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Stat/Biostat 571 Statistical Methodology: Regression

Models for Dependent Data
Jon Wakefield

Departments of Statistics and Biostatistics, UW

Lectures: Monday/Wednesday/Friday 1.30–2.20, A420.

Coursework: (and approximate percentages) weekly (30%). Examination at

mid-term (30%) and final (40%).

Office Hours:

Jon: Monday 2.30–3.20 and Wednesday 2.30–3.30 (Biostatistics, Health

Sciences, 616-6292). Or by appointment (jonno@u.washington.edu, Padelford:

616–9388, HS: 616–6292).

TA: Cecilia Cotton (ccotton@u); office hour H657 11–1 Tuesdays, phone:

616–2767.

STAT/BIOSTAT 578 Data Analysis, strongly recommended for Applied Exam.

571 teaches methods and not data analysis.

Computing will be carried out using R and WinBUGS.

Class website: http://courses.washington.edu/b571/
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Fitzmaurice, G.M., Laird, N.M. and Ware, J.H. (2004). Applied Longitudinal

Analysis, Wiley.

Background Texts

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (1995). Bayesian Data

Analysis, CRC Press.

Hand, D. and Crowder, M.J. (1996). Practical Longitudinal Data Analysis, CRC

Press.

Pinheiro, J. and Bates, D.G. (2000). Mixed-Effects Models in S and S-PLUS,

Springer-Verlag,

Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal

Data. Springer-Verlag.

Davison, A.C. (2003). Statistical Models. Cambridge University Press.

Demidenko, E. (2004). Mixed Models: Theory and Applications, Wiley.

McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models, Second Edition,

CRC Press.
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COURSE OUTLINE

Revision

Motivating Datasets; Benefits and Challenges of Dependent Data; Marginal

versus Conditional Modeling. Sandwich Estimation; Ordinary and Weighted

Least Squares. Likelihood and Bayesian approaches.

Linear Models

Linear Mixed Effects Models; Frequentist and Bayesian Inference; Equivalence

of Marginal and Conditional Modeling.

General Regression Models

Generalized Linear Mixed Models; Frequentist and Bayesian Inference;

Non-equivalence of Marginal and Conditional Modeling.

Binary Data Models

Modeling the covariance structure. Mixed Effects approach.

Model Selection/Formulation

Types of analysis: descriptive, confirmatory, predictive. Causality and

confounding.
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OVERVIEW

Recall: in a regression analysis we model a response, Y , as a function of

covariates, x.

In 570 we considered situations in which responses are conditionally

independent, that is

p(Y1, ..., Yn|β, x) = p(Y1|β, x1) × p(Y2|Y1, β, x2) × ... × p(Yn|Y1, ..., Yn−1, β, xn)

= p(Y1|β, x1) × p(Y2|β, x2) × ... × p(Yn|β, xn)

so that observations are independent given parameters β and covariates

x1, ..., xn.

In general, Y1, ..., Yn are never independent. For example, suppose

E[Yi|µ, σ2] = µ, var(Yi|µ, σ2) = σ2,

i = 1, 2 and cov(Y1, Y2|µ, σ2) = 0. Then if we are told y1, this will change the

way we think about y2 so that p(Y2|Y1) 6= p(Y2), and the observations are not

independent, however p(Y2|Y1, µ, σ2) = p(Y2|µ, σ2), so that we have conditional

independence.
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Motivating Examples

We distinguish between dependence induced by missing covariates, and that

due to contagion (for example, in an infectious disease context) – we will not

consider the latter.

One theme of the course will be modeling residual dependence, i.e. after we

have controlled for covariates.

The obvious situations in which we would expect dependence is in data

collected over time or space (but lots of others possible, e.g. families).

Example 1: Growth data

Table 1 records dental measurements of the distance in millimeters from the

center of the pituitary gland to the pteryo-maxillary fissure in 11 girls and 16

boys at the ages of 8, 10, 12 and 14 years.

Here we have an example of repeated measures or longitudinal data.

Figure 1 plots these data and we see that dental growth for each child increases

in an approximately linear fashion.

