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Quasi-Likelihood

We now describe a method for inference, generalized estimating equations, that

attempts to make minimal assumptions about the data-generating process.

We begin with a recap of the related quasi-likelihood procedure, which is an

alternative to MLE, when we do not wish to commit to specifying the full

distribution of the data and we can assume independent data. The resultant

estimators are known as quasi-MLE (QMLE).

The approach is based on specifying the first two moments of the data only,

and assuming they take the form:

E[Y | β] = µ(β)

cov(Y | β) = αV {µ(β)}

where µ(β) = [µ1(β), ..., µn(β)]T represents the regression function and V is a

diagonal matrix (so the observations are uncorrelated), with

var(Yi | β) = αV {µi(β)},

and α > 0 a scalar which is independent of β.
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Consider the sum of squares

(Y − µ)TV −1(Y − µ)/α, (30)

where µ = µ(β) and V = V (β). To minimize this sum of squares there are two

ways to proceed.

First approach: differentiate and obtain

−2DTV −1(Y − µ)/α + (Y − µ)T
∂V −1

∂β
(Y − µ)/α,

where D is the n × p matrix of derivatives with elements ∂µi/∂βj ,

i = 1, ..., n; j = 1, ..., p. Unfortunately the expectation of this expression is not

zero, and so an inconsistent estimator of β will result.

Second approach: pretend V is not a function of β, so that bβ is the root of:

D(bβ)TV (bβ)−1{Y − µ(bβ)}/α = 0.
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As shorthand we write this estimating function as

U(β) = DTV −1{Y − µ}/α. (31)

This estimating function is linear in the data and so its properties are

straightforward to evaluate. In particular:

1. E[U(β)] = 0.

2. cov{U(β)} = DTV −1D/α.

3. −E
h

∂U
∂β

i
= cov{U(β)} = DTV −1D/α.

Applying the earlier result on properties of estimators arising from estimating

functions:

(DTV −1D)1/2(bβn − β) →d Np(0, αIp),

where we have so far assumed that α is known.

Since the root of (31) does not depend on α, bβ is consistent regardless. For

appropriate standard errors we require an estimator of α however.
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Unknown α

Since

E[(Y − µ)TV −1(µ)(Y − µ)] = nα,

an unbiased estimator of α would be

bα = (Y − µ)TV −1(µ)(Y − µ)/n,

a degrees of freedom corrected (but not in general, unbiased) estimate is given

by the Pearson statistic divided by its degrees of freedom:

bα =
1

n − p

nX

i=1

(Yi − bµi)
2

V (bµi)
,

where bµi = bµi(bβ).

The asymptotic distribution that is used in practice is therefore given by

( bDT bV −1 bD/bα)1/2(bβn − β) →d Np(0, Ip),

In general we may use sandwich estimation with quasi-likelihood. We have

var(bβ) = (DTV −1D)−1DTV −1var(Y )V −1D(DTV −1D)−1α2,

and var(Y ) may be estimated by the diagonal matrix with elements (Yi − bµi)
2.
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Why “Quasi”

Integration of the quasi-score (31) gives

l(µ, α) =

Z µ

y

y − t

αV (t)
dt

which, if it exists, behaves like a log-likelihood. As an example, for the model

E[Y ] = µ and var(Y ) = αµ we have

l(µ, α) =

Z µ

y

y − t

αt
dt =

1

α
[y log µ − µ + c],

where c = −y log y − y and y log µ − µ is the log likelihood of a Poisson random

variable.

The word “quasi” refers to the fact that the score may or not correspond to a

probability function.

For example, the variance function µ2(1 − µ)2 does not correspond to a

probability distribution.
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Example: Air Pollution Data

We examine the association between daily mortality, Yi, and the daily value of

PM10 (particulate matter less than 10 micrometers, which is about 0.0004

inches, in diameter), xi, with i = 1, ..., 335, indexing the 335 days on which

there are no missing PM10 is to be investigated.

Figure 10 shows the association between log daily counts and PM10.

Assume the model

E[Yi | β] = exp(xiβ), var(Yi | β) = αE[Yi | β].

