907

Variance function:

Structure: fixed weights

Formula: ~invwt

Fixed effects: y ~ x1 + x2 + x3 + offset(log(time))

Value Std.Error DF t-value p-value

(Intercept) 1.0762701 0.15622775 234 6.889110 0.0000

x1 -0.0196026 0.21561685 57 -0.090914 0.9279

x2 0.1107981 0.07888257 234 1.404596 0.1615

x3 -0.1036807 0.10943566 234 -0.947412 0.3444

Number of Observations: 295

Number of Groups: 59
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Bayesian Inference for GLMMs

A Bayesian approach to inference for a GLMM adds a prior distribution for

β, α, to the likelihood L(β, α). Again a proper prior is required for the matrix

D. In general a proper prior is not required for β – the exponential family and

linear link lead to a likelihood that is well-behaved. Closed-form inference is

unavailable, but MCMC is almost as straightforward as in the linear mixed

model case. The joint posterior is

p(β, W , b | y) ∝
mY

i=1

{p(yi | β, bi)p(bi | W)}π(β)π(W).

Suppose we have priors:

β ∼ Nq+1(β0, V 0)

W ∼ Wq+1(r, R
−1)

The conditional distributions for β, τ , W are unchanged from the linear case.

There is no closed form conditional distribution for β, or for bi, but

Metropolis-Hastings step can be used (or adaptive rejection sampling can be

utilized, the conditional is log concave).
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Priors for β and α in the GLMM

Lognormal Priors

It is convenient to specify lognormal priors for positive parameters θ, since one

may specify two quantiles of the distribution, and directly solve for the two

parameters of the prior. In a GLMM we can often specify priors for more

meaningful parameters than elements of β. For example, eβ1 is the relative risk

in a log linear model, and is the odds ratio in a logistic model.

Suppose we wish to specify a lognormal prior for a generic parameter θ.

Denote by LN(µ, σ) the lognormal distribution with E[log θ] = µ and

var(log θ) = σ2, and let θ1 and θ2 be the q1 and q2 quantiles of this prior.

Then

µ = log(θ1)

„
zq2

zq2 − zq1

«
− log(θ2)

„
zq1

zq2 − zq1

«
, σ =

log(θ1) − log(θ2)

zq1 − zq2

. (44)

As an example, suppose that for θ we believe there is a 50% chance that the

relative risk is less than 1 and a 95% chance that it is less than 5; with

q1 = 0.5, θ1 = 1.0 and q2 = 0.95, θ2 = 5.0, we obtain lognormal parameters

µ = 0 and σ = log 5/1.96 = 0.98.
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Gamma Priors

Consider the random intercepts model with bi ∼iid N(0, σ2).

It is not straightforward to specify a prior for σ, which represents the standard

deviation of the residuals on the linear predictor scale, and is consequently not

easy to interpret.

We specify a gamma prior Ga(a, b) for the precision τ = 1/σ2, with parameters

a, b specified a priori. The choice of a gamma distribution is convenient since it

produces a marginal distribution for the residuals in closed form.

Specifically the two-stage model

bi|σ ∼iid N(0, σ2), τ = σ−2 ∼ Ga(a, b)

produces a marginal distribution for bi which is td(0, λ2), a Student’s t

distribution with d = 2a degrees of freedom, location zero, and scale λ2 = b/a.

We now consider a log link, in which case the above is equivalent to the

residual relative risks following a log t distribution.

We specify the range exp(±R) within which the residual relative risks will lie

with probability q, and use the relationship ±td
q/2

λ = ±R, where tdq is the q-th

quantile of a Student t random variable with d degrees of freedom, to give

a = d/2, b = R2d/2(td
q/2

)2.
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For example, if we assume a priori that the residual relative risks follow a log

Student t distribution with 2 degrees of freedom, and that 95% of these risks

fall in the interval (0.5,2.0) then we obtain the prior, Ga(1, 0.0260).

In terms of σ this results in (2.5%, 97.5%) quantiles of (0.084,1.01) with

posterior median 0.19.

It is important to assess whether the prior allows all reasonable levels of

variability in the residual relative risks, in particular small values should not be

excluded.