One common aim of such studies is to identify the within-individual and

between-individual sources of variability.
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Girls 8 10 12 14

1 21 20 21.5 23

2 21 21.5 24 25.5

3 20.5 24 24.5 26

4 23.5 24.5 25 26.5

5 21.5 23 22.5 23.5

6 20 21 21 22.5

7 21.5 22.5 23 25

8 23 23 23.5 24

9 20 21 22 21.5

10 16.5 19 19 19.5

11 24.5 25 28 28

Boys 8 10 12 14

1 26 25 29 31

2 21.5 22.5 23 26.5

3 23 22.5 24 27.5

4 25.5 27.5 26.5 27

5 20 23.5 22.5 26

6 24.5 25.5 27 28.5

7 22 22 24.5 26.5

8 24 21.5 24.5 25.5

9 23 20.5 31 26

10 27.5 28 31 31.5

11 23 23 23.5 25

12 21.5 23.5 24 28

13 17 24.5 26 29.5

14 22.5 25.5 25.5 26

15 23 24.5 26 30

16 22 21.5 23.5 25
6
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Figure 1: Dental growth data for girls and boys.
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Inference

We may be interested in characterizing:

1. the average growth curve, or

2. the growth for a particular child.

Two types of analysis that will be distinguished are marginal and conditional.

The former is designed for questions of type 1, and the latter may be used for

both types, but requires more assumptions.

Even if the question of interest is of type 1, we still have to acknowledge the

dependence of responses on the same individual – we do not have 11 × 4

independent observations on girls and 16 × 4 independent observations on boys

but rather 11 and 16 sets of observations on girls and boys.

For either question of interest ignoring the dependence leads to incorrect

standard errors and confidence interval coverage.

A marginal approach to modeling specifies the moments of the data only, while

in a conditional approach the responses of specific individuals are modeled.
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Models

First question is: why not just analyze the data from each child separately?

Possible but we wouldn’t be able to make formal statements about:

• The average growth rate of teeth for a girl in the age range 8–14 years.

• The between-girl variability in growth rates.

The totality of data on girls may also aid in the estimation of the growth rate

for a particular girl – becomes more critical as the number of observations per

child decreases. For example, in an extreme case, suppose a particular girl has

only one measurement?

At the other extreme we could fit a single curve to the data from all of the

girl’s data together. The problem with this is that we do not have independent

observations, and what if we are interested in inference for a particular child?
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Example 2: Spatial Data

Dependent data may result from studies with a significant spatial component.

Split Plot Data

Example: Three varieties of oats, four nitrogen concentrations.

Agricultural land was grouped into six blocks, each with three plots, and with

each plot further sub-divided into four sub-plots. Within each subplot a

combination of oats and nitrogen was planted. Hence we have 6 × 3 × 4 = 72

observations.

We would expect observations within the same block to be correlated.
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Revision Material: Estimating Functions

Let Y = (Y1, ..., Yn), represent n observations from a distribution indexed by a

p-dimensional parameter θ, with cov(Yi, Yj | θ) = 0, i 6= j.

In the following, for ease of presentation, we assume that Yi, i = 1, ..., n are

independent and identically distributed (i.i.d.).

An estimating function is a function

Gn(θ) =
1

n

nX

i=1

G(θ, Yi) (1)

of the same dimension as θ for which

E[Gn(θ)] = 0 (2)

for all θ. The estimating function Gn(θ) is a random variable because it is a

function of Y .

The corresponding estimating equation that defines the estimator bθn has the

form

Gn(bθn) =
1

n

nX

i=1

G(bθn, Yi) = 0. (3)
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Result: Suppose that bθn is a solution to the estimating equation

Gn(θ) =
1

n

nX

i=1

G(θ, Yi) = 0,

i.e. Gn(bθn) = 0. Then bθn →p θ (consistency) and

√
n (bθn − θ) →d Np(0, A−1BAT−1) (4)

(asymptotic normality) where

A = A(θ) = E

»
∂

∂θ
G(θ, Y )

–

and

B = B(θ) = E[G(θ, Y )G(θ, Y )T] = cov{G(θ, Y )}.

The form of the variance in (4) has lead to it being named a sandwich

estimator.