136



2008 Jon Wakefield, Stat/Biostat 571

20 40 60 80 100

4.
2

4.
4

4.
6

4.
8

5.
0

5.
2

PM10

Lo
g 

D
ai

ly
 D

ea
th

s

Figure 10: Log daily deaths versus PM10.
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Fitting the quasi-likelihood model yields bβ = (4.71, 0.0015)T and bα = 2.77 so

that the quasi-likelihood standard errors are
√
bα = 1.67 times larger than the

Poisson model-based standard errors.

The variance-covariance matrix is given by

( bDT bV −1 bD)−1bα =

2
4 0.0192 ?

−0.89 × 0.019 × 0.00056 0.000562

3
5 .

Standard errors of bβ0 and bβ1 are 0.019 and 0.00056.

Asymptotic 95% confidence interval for β1 is given by (0.00040, 0.0026).

A more useful summary is a confidence interval for the relative risk associated

with a 10-unit increase in PM10, which is

(e0.00040×10, e0.026×10) = (1.004, 1.026)

so that the interval suggests that the increase in daily mortality associated with

a 10-unit increase in PM10 is between 0.4% and 2.6%.
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Extension to Quasi-Likelihood

Suppose we have

E[Yi | β] = µi(β)

var(Yi | β) = Vi(α, β)

where α is a k × 1 vector of parameters that appear only in the variance model.

Previously, in quasi-likelihood method, we had “separable” mean and variance

models, that is, var(Yi | β) = αVi(µi) (which is why we obtained a consistent

estimator even if the form of the variance was wrong).

Let bαn be a consistent estimator of α. We state without proof the following

result. The estimator bβn that satisfies

G(bβn, bαn) = D(bβn)TV −1(bαn, bβn)
n

Y − µ(bβn)
o

(32)

has asymptotic distribution

( bDT bV 1/2 bD)−1(bβn − β) →d Np(0, Ip) (33)

where bD = D(bβn) and bV = V (bαn, bβn). Sandwich estimation may be used to

obtain empirical standard errors which are correct even if the variance model is

wrong, so long as we have a consistent estimator of α.
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Computation

Previously we assumed var(Yi) = αVi(µi), and the estimating function did not

depend on α and so, correspondingly, bβ did not depend on α, though the

standard errors did.

In general iteration is convenient to simultaneously estimate β and α.

Let bα(0) be an initial estimate.

Then set j = 0 and iterate between

1. Solve G(bβ, bα(j)) = 0 to give bβ(j+1)
,

2. Estimate bα(j+1) with bµi = µi

“
bβ(j+1)

”
. Set j → j + 1 and return to 1.
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Example: Air Pollution Data

Consider the random effects formulation:

E[Yi | β, θi] = var(Yi | β, θi) = µi(β)θi (34)

with

E[θi] = 1, var(θi) = 1/α. (35)

Assuming θi ∼iid Ga(α, α), we could derive the marginal distribution of the

data (which is negative binomial) and proceed with likelihood.

As an alternative we consider the model

E[Yi | β] = µi(β)

var(Yi | α, β) = µi(β){1 + µi(β)/α}. (36)

that are the marginal first two moments of the data given (34) and (35).

The form (36) suggests the estimating function for β (with α assumed known):

nX

i=1

D(β)Ti V −1
i (α, β){yi − µi(β)}

For a fixed α we can solve this estimating equation to obtain an estimator bβ.
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We describe a method-of-moments estimator for α for the quadratic variance

model we have

var(Yi | β, α) = E[(Yi − µi)
2] = µi(1 + µi/α),

and so

α−1 = E

»
(Yi − µi)

2 − µi

µ2
i

–
,

i = 1, ..., n, leading to the method-of-moments estimator

bα =

(
1

n − p

nX

i=1

(Yi − bµi)
2 − bµi

bµ2
i

)−1

. (37)
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If we have a consistent estimator bα, and the mean is correctly specified then

valid inference follows from

( bDT bV (bα)−1 bD)1/2(bβ − β) →d N(0, Ip).

We fit this model to the air pollution data.

The estimates (standard errors) are bβ0 = 4.71 (0.018) and
bβ1 = 0.0014 (0.00056).

The moment-based estimator is bα = 65.20.