The prior Ga(0.001,0.001) which has previously been used (e.g. in the

WinBUGS manual) should be avoided for this very reason (this corresponds to

relative risks which follow a log Student t distribution with 0.002 degrees of

freedom).
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Bayesian Inference for the Seizure Data

We fit various models and begin with a discussion of prior specification.

We fit four models to the seizure data.

Model 1 Random intercepts only, π(β) ∝ 1, τ ∼ Ga(1, 0.260) – corresponds to

Student t2 residuals and 95% ∈ (0.5, 2.0).

Model 2 Random intercepts only, π(β) ∝ 1, τ ∼ Ga(2, 1.376) – corresponds to

Student t4 residuals and 95% ∈ (0.1, 10.0).

Model 3 Random effects for intercept and for x2.

Model 4 We allow a bivariate Student t distribution for the pair of random effects

introduced in Model 3.
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WinBUGS code

model

{

for (i in 1:n){

for (j in 1:k){

Y[i,j] ~ dpois(mu[i,j])

log(mu[i,j]) <- log(t[j])+beta0+beta1*x1[i]+beta2*x2[j]+

beta3*x1[i]*x2[j]+b[i]

}

b[i] ~ dnorm(0,tau)

}

tau ~ dgamma(1,0.260)

sigma <- 1/tau

beta0 ~ dflat()

beta1 ~ dflat()

beta2 ~ dflat()

beta3 ~ dflat()

}
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# Data

list(k = 5, n = 59, t = c(8,2,2,2,2), x2 = c(0,1,1,1,1),

x1 = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

Y = structure(.Data = c(11,5,3,3,3,11,3,5,3,3,6,2,4,0,5,8,4,4,1,4,66,7,18,9,21,

27,5,2,8,7,12,6,4,0,2,52,40,20,23,12,23,5,6,6,5,10,14,13,6,0,52,26,12,6,22,

33,12,6,8,4,18,4,4,6,2,42,7,9,12,14,87,16,24,10,9,50,11,0,0,5,18,0,0,3,3,

111,37,29,28,29,18,3,5,2,5,20,3,0,6,7,12,3,4,3,4,9,3,4,3,4,17,2,3,3,5,

28,8,12,2,8,55,18,24,76,25,9,2,1,2,1,10,3,1,4,2,47,13,15,13,12,76,11,14,9,8,

38,8,7,9,4,19,0,4,3,0,10,3,6,1,3,19,2,6,7,4,24,4,3,1,3,31,22,17,19,16,

14,5,4,7,4,11,2,4,0,4,67,3,7,7,7,41,4,18,2,5,7,2,1,1,0,22,0,2,4,0,13,5,4,0,3,

46,11,14,25,15,36,10,5,3,8,38,19,7,6,7,7,1,1,2,3,36,6,10,8,8,11,2,1,0,0,

151,102,65,72,63,22,4,3,2,4,41,8,6,5,7,32,1,3,1,5,56,18,11,28,13,24,6,3,4,0,

16,3,5,4,3,22,1,23,19,8,25,2,3,0,1,13,0,0,0,0,12,1,4,3,2),.Dim = c(59,5)))

# Initial estimates

list(b=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

beta0=0, beta1=0, beta2=0, beta3=0, tau=1)
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Estimates (standard deviations)

Model 1 Model 2 Model 3 Model 4

β0 1.03 (0.15) 1.03 (0.15) 1.08 (0.13) 0.916 (0.15)

β1 -0.0241 (0.21) -0.034 (0.21) 0.042 (0.19) 0.159 (0.20)

β2 0.112 (0.047) 0.111 (0.047) 0.0045 (0.11) -0.0296 (0.11)

β3 -0.105 (0.065) -0.103 (0.065) -0.314 (0.15) -0.315 (0.15)

σ0 0.638 (0.13) 0.655 (0.13) 0.71 (0.072) 0.714 (0.10)

σ1 – – 0.473 (0.062) 0.399 (0.078)

ρ – – 0.185 (0.16) 0.213 (0.21)

Table 10: Posterior means and standard deviations for Bayesian analysis of

seizure data; σ0 is the standard deviation of the random intercepts, σ1 is the

standard deviation of the random period effect, and ρ is the correlation between

these random effects.