12



2008 Jon Wakefield, Stat/Biostat 571

Example: Least Squares Estimation

For the ordinary least squares/maximum likelihood estimator
bβ = (xTx)−1xTY with

var(bβ) = (xTx)−1σ2

if var(Y | x) = σ2I.

Suppose that var(Y | x) = σ2V so that the model from which the estimator

was derived was incorrect.

Then the estimator is still unbiased but the appropriate variance estimator is

var(bβ) = (xTx)−1xTvar(Y | x)x(xTx)−1

= (xTx)−1xTV x(xTx)−1σ2 (5)
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Expression (5) can also be derived directly from the estimating function

G(β) = xT(Y − xβ),

from which we know that

(A−1
n BnAT

n
−1

)1/2(bβn − β) →d Nk+1(0, I),

(note not iid observations here) where

Bn = var(G) = xTV xσ2

and

An = E

»
∂G

∂β

–
= −xTx,

to give

var(bβ) = (xTx)−1xTV x(xTx)−1σ2.

We still need to know V though.
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Sandwich estimator with uncorrelated errors

We relax the constant variance assumptions. Consider the estimating function

G(β) = xT(Y − xβ).

The “bread” of the sandwich, A−1, remains unchanged since A does not

depend on Y .

The “filling” becomes

B = var{G} = xTvar(Y )x =
nX

i=1

σ2
i xT

i xi, (6)

where σ2
i = var(Yi) and we have assumed that the data are uncorrelated.

Unfortunately σ2
i is unknown – we now discuss various estimation methods.
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An obvious estimator is given by

bBn =
nX

i=1

xT
i xi(Yi − xi

bβ)2, (7)

and its use provides a consistent estimator of (6), if the data are uncorrelated.

For linear regression the estimator

bσ2 =
1

n

nX

i=1

(Yi − xi
bβ)2 =

1

n

nX

i=1

bσ2
i ,

is downwardly biased, with bias −pσ2/n.

The sandwich estimator is therefore also downwardly biased.

Using

eσ2
i =

n

n − p
(Yi − xi

bβ)2 (8)

provides a simple correction, but in general the estimator of the variance has

finite bias since the bias in bσ2 changes as a function of the design points xi –

various corrections have been suggestions (see Kauermann and Carroll, 2001,

JASA).
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Likelihood Methods

A special case of the estimating function methodology occurs when the

estimating equation

G =
∂l

∂θ

is a score equation (derivative of the log-likelihood). Then bθ is the MLE and

√
n (bθn − θ) →d Np(0, I−1) (9)

(asymptotic normality) where I is the expected information matrix:

I = A(θ) = E

»
∂

∂θ
G(θ, Y )

–
= B(θ) = E[G(θ, Y )G(θ, Y )T] = cov{G(θ, Y )}.
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Bayesian Inference

In the Bayesian approach to inference all unknown quantities contained in a

probability model for the observed data are treated as random variables.

These unknowns may include, for example, missing data, the true covariate

value in an errors-in-variables setting, or the failure time of a censored survival

observation.

Inference is made through the posterior probability distribution of θ after

observing y, and is determined from Bayes theorem:

p(θ | y) =
p(y | θ) × π(θ)

p(y)
,

where, for continuous θ, the normalizing constant is given by

p(y) =

Z

θ
p(y | θ)p(θ) dθ,

and is the marginal probability of the observed data given the model

(likelihood and prior). Ignoring this constant gives

p(θ | y) ∝ p(y | θ) × π(θ)

Posterior ∝ Likelihood × Prior

18
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The use of the posterior distribution for inference is very intuitively appealing

since it probabilistically combines information on the parameters arising from

the data and from prior beliefs.

An important observation is that for all θ for which π(θ) = 0 we have

p(θ | y) = 0 also, regardless of any realization of the observed data. This has

important consequences for prior specification and clearly shows that great care

should be taken in excluding parts of the parameter space a priori.
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Sequential Updating

Suppose first that y1 and y2 represent the current totality of data. Then the

posterior is given by

p(θ | y1, y2) =
p(y1, y2 | θ)π(θ)

p(y1, y2)
. (10)

Now suppose that we are at a previous time point at which only y1 are

available, the posterior in this case is

p(θ | y1) =
p(y1 | θ)π(θ)

p(y1)
.