This analysis therefore produces virtually identical inference with the

quasi-likelihood approach in which the variance was a linear function of the

mean.

In Figure 11 we plot the linear and quadratic variance functions (over the range

of the mean for these data) and we see that they are very similar.

Examination of the residuals did not clearly indicate the superiority of either

variance model; it is typically very difficult to distinguish between the two

models, unless the mean of the data has a large spread.
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Figure 11: Linear and quadratic variance functions for the air pollution data.
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Example: Rcode for Quasi-Poisson Regression

We run the Poisson regression and then evaluate the method-of-moments

estimator of α “by hand”.

> mod1 <- glm(ynew~x1new,family=poisson)

> summary(mod1)

Coefficients:

Value Std. Error t value

(Intercept) 4.705062304 0.0113962988 412.85880

x1new 0.001458115 0.0003348748 4.35421

(Dispersion Parameter for Poisson family taken to be 1 )

Null Deviance: 927.372 on 334 degrees of freedom

Residual Deviance: 908.6531 on 333 degrees of freedom

Number of Fisher Scoring Iterations: 3

Correlation of Coefficients:

(Intercept)

x1new -0.8949913

> resid1 <- (ynew - mod1$fit)/sqrt(mod1$fit)

> alphahat <- sum(resid1 * resid1)/(length(ynew) - 2)

> alphahat

[1] 2.772861
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We now fit the Quasi-Likelihood model with

E[Yi|β] = µi = exp(β0 + β1xi)

and

var(Yi|β) = αµi = α exp(β0 + β1xi).

> mod2 <- glm(ynew~x1new,quasi(link=log,variance=mu))

> summary(mod2)

Coefficients:

Value Std. Error t value

(Intercept) 4.705062304 0.018976351 247.943468

x1new 0.001458115 0.000557611 2.614932

(Dispersion Parameter for Quasi-likelihood

family taken to be 2.772667 )

Null Deviance: 927.372 on 334 degrees of freedom

Residual Deviance: 908.6531 on 333 degrees of freedom

Number of Fisher Scoring Iterations: 3

Correlation of Coefficients:

(Intercept)

x1new -0.8949913

The standard errors are multiplied by
√

α̂ (=1.67 here), but the estimates are

unchanged.
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Example: Rcode for Quadratic Variance Model

The glm.nb function carries out MLE for the negative binomial model (it is

part of the MASS library).

We find the MLE of α, and then use this as a starting value for the iterative

strategy in which a method-of-moments estimator is used.

> library(MASS)

> modnegbinmle <- glm.nb(y~x)

> summary(modnegbinmle)

Call:

glm.nb(formula = y ~ x, init.theta = 67.7145, link = log)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.7055974 0.0188269 249.941 <2e-16 ***

x 0.0014405 0.0005577 2.583 0.0098 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Coefficients:

(Intercept)

x -0.90

Theta: 67.71

Std. Err.: 8.27

> alphahat <- 67.61
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Now iterate to a solution by estimating β for fixed α, and then re-estimating α.

> alphanew <- 0

> counter <- 0

> for (i in 1:5){

fit <- glm(y~x,family=negative.binomial(alphahat))

mu <- fit$fitted

alphanew <- 1/(sum(((y-mu)^2-mu)/mu^2)/(length(y)-2))

alphahat <- alphanew

cat("Iteration ",i,alphahat,"\n")

}

Iteration 1 65.19642

Iteration 2 65.19649

Iteration 3 65.19649

Iteration 4 65.19649

Iteration 5 65.19649

> summary(fit)

Call:

glm(formula = y ~ x, family = negative.binomial(alphahat))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.705605 0.019071 246.747 <2e-16 ***

x 0.001440 0.000565 2.549 0.0112 *

(Dispersion parameter for Negative Binomial(65.1965)

family taken to be 1.001560)
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Generalized Estimating Equations

Suppose we assume

E[Y i | β] = xiβ,

and consider the ni × ni working variance-covariance matrix:

var(Y i | β, α) = W i.