Conclusions: there is evidence of a statistically significant treatment effect,

under Model 4 the 95% credible interval on β3 is (-0.597,-0.028).
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Generalized Estimating Equations (GEEs)

Liang and Zeger (1986, Biometrika), and Zeger and Liang (1986, Biometrics)

considered GLMs with dependence within individuals (in the context of

longitudinal data).

Theorem (Liang and Zeger, 1986): the estimator bβ that satisfies

G(β, bα) =
mX

i=1

DT
i W−1

i (Y i − µi) = 0,

where Di = ∂µi

∂β
, W i = W i(β, α) is the working covariance model, µi = µi(β)

and bα is a consistent estimator of α, is such that

V
−1/2
β (bβ − β) →d N(0, I),

where V β is given by

 
mX

i=1

D
T
i W

−1
i Di

!
−1( mX

i=1

D
T
i W

−1
i cov(Y i)W

−1
i Di

) 
mX

i=1

D
T
i W

−1
i Di

!
−1

.

In practice an empirical estimator of cov(Y i) is substituted to give cWβ .
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Choice of Working Covariance Models

As in the linear case, various assumptions about the form of the working

covariance may be assumed (what is a natural choice?); we write

W i = ∆
1/2
i Ri(α)∆

1/2
i ,

where ∆i = diag[var(Yi1), ..., var(Yini
)]T and Ri is a working correlation

model, for example, independence, exchangeable, AR(1), unstructured.

• For small m the sandwich estimator will have high variability and so

model-based variance estimators may be preferable (but would we trust

asymptotic normality if m were small anyway?).

• Model-based estimators are more efficient if the model is correct.

Published comments:

– Liang and Zeger (1986): “little difference when correlation is moderate”.

– McDonald (1993): “The independence estimator may be reccomended

for practical purposes”.

– Zhao, Prentice and Self (1992): Assuming independence “can lead to

important losses of efficiency”.

– Fitmaurice, Laird and Rotnitsky (1993): “important to obtain a close

approximation to cov(Y i) in order to achieve high efficiency”.
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GEE for the Seizure Data

We have the log-linear model is given

log E[Yij ] = log µij = log tij + β?
0 + β1xi1 + β2xij2 + β3xi1xij2

and var(Yij) = αµij . Recall β1 is baseline comparison of rates, β2 is period

effect and β3 is treatment effect.

Both quasi-likelihood and working independence GEE have estimating equation

G(β, bα) =

mX

i=1

xT
i (Y i − µi) = 0,

but differ in the manner in which the standard errors are calculated.
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Estimates (standard errors)

Poisson Quasi-Lhd GEE Ind GEE Exch GEE AR(1)

β?
0 1.35 (0.034) 1.35 (0.15) 1.35 (0.16) 1.35 (0.16) 1.31 (0.16)

β1 0.0265 (0.047) 0.0265 (0.21) 0.0265 (0.22) 0.0265 (0.22) 0.0153 (0.21)

β2 0.111 (0.047) 0.111 (0.21) 0.111 (0.12) 0.111 (0.12) 0.155 (0.11)

β3 -0.104 (0.065) -0.104 (0.29) -0.104 (0.22) -0.104 (0.22) -0.131 (0.27)

α1, α2 1.0, 0 19.7, 0 19.4, 0 19.4, 0.78 20.0, 0.89

Table 11: Parameter estimates and standard errors under various models; α1 is

a variance parameter, and α2 a correlation parameter.

The point estimates under Poisson,quasi-likelihood and GEE working

independence will always agree. The Poisson standard errors are clearly much

too small. The quasi-likelihood standard errors are increased by
√

19.7 = 4.4,

but do not acknowledge dependence on observations on the same individual (it

is as if we have 59 × 5 independent observations). The standard errors of

estimated parameters that are associated with time-varying covariates (β2 and

β3) are reduced under GEE, since within-person comparisons are being made.