When y2 becomes available, the “prior” for these data corresponds to p(θ | y1)

since it represents the current beliefs concerning θ. We then update via

p(θ | y1, y2) =
p(y2 | y1, θ)π(θ | y1)

p(y2 | y1)
. (11)

Identical inference in each case; hence consistent inference is reached regardless

of whether we produce the posterior in one stage or two, corresponding to

whether all of the data are analyzed simultaneously.
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Inference

To summarizes the typically multivariate posterior distribution, p(θ | y),

marginal distributions for parameters of interest may be considered.

For example the univariate marginal distribution for a component θi is given by

p(θi | y) =

Z

θ−i

p(θ | y) dθ−i, (12)

where θ−i is the vector θ excluding θi.

Posterior moments may be evaluated from the marginal distributions; for

example the posterior mean is given by

E[θi | y] =

Z

θi

θip(θi | y) dθi. (13)

Further summarization may be carried out to yield the 100×q% quantile, θi(q)

(0 < q < 1) by solving
Z θi(q)

−∞

p(θi | y) dθi. (14)

In particular, the posterior median, θi(0.5), will often provide an adequate

summary of the location of the posterior marginal distribution.
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A 100×p% equi-tailed credible interval (0 < p < 1) is provided by

[ θi{(1 − p)/2}, θi{(1 + p)/2} ].

Such intervals are usually reported though in some cases it which the posterior

is skewed one may wish to instead calculate a highest posterior density (HPD)

interval in which points inside the interval have higher posterior density than

those outside the interval (such an interval is also the shortest credible interval).

Another useful inferential quantity is the predictive distributions for future

observations z which is given, under conditional independence, by

p(z | y) =

Z

θ
p(z | θ)p(θ | y) dθ. (15)

This clearly assumes that the system under study is stable so that the

likelihood for future observations is still the relevant data generation

mechanism.

Bayesian inference is deceptively simple to describe probabilistically, but there

have been two major obstacles to its routine use. The first is how to specify

prior distributions and the second is how to evaluate the integrals required for

inference, for example, (12)–(15), given that for most models, these are

analytically intractable
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Example: Normally Distributed Data Suppose we have

Yi|θ ∼i.i.d. N(θ, σ2), i = 1, ..., n,

with σ2 assumed known and θ unknown.

Estimation

Recall that the MLE

Ȳ ∼ N

„
θ,

σ2

n

«
.

Suppose the prior distribution for θ can be described by a normal distribution

with mean m and variance v (m and v are known). Then the posterior

distribution p(θ|y) is given by

N

„
ȳ × w + m × (1 − w),

σ2

n
× w

«
,

where w = v
v+σ2/n

.

Think about cases: n = 0 (recover the prior), v = 0 (posterior=prior), v−1 = 0

(improper prior, frequentist and Bayesian estimates coincide), n → ∞ (w → 1

unless v = 0).
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One useful way of specifying the prior is as

θ ∼ N

„
m,

σ2

k

«
,

in which case k may be regarded as a prior sample size. It is ‘as if’ we carried

out an experiment with k observations and we observed a mean of m. This

gives w = n/(n + k).
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Figure 2: Normal likelihood (ȳ=1.5,n=10,σ=1), normal prior (m=1, k=5) and

the resultant normal posterior.
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Prediction

Suppose we wish to obtain the predictive density for a new random variable

Z ∼ N(θ, σ2).

Then

p(z|y) =

Z
p(z|θ) × p(θ|y)dθ.

It may be shown that

z|y ∼ N
˘
E[θ|y], σ2 + var(θ|y)

¯
,

so that the mean of the predictive distribution is the posterior mean and the

variance is given by the sum of the ‘measurement error’ and the uncertainty in

the posterior mean.
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Prior Choice

We distinguish between two prior specification situations. In the first, which we

label as a baseline prior an analysis is required in which the prior distribution

has minimal impact, so that the information in the likelihood dominates the

posterior.

The second situation, which we label as a substantive prior is one in which it is

desired to incorporate more substantial prior information into the analysis.