To motivate GEE we begin by assuming that W i is known. In this case the

GLS estimator minimizes

mX

i=1

(Y i − xiβ)TW−1
i (Y i − xiβ),

and is given by the solution to the estimating function

mX

i=1

xT
i W−1

i (Y i − xiβ),

which is

bβ =

 
mX

i=1

xT
i W−1

i xi

!−1 mX

i=1

xT
i W−1

i Y i.

We now examine the properties of this estimator.
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We have

E[bβ] =

 
mX

i=1

xT
i W−1

i xi

!−1 mX

i=1

xT
i W−1

i E[Y i] = β,

so long as the mean is correctly specified.

If the information about β grows with increasing m, then bβ is consistent.

The variance, var(bβ), is given by

 
mX

i=1

xT
i W−1

i xi

!−1 mX

i=1

xT
i W−1

i var(Y i)W
−1
i xi

! 
mX

i=1

xT
i W−1

i xi

!−1

.

If the assumed variance-covariance matrix is correct, i.e. var(Y i) = W i, then

var(bβ) =

 
mX

i=1

xT
i W−1

i xi

!−1

,

and a Gauss-Markov Theorem shows that, in this case, the estimator is efficient

amongst linear estimators.

If m is large then a multivariate central limit theorem shows that bβ is

asymptotically normal.
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We now suppose that var(Y i) = W i(α, β) is of so that α are parameters in

the variance-covariance model. The regression parameters are contained in W i

to allow, mean-variance relationships, e.g.

var(Yij | α, β) = α1µ2
ij

cov(Yij , Yik | α, β) = α1α
|tij−tik|

2 µijµik

where

• µij = xijβ,

• α1 is the variance (which is assumed constant across time and across

individuals), and

• α2 is the correlation (which is assumed to be the same for all individuals),

and

• α = (α1, α2).
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For known α we would minimize

mX

i=1

(Y i − xiβ)TW−1
i (α, β)(Y i − xiβ),

with solution given by the root of the estimating equation

mX

i=1

xT
i W−1

i (α, β)(Y i − xiβ) = 0.

In general the roots of this equation are not available in closed form (because β

occurs in W).

However, if W i(α, β) = W i(α) we have

bβ =

 
mX

i=1

xT
i W−1

i (α)xi

!−1 mX

i=1

xT
i W−1

i (α)Y i.
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Finally, suppose that α is unknown but we have a method by which a

consistent estimator bα is produced (e.g. method of moments).

We then solve the estimator function

G(β) =
mX

i=1

xT
i W−1

i (bα, β)(Y i − xiβ).

In general iteration is needed to simultaneously estimate β and α.

Let bα(0) be an initial estimate, then set t = 0 and iterate between

1. Solve G(bβ, bα(t)) = 0 to give bβ(t+1)
,

2. Estimate bα(t+1) with bµi = µi

“
bβ(t+1)

”
. Set t → t + 1 and return to 1.
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We have

var(bβ)
1/2

(bβ − β) ∼ Nk+1 (0, I) ,

where

cvar(bβ) =

 
mX

i=1

xT
i W−1

i (bα, bβ)xi

!−1

×
 

mX

i=1

xT
i W−1

i (bα, bβ)var(Y i)W
−1
i (bα, bβ)xi

!

×
 

mX

i=1

xT
i W−1

i (bα, bβ)xi

!−1

.

We have assumed that cov(Y i, Y i′ ) = 0 for i 6= i′, and this is required for the

asymptotic distribution to be appropriate.
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The final element of GEE is sandwich estimation of var(bβ). In particular

cov(Y i) is estimated by

(Y i − xi
bβ)(Y i − xi

bβ)T,

may be multiplied by N/(N − p) to account for estimation of β (N =
P

i ni).

Empirical would be a better word than robust (which is sometimes used) for

the estimator of the variance – not robust to sample size, in fact could be

highly unstable.