The coincidence of the estimates and standard errors for independence and

exchangeability is a quirk of the balanced design.
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Interpretation of Marginal and Conditional Coefficients

In a marginal model (which we consider under GEE), we have

E[Y | x] = exp(γ0 + γ1x)

in which case eγ1 is the change in the average response when we increase x by 1

unit in the population under consideration.

Under the conditional (mixed effects) model the interpretation of regression

coefficients is conditional on the value of the random effect.

For the model

E[Y | x, b] = exp(β0 + β1x + b),

with b ∼iid N(0, σ2), the marginal mean is given by:

E[Y | x] = Eb|σ2{E[Y | x, b]} = exp(β0 + σ2/2 + β1x).

Hence for the log-linear model, eβ1 has a very similar marginal interpretation

to eγ1 , though estimation of the latter via GEE produces a consistent estimator

in more general circumstances (though there is an efficiency loss if the random

effects model is correct).
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In the model

E[Y | x, b] = exp{β0 + b0i + (β1 + b1i)xi}
eβ1 is the relative risk between two populations with the same b but whose x

values differ by one unit, that is:

exp(β1) =
E[Y | x, b]

E[Y | x − 1, b]
.

An alternative interpretation is to say that it is the expected change between

two “typical individuals”, that is, individuals with random effects, b = 0.

With b ∼iid N(0, D) we have the marginal mean

E[Y | x] = exp{β0 + D00/2 + x(β1 + D01) + x2D11/2}

so that there is no useful marginal interpretation of exp(β1).
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Stochastic Covariates

In some longitudinal situations, the response at time t on individual i may

depend on not just the current covariates, but also previous values.

For example, in an investigation into the health effects of recent air pollution

we may believe that the response depends on not just today’s exposure, but

also the preceeding days.

In such situations, obtaining the correct form of the model will in general be

difficult, and instead we might decide to estimate the association for a simpler

model.

As an example, suppose that we have a single covariate, and we decide to

examine the cross-sectional association:

µij = E[Yij | Xij ]. (45)

In such a situation great care must be taken to obtain a consistent estimator.

We demonstrate with a GEE approach, though the pitfalls of estimation apply

equally to likelihood and Bayesian approaches.
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With a GLM:

ηij = g(µij) = xijβ,

and assume for simplicity β = (β0, β1)T. The generalized estimating function is

given by

G(β) =
mX

i=1

DT
i W−1

i (Y i − µi)

which has second row

G2(β) =

mX

i=1

2
4

niX

j=1

niX

k=1

XijW ?
ijk(Yik − µik)

3
5

where (45) is the assumed model, i.e. µik = E[Yij | Xik], and W ?
ijk =

∂µij

∂ηij
W jk

i

with W jk
i the (j, k)-th element of W−1

i .
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To obtain consistency we require

E[G(β)] = 0.

Previously we have seen that if the mean specification is correct then we obtain

consistency of bβ.

Since now the estimating function depends on the random variables

X = (X1, ..., Xm)T the expectation is with respect to X and Y . Specifically

EY,X [G2(β)] =
mX

i=1

EYi|Xi

2
4

niX

j=1

niX

k=1

XijW ?
ijk(Yik − µik)

3
5

and

EYi,Xi

h
XijW ?

ijk(Yik − µik)
i

= EXi

n
EYi|Xi

[XijW ?
ijk(Yik − µik)

i

= EXi

n
XijW ?

ijk(E
ˆ
Yik | Xi1, ..., Xini

˜
− µik)

o

Hence to ensure an unbiased estimating function, and hence consistency of our

estimator, we require

E
ˆ
Yik | Xi1, ..., Xini

˜
= µik = E[Yij | Xik],

otherwise we have bias.
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Suppose we assume working independence, the above simplifies to

G2(β) =
mX

i=1

niX

j=1

XijW ?
ijj(Yij − µij),

so that we only need to consider the expectation with respect to Y i, Xi:

EYij |Xij
[G(β)] =

mX

i=1

niX

j=1

EXi

ˆ
XijW ?

ijj(E[Yij | Xij ] − µij)
˜

= 0,

and we obtain a consistent estimator.