Baseline Priors

On first consideration it would seem that the specification of a baseline prior is

straightforward, one simply takes the choice

π(θ) ∝ 1 (16)

so that the posterior distribution depends solely on the data through the

likelihood p(y | θ).

There are two difficulties with this.
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The first difficulty is that the prior (16) is improper (it does not integrate to a

positive constant < ∞) unless the range of each element of θ is finite.

In some instances this is not a problem since the posterior corresponding to the

prior is proper. Philosophically a posterior arising from an improper prior may

be justified as a limiting case of proper priors. More practically we may instead

assume that the prior is integrable over its support but is “locally uniform”, so

that the likelihood dominates.

For nonlinear models in particular, care must be taken to ensure that the

posterior corresponding to a particular prior choice is proper. Some general

guidelines are available, for example, improper priors for the regression

parameters in a generalized linear model will usually lead to a proper posterior

although not for some pathological cases.
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Example: Binomial Likelihood

For example suppose

Y | p ∼ Binomial(n, p),

and a uniform prior is used on the logit of p, log{p/(1 − p)} which implies the

prior on p is

π(p) = [p(1 − p)]−1.

Then an improper posterior results if y = 0 (or y = n) since the non-integrable

spike at p = 0 (or p = 1) remains in the posterior.

For n = 1 one of these events will always occur and so an improper posterior

always results.
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Example: Non-Linear Model

To illustrate the non-propriety in another non-linear situation consider the

model

Yi | θ ∼ind N{exp(−θxi), σ
2}, (17)

i = 1, ..., n, with θ > 0 and σ2 assumed known. With an improper uniform

prior on θ we have the posterior

p(θ | y) ∝ exp

(
− 1

2σ2

nX

i=1

(yi − e−θxi )2

)
.

As θ → ∞,

p(θ | y) → exp

(
− 1

2σ2

nX

i=1

y2
i

)
,

a constant, so that the posterior is improper.
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The second aspect of priors is that if we reparameterize the model in terms of

φ = g(θ) where g(·) is a one-one mapping, then the prior for φ corresponding

to (16) is given by

π(φ) =

˛̨
˛̨ dθ

dφ

˛̨
˛̨ ,

which, unless g is linear, is not constant.

As an example, consider a variance σ2, the prior π(σ2) ∝ 1 corresponds to a

prior for the standard deviation of π(σ) ∝ σ; the problem is that we cannot be

“flat” on different scales.

This indicates that a desirable property in constructing baseline priors is there

invariance to parameterization, so that we obtain the same prior regardless of

the starting parameterization. In the example just considered suppose the data

are normally distributed with variance σ2. The improper prior

π(σ) ∝ 1

σ

has a number of justifications including invariance to parameterization.
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Example: Normal linear regression, variance unknown

Suppose we have Yi | β, σ2 ∼ind N(xiβ, σ2), i = 1, ..., n. dim(β) = p.

MLE: bβ ∼ tp(β, (xTx)−1s2, n − p), a Student t distribution with n − p degrees

of freedom.

Improper prior: π(β, σ2) ∝ σ−2.

Marginal posterior:

p(β | y) =

Z
p(β, σ2 | y)dσ2,

where

p(β, σ2 | y) ∝ l(β, σ2) × π(β, σ2).

Hence

p(β | y) =

Z
(2πσ2)−n/2

σ2
exp

(
−

[(n − p)s2 + (bβ − β)TxTx(bβ − β)]

2σ2

)
dσ

2

∝

Z
(σ

2
)
−(n/2+1)

exp


−

c

2σ2

ff
dσ

2

where

c = (n − p)s2 + (bβ − β)TxTx(bβ − β).
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We have the kernel of an inverse Gamma distribution IGa(n/2, c).

An inverse gamma r.v. X has density

p(x) =
βα

Γ(α)
x−(α+1) exp(−β/x), x > 0.