We can write the (k + 1) × 1 estimating function as

xTW−1(Y − xβ)
mX

i=1

xT
i W−1

i (Y i − xiβ)

mX

i=1

niX

j=1

[xi1 · · · xini
]

2
664

W 11
i · · · W

1ni
i

· · · · · · · · ·
W

ni1
i · · · W

nini
i

3
775

2
664

Yi1 − xi1β

· · ·
Yini

− xini
β

3
775

where W ij
i denotes entry (i, j) of the inverse W i. We use the middle form

since this emphasizes that the basic unit of replication is indexed by i.
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Example: Suppose for simplicity that we have a balanced design, with ni = n

for all i, and assume a working variance-covariance matrix with

var(Yij) = E[(Yij − xijβ)2] = E[ε2ij ] = α1

cov(Yij , Yik) = E[(Yij − xijβ)(Yik − xikβ)] = E[εijεik] = α1α2jk,

for i = 1, ..., m; j, k = 1, ..., n; j 6= k. Hence we have n + n(n − 1)/2 elements of

α.

Letting

eij = Yij − xij
bβ,

method-of-moments estimators are given by

bα1 =
1

mn

mX

i=1

nX

j=1

e2
ij ,

and

bα1bα2jk =
1

m

mX

i=1

eijeik.
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Generalized Estimating Equation (GEE) Summary

We have:

• Regression parameters (of primary interest) β and,

• Variance-covariance parameters α.

We have considered the GEE

G(β, α) =

mX

i=1

DT
i W−1

i (Y i − µi) = 0,

where

• µi = µi(β) = xiβ.

• Di = Di(β) = ∂µi

∂β
= xT

i ,

• W i = W i(α, β) is the “working” covariance model,

Three important ideas:

1. Separate estimation of β and α.

2. Sandwich estimation of var(bβ).

3. Replication across units in order to estimate covariances – so we have

assumed that observations on different units are independent.

157

2008 Jon Wakefield, Stat/Biostat 571

Notes:

• We have seen the first and second ideas in independent data situations –

e.g. estimation of the α parameter in the quadratic negative binomial

model.

• We may use method of moments estimators for α (or set up another

estimating equation, see later).

• We could go with model-based standard errors:

var(bβ) =

 
mX

i=1

DT
i W−1

i Di

!−1

. (38)

If we have an independence working model (W i = I) then no iteration

necessary (since no α in the GEE) – in this case we’d want to use sandwich

estimation, however.
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Dental Example

Look at various estimators of β for girls only. Note here that we might question

the asymptotics for GEE since we only have replication across m = 11 units

(girls) (check with simulation – see coursework).

Start with ordinary least squares – unbiased estimator for β, but standard

errors are wrong because independence is assumed.

> summary(lm(distance~age,data=Orthgirl))

Call:

lm(formula = distance ~ age, data = Orthgirl)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.3727 1.6378 10.608 1.87e-13 ***

age 0.4795 0.1459 3.287 0.00205 **

Residual standard error: 2.164 on 42 degrees of freedom

Multiple R-Squared: 0.2046, Adjusted R-squared: 0.1856

F-statistic: 10.8 on 1 and 42 DF, p-value: 0.002053
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Now implement GEE with working independence – the following is an R

implementation.

> library(nlme); data(Orthodont); Orthgirl <- Orthodont[Orthodont$Sex=="Female",]

> install.packages("geepack")

> library(geepack)

> summary(geese(distance~age,id=Subject,data=Orthgirl,corstr="independence"))

Call:

geese(formula = distance ~ age, id = Subject, data = Orthgirl,corstr = "independence")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.3727273 0.7819784 493.56737 0.000000e+00

age 0.4795455 0.0666386 51.78547 6.190604e-13

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 4.470403 1.373115 10.59936 0.001131270

Correlation Model:

Correlation Structure: independence

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4
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Next we examine an exchangeable correlation structure in which all pairs of

observations on the same unit have a common correlation:

> summary(geese(distance~age,id=Subject,data=Orthgirl,corstr="exchangeable"))

geese(formula = distance ~ age, id = Subject, data = Orthgirl,

corstr = "exchangeable")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.3727273 0.7819784 493.56737 0.000000e+00

age 0.4795455 0.0666386 51.78547 6.190604e-13

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 4.470403 1.373115 10.59936 0.001131270

Correlation Model:

Correlation Structure: exchangeable

Correlation Link: identity

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.8680178 0.1139327 58.04444 2.564615e-14

Number of clusters: 11 Maximum cluster size: 4
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Notes:

• Independence estimates are always identical to OLS because we have

assumed working independence, which means that the estimating equation

is the same as the normal equations.