For more details see DHLZ, Section 12.3.1.
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Cross-Sectional Versus Longitudinal Studies

Consider modeling Y = FEV1 as a function of age. We might envisage that Y

changes both over time within an individual, and that individuals may have

different baseline levels of Y from which they begin, due to “cohort” effects. A

birth cohort is a group of individuals who were born in the same year.

Cohort effects include the effects of environmental pollutants, and differences in

lifestyle choices and medical treatment.

In a cross-sectional study a group of individuals are measured at a single time

point. A great advantage of longitudinal studies, over cross-sectional studies is

that both cohort and aging effects can be estimated.
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To illustrate, consider the model:

E[Yij | Ageij ] = β0 + βcAgei1 + βl(Ageij − Agei1)

where Yij is the j-th FEV1 measurement on individual i and Ageij is the age

of the individual when that measurement was taken, with Agei1 begin the age

on a certain day (so that all the individuals are comparable).

Parameter interpretation:

We have

E[Yi1 | Agei1] = β0 + βcAgei1,

so that βc is the average change in Y between two populations who differ by

one unit in their baseline ages; said another way we are examining the

differences in Y between two birth cohorts a year apart.

Also

E[Yij | Ageij ] − E[Yi1 | Agei1] = βl(Ageij − Agei1)

so that βl is the longitudinal effect, that is the change in the average response

between two populations who are in the same birth cohort, and whose ages

differ by one year. In a cohort study with E[Yij | xij ] = β0 + β1xij we have

E[bβ1] = βl +

Pm
i=1 ni(xi1 − xil)(xi − x)Pm

i=1

Pni
j=1(xij − x)2

(βc − βl).
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GLMMs for the Seizure Data

New R functions have recently been released to fit GLMMs using MLE; the

required integrals can be approximated using penalized quasi-likelihood,

Laplace, or adaptive Gaussian quadrature.

> library(lme4)

> lmermod1 <- lmer(y ~ x1+x2+x3+(1|ID)+offset(log(time)),family=poisson,data=seiz,method="PQL")

> summary(lmermod1)

Generalized linear mixed model fit using PQL

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.20035 0.44761

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.076279 0.092852 11.5914 < 2e-16 ***

x1 -0.019602 0.128149 -0.1530 0.87843

x2 0.110798 0.046888 2.3630 0.01813 *

x3 -0.103681 0.065055 -1.5937 0.11099

> lmermod2 <- lmer(y ~ x1+x2+x3+(1|ID)+offset(log(time)),family=poisson,data=seiz,method="Laplace")

> summary(lmermod2)

Generalized linear mixed model fit using Laplace

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.60864 0.78015

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.037500 0.092852 11.1737 < 2e-16 ***

x1 -0.023061 0.128149 -0.1800 0.85719

x2 0.110799 0.046888 2.3630 0.01813 *

x3 -0.103680 0.065055 -1.5937 0.11099

> lmermod3 <- lmer(y ~ x1+x2+x3+(1|ID)+offset(log(time)),family=poisson,data=seiz,method="AGQ")
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> summary(lmermod3)

Generalized linear mixed model fit using AGQ

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.60905 0.78042

# of obs: 295, groups: ID, 59Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.032596 0.092852 11.1209 < 2e-16 ***

x1 -0.023858 0.128149 -0.1862 0.85231

x2 0.110791 0.046888 2.3629 0.01813 *

x3 -0.103682 0.065055 -1.5938 0.11099

> lmermod4 <- lmer(y ~ x1+x2+x3+(1+x2|ID)+offset(log(time)),family=poisson,data=seiz,method="Laplace")

> summary(lmermod4)

Generalized linear mixed model fit using Laplace

Random effects:

Groups Name Variance Std.Dev. Corr

ID (Intercept) 0.50071 0.70761

x2 0.23285 0.48255 0.165

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0767903 0.0980746 10.9793 < 2.2e-16 ***

x1 0.0494416 0.1351770 0.3658 0.714548

x2 0.0013726 0.0766903 0.0179 0.985721

x3 -0.3028290 0.1071637 -2.8259 0.004715 **
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