Hence

p(β | y) ∝
“ c

2

”
−n/2

∝ {(n − p)s2 + (bβ − β)TxTx(bβ − β)}−n/2

∝
(

1 +
(bβ − β)TxTx(bβ − β)

(n − p)s2

)[−(n−p)+p]/2

=

(
1 +

(bβ − β)TΣ−1(bβ − β)

n − p

)[−(n−p)+p]/2

where Σ = (xTx)−1s2.
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Hence the posterior

β | y ∼ tp(bβ, (xTx)−1s2, n − p).

A p dimensional multivariate Student’s t r.v. X with degrees of freedom d has

density

p(x) =
Γ{(d + p)/2}
Γ(d/2)(dπ)p/2

| Σ |−1/2 ×
ˆ
1 + (x− µ)TΣ−1(x− µ)/d

˜
−(d+p)/2

.

Note the similarity with frequentist inference.
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LINEAR MODELS

We now begin thinking about specific situations, starting with linear models.

Clearly, in general, ignoring dependence will give inappropriate standard errors.

While making inference for dependent data is more difficult than for

independent data, designs that collect dependent data can be very efficient. For

example, in a longitudinal data setting applying different treatments to the

same patient over time can be very beneficial since each patient acts as their

own control.

While in the Bayesian approach to inference all parameters are viewed as

random variables, in the frequentist approach there is a distinction between

fixed effects (unknown constants) and random effects (random variables from a

distribution).

For longitudinal data there are two extreme fixed effects approaches.

Proceeding naively we could assume a single “marginal” curve for all of the

data, and carry out a standard analysis assuming independent data.
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Example: Dental Growth Data

Suppose bβm
0 and bβm

1 are the marginal intercept and slope estimates, and let

em
ij = Yij − bβm

0 − bβm
1 tj ,

i = 1, ..., 11; j = 1, ..., 4, denote marginal residuals, and
2
666664

σ1

ρ12 σ2

ρ13 ρ23 σ3

ρ14 ρ24 ρ34 σ4

3
777775

(18)

represent the standard deviation/correlation matrix of the residuals, where

σj =
q

var(em
ij ),

is the variance of the length at time tj , j = 1, ..., 4, and

ρjk =
cov(em

ij , em
ik)

q
var(em

ij )var(em
ik)

,

is the correlation between residual measurements at times tj and tk taken on

the same girl, j 6= k, j, k = 1, ..., 4.
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Across girls we may empirically estimate the entries of (18) by

2
666664

2.12

0.83 1.90

0.86 0.90 2.36

0.84 0.88 0.95 2.44

3
777775

(19)

illustrating that there is a suggestion that the variance is increasing with the

mean, and clear correlation between residuals at different times on the same

girl.

The fitting of a single curve, and using methods for independent data, ignores

the correlations within each child’s data and so standard errors will clearly be

inappropriate.
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Fitting a marginal model such as this is appealing in one sense, however, since

it allows the direct comparison of the average responses in different (in this

example the populations of girls at different ages) and forms the basis of the

generalized estimating equations (GEE) approach

An alternative fixed effects approach is to assume a fixed curve for each child

and analyze each set of data separately.

We will also often be interested in making formal inference for the population

of girls from which the eleven in the data are viewed as a random sample. This

forms the basis of the mixed effects model approach.

Figure 3(b) displays the lines corresponding to each of these fixed effects

approaches.

38



2008 Jon Wakefield, Stat/Biostat 571

8 9 10 11 12 13 14

18
20

22
24

26
28

(a)

Age (years)

Le
ng

th 
(m

m)

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6 6

6

7

7

7

7

8 8

8

8

9

9

9

9

10

10 10

10

11

11

11 11

8 9 10 11 12 13 14

18
20

22
24

26
28

(b)

Age (years)

Le
ng

th 
(m

m)

Figure 3: Dental plots for girls only: (a) Individual observed data (with plotting

symbol girl index), (b) Individual fitted curves (dashed) and overall fitted curve

(solid).
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Linear Mixed Effects Models

The basic idea behind mixed effects models is to assume that each unit has a

regression model characterized by unit-specific parameters, with these

parameters being a combination of fixed effects that are common to all units in

the population, and then unit-specific perturbations, or random effects (hence

“mixed” effects refers to the combination of fixed and random effects).