• Standard error for β1 is smaller with GEE because regressor (time) is

changing within an individual.

• Here we obtain the same estimates for exchangeable as working

independence but only because balanced and complete (i.e. no missing)

data.
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Finally we look at AR(1) and unstructured errors – this time we see slight
differences in estimates and standard errors.

> summary(geese(distance~age,id=Subject,data=Orthgirl,corstr="ar1"))

geese(formula = distance ~ age, id = Subject, data = Orthgirl, corstr = "ar1")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.3049830 0.85201953 412.51833 0.000000e+00

age 0.4848065 0.06881228 49.63692 1.849965e-12

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 4.470639 1.341802 11.101 0.0008628115

Correlation Model:

Correlation Structure: ar1

Correlation Link: identity

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.9298023 0.07164198 168.4403 0

Number of clusters: 11 Maximum cluster size: 4
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Now delete last two observations from girl 11 to illustrate that identical
answers before were consequence of balance and completeness of data.

> Orthgirl2<-Orthgirl[1:42,]

> summary(lm(distance~age,data=Orthgirl2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.0713 1.5102 11.966 8.56e-15 ***

age 0.3963 0.1357 2.921 0.00571 **

Residual standard error: 1.964 on 40 degrees of freedom

> summary(geese(distance~age,id=Subject,data=Orthgirl2,

corstr="independence"))

Coefficients:

estimate san.se wald p

(Intercept) 18.0713312 0.82603439 478.61250 0.000000e+00

age 0.3962971 0.06934195 32.66253 1.096304e-08

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 3.674926 1.317669 7.778294 0.005287771

Correlation Model:

Correlation Structure: independence

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4
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> summary(geese(distance~age,id=Subject,data=Orthgirl2,corstr="exchangeable"))

Call:

geese(formula = distance ~ age, id = Subject, data = Orthgirl2,

corstr = "exchangeable")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.6050097 0.79007168 496.52320 0.000000e+00

age 0.4510122 0.06641218 46.11913 1.112765e-11

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 3.706854 1.320019 7.88589 0.004982194

Correlation Model:

Correlation Structure: exchangeable

Correlation Link: identity

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.7968515 0.09367467 72.36198 0

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4
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Comparison of Analyses

In Table 7 summaries are presented under likelihood, Bayesian and GEE

analyses.

Two Bayesian models were fitted, a normal model:

βi | β, D ∼iid N(β, D), var(βi | β, D) = D

D−1 ∼ W(r, R−1), E[var(βi | β, D)] =
R

r − 3

R =

"
1.0 0

0 0.1

#
, r = 4

and a Student t4 model:

βi | β, D ∼iid St4(β, D), var(βi | β, D) = 2D

D−1 ∼ W(r, R−1
t ), E[var(βi | β, D)] = 2

Rt

r − 3

Rt =

"
0.5 0

0 0.05

#
, r = 4
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Approach bβ0 s.e.(bβ0) bβ1 s.e.(bβ1)

LMEM ML 22.65 0.62 0.480 0.065

LMEM REML 22.65 0.63 0.479 0.066

Bayes Normal 22.65 0.60 0.479 0.075

Bayes t4 22.65 0.58 0.475 0.073

GEE Independence 22.65 0.55 0.480 0.067

GEE AR(1) 22.64 0.58 0.485 0.069

Table 7: Summaries for fixed effects.

• Overall, the analyses are in good correspondence.
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Approach cvar(β0i) cvar(β1i) dcorr(β0i, β1i) bσε

LMEM ML 1.98 0.15 0.55 0.67

LMEM REML 2.08 0.16 0.53 0.67

Bayes Normal 1.93 (1.29,2.96) 0.18 (0.10,0.31) 0.39 (-0.32,0.85) 0.70 (0.52,0.93)

Bayes t4 2.06 (1.18,3.46) 0.20 (0.11,0.35) 0.42 (-0.34,0.88) 0.71 (0.54,0.95)

Table 8: Summaries for variance components.

GEE with working independence gives α1 = 4.47.

GEE with working AR(1) gives α1 = 4.47, α2 = 0.93.