Given data yi = (yi1, ..., yini)
T on unit i a mixed effects model is characterized

by a combination of

• a (k + 1) × 1 vector of fixed effects, β,

• a (q + 1) × 1 vector of random effects, bi, with q ≤ k.

• xi = (xi1, ..., xini)
T, the design matrix for the fixed effect with

xij = (1, xij1, ..., xijk)T, and

• zi = (zi1, ..., zini)
T, and design matrix for the random effects with

zij = (1, zij1, ..., zijq)T.
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We then have the following (two stage) Linear Mixed Effects Model (LMEM):

Stage 1: Response model, conditional on random effects:

yi = xiβ + zibi + εi, (20)

where εi is an ni × 1 zero mean vector of error terms.

Stage 2: Model for random terms:

E[εi] = 0, var(εi) = Ei(α),

E[bi] = 0, var(bi) = D(α),

cov(bi, εi) = 0

where α is the vector of variance-covariance parameters.

The two stages define the marginal model:

E[yi] = µi(β) = xiβ,

var(yi) = V i(α) = ziDzT
i + Ei,

cov(yi, yi′) = 0, i 6= i′.

We describe likelihood and Bayesian approaches to inference.
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Likelihood Inference

We need to specify a complete probability distribution for the data, and this

follows by specifying distributions for εi and bi, i = 1, ..., m. A common model

is

εi ∼ind N(0, σ2
ε Ini), bi ∼iid N(0, D),

where

D =

2
666664

σ2
00 σ2

01 ... σ2
0q

σ2
10 σ2

11 ... σ2
1q

... ... ... ...

σ2
q0 σ2

q1 ... σ2
qq

3
777775

.

Here α = (σ2
ε , D) denote the variance-covariance parameters. Here

V = zDzT + σ2
ε IN , where N =

Pm
i=1 ni.

Likelihood methods are designed for fixed effects, and so we integrate the

random effects from the two-stage model:

p(y|β, α) =

Z

b
p(y|b, β, α) × p(b|β, α) db.
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Exploiting conditional independencies we have:

p(y|β, α) =
mY

i=1

Z

bi

p(yi|bi, β, σ2
ε ) × p(bi|D) dbi.

Since a convolution of normals is normal we obtain

y|β, α ∼
mY

i=1

N{µi(β), V i(α)}.

The log-likelihood is

l(β, α) = − N

2
log 2π − 1

2

mX

i=1

log |V i(α)|

− 1

2

mX

i=1

(Y i − xiβ)TV (α)−1
i (Y i − xiβ). (21)
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Example: One-way ANOVA

Consider the simple ANOVA model

Yij = β0 + bi + εij ,

with bi and εij independent and distributed as

• bi ∼ind N(0, σ2
0),

• εij ∼ind N(0, σ2
ε )

for i = 1, ..., m, j = 1, ..., ni, with
Pm

i=1 ni = N . This model can also be

written as

Y i = 1nβ0 + 1nbi + εi,

with E[Y ] = 1Nβ0, var(Y ) = V = 1N1T
N σ2

0 + INσ2
ε = JNσ2

0 + INσ2
ε , where

JN is the N × N matrix of 1’s.
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The marginal variance V is the N × N matrix

σ
2

2
6666666666666666666666666664

1 ρ ρ ρ . . . . 0 0 0 0

ρ 1 ρ ρ . . . . 0 0 0 0

ρ ρ 1 ρ . . . . 0 0 0 0

ρ ρ ρ 1 . . . . 0 0 0 0

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 0 0 . . . . 1 ρ ρ ρ

0 0 0 0 . . . . ρ 1 ρ ρ

0 0 0 0 . . . . ρ ρ 1 ρ

0 0 0 0 . . . . ρ ρ ρ 1

3
7777777777777777777777777775

with σ2 = σ2
ε + σ2

0 and

ρ =
σ2
0

σ2
=

σ2
0

σ2
ε + σ2

0

.
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Here we have a total of 3 regression parameters and variance components

(β0, σ0, σε), but m + 3 if we count the random effects.

A fixed effects model with a separate parameter for each group would have

m + 1 parameters (and corresponds to the above model with σ2
0 = ∞).

In some situations we may have more fixed and random effects than data

points, but the random effects have a special status, since they are tied

together through a common distribution.

Random effects may be viewed as a means by which dependencies are induced

in marginal models.
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Inference for Regression Parameters

The score equation for β is

∂l

∂β
=

mX

i=1

xT
i V −1

i Y i −
mX

i=1

xT
i V −1

i xiβ,

and yields the MLE for β as

bβ =

 
mX

i=1

xT
i V −1

i xi

!
−1 mX

i=1

xT
i V −1

i yi

!
, (22)

which is a weighted least squares estimator. If D = 0 then V = σ2
ε IN and bβ

corresponds to the ordinary least squares estimator.

The variance of bβ may be obtained either directly from (22), or from the

second derivative of the log-likelihood. Since

∂2l

∂β∂βT
= −

mX

i=1

xT
i V −1

i xi,

the observed and expected information matrices coincide with

Iββ = −E

»
∂2l

∂β∂βT

–
=

mX

i=1

xT
i V −1

i xi.
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The estimator, bβ is a linear combination of Y i and so, under correct

specificiation of the model bβ is linear also and

bβ ∼ Nk+1

8
<
:β,

 
mX

i=1

xiV
−1
i xi

!
−1
9
=
; .

In practice, α is never known, but asymptotically, as m → ∞ (it is not

sufficient to have m fixed and ni → ∞ for i = 1, ..., m):

 
mX

i=1

xiV i(bα)−1xi

!1/2

(bβm − β) →d Nk+1 (0k+1, Ik+1) ,

where bα is a consistent estimator of α. This result is also relevant if the data

and random effects are not normal, so long as the second moment assumptions

are correct.

Various t and F -like approaches have been suggested for correcting for the

estimation of α, see Verbeke and Molenberghs (2000, Chapter 6), but if the

sampling size is not sufficiently large for reliable estimation of α, we

recommend following a Bayesian approach to inference.
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So far as the MLE is concerned, the expected information matrix is partitioned

as

I(β, α) =

2
4 Iββ 0

0 Iαα

3
5 .

Standard ML theory gives the asymptotic distribution for the MLE bβ, bα, as
2
4
bβ
bα

3
5 ∼ Nk+1+r+1

0
@
2
4 β

α

3
5 ,

2
4 I−1

ββ 0

0 I−1
αα

3
5
1
A ,

where r is the number of distinct elements in D.

We have already seen the form of Iββ ; the form of Iαα is not pleasant.

The diagonal form of the expected information has a number of implications.

Firstly, we may carry out separate maximization of the log-likelihood with

respect to β and α. Secondly, asymptotically we have independence between bβ
and bα, so any consistent estimator of α will give an asymptotically efficient

estimator for β.

Likelihood ratio tests are available for regression parameters.
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Inference for Variance Components by MLE

The MLE of α follows from maximization of (21), and in general there is no

closed-form solution.

The maximization may produce a negative variance estimate, in which case this

variance is set equal to zero (MLEs must lie in the parameter space).

Maximum likelihood for variance components give estimators that do not

acknowledge the estimation of β.

For the simple linear model, the MLE of σ2 is RSS/n, and not the unbiased

version RSS/(n − k − 1).

An alternative and often preferable method is provided by restricted maximum

likelihood.
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Hypothesis tests for variance components

Testing whether random effect variances are zero requires care since the null

hypothesis lies on the boundary, and so the usual regularity conditions are not

satisfied.

As an example, in the model

Yij = β0 + bi + xijβ + εij

with bi ∼ N(0, σ2
0), consider the test of H0 : σ2

0 = 0 versus HA : σ2
0 > 0, where

σ2
0 is a non-negative scalar. In this case the asymptotic null distribution is a

50:50 mixture of χ2
0 and χ2

1 distributions, where the former is the distribution

that gives probability mass 1 to the value 0.

Intuition: Estimating σ2
0 is equivalent to estimating ρ = σ2

0/σ2, and setting

equal to zero if the estimated correlation is negative, and under the null this

will happen half the time.

Setting bρ = 0 gives the null, and so the likelihood ratio will be one.

If the usual χ2
1 distribution is used then the null would be accepted too often,

leading to a variance component structure that is too simple.
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