The parameterization adopted for the linear model changes the interpretation

of D. For example:

Model 1: (β0 + b0i) + (β1 + b1i)tj , bi ∼ N(0, D).

Model 2: (γ0 + b?
0i) + (γ1 + b?

1i)(tj − t), b?
i ∼ N(0, D?).

Giving β0 = γ0 − γ1t, β1 = γ1.

b0i = b?
0i − tb?

1i, b1i = b?
1i.

Moral: D 6= D?; D00 = D?
00 − 2tD?

01 + t
2
D?

11, D01 = D?
01 − tD11, D11 = D?

11.
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Covariance Models for Clustered Data

Whether we take a GEE or LME approach (with inference from the likelihood

or from the posterior) we require flexible yet parsimonious covariance models.

In GEE we require a working covariance model

cov(Y i) = W i,

i = 1, ..., m.

With LME we have so far assumed the model

yi = xiβ + zibi + εi, (39)

with bi ∼ind N(0, D) and εi ∼ind N(0, Ei), with Ei = Ini
σ2.

With zibi = 1ni
bi we obtained an exchangeable (also known as compound

symmetry):

var(Y i) = σ2

2
666664

1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1

3
777775

This model is particularly appropriate for clustered data with no time ordering

(e.g. ANOVA).

169

2008 Jon Wakefield, Stat/Biostat 571

An obvious extension for longitudinal data is to assume

yi = xiβ + zibi + δi + εi,

with:

• Random effects bi ∼ind N(0, D).

• Serial correlation δi ∼ind N(0, Riσ
2
δ ), with Ri an ni × ni correlation

matrix with elements

Rijj′ = corr(Yij , Yij′ |bi),

j, j′ = 1, ..., ni.

• Measurement error εi ∼ind N(0, Ini
σ2

ε ).

In general it is difficult to identify all three sources of variability – but the

above provides a useful conceptual model.

See DHLZ, Chapter 5; Verbeke and Molenberghs, Chapter 10; Pinheiro and

Bates, Chapter 5.
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Within-Unit Covariance Models

Autoregressive errors

A widely-used time series model is the autoregressive, AR(1), process

δij = ρδi,j−1 + uij , (40)

for j ≥ 2, |ρ| ≤ 1 where uij ∼iid N(0, σ2
u) and are independent of δik, k > 0.

For LMEM we require a likelihood and hence the joint distribution of δi, for

GEE the first two moments.

Repeated application of (40) gives, for k > 0,

δij = uij + ρui,j−1 + ρ2ui,j−2 + ... + ρk−1uj−k+1 + ρkδi,j−k. (41)

Assume the process has been running since j = −∞ and that it is ‘stable’ so

that |ρ| < 1 and the δij all have the same distribution.

Then, from (41)

var(δij) = σ2
u(1 + ρ2 + ρ4 + ... + ρ2(k−1)) + ρ2kvar(δi,j−k).
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As k → ∞, since
P∞

l=1 xl−1 = 1/(1 − x),

var(δij) =
σ2

u

(1 − ρ2)
= σ2

δ ,

and, by substitution of (41),

cov(δij , δi,j−k) = E[δijδi,j−k] =
σ2

uρk

(1 − ρ2)
= σ2

δρk.

Hence under this model we have

Ri =

2
66666664

1 ρ ρ2 ... ρni−1

ρ 1 ρ ... ρni−2

ρ2 ρ 1 ... ρni−3

... ... ... ... ...

ρni−1 ρni−2 ρni−3 ... 1

3
77777775

as the correlation matrix for δi.

Often this model is written in the form

cov(Yij , Yik) = σ2
δ exp(−φdijk),

(ρ = eφ) with dijk = |tij − tik| which is valid for unequally-spaced times also.
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Toeplitz: Unstructured correlation:

var(Y i) = σ2

2
666664

1 ρ1 ρ2 ρ3

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ3 ρ2 ρ1 1

3
777775

Heterogeneous versions with non-constant variance can also be fitted.

For example, the heterogenenous exchangeable model is given by:

var(Y i) =

2
666664

σ2
1 ρσ1σ2 ρσ1σ3 ρσ1σ4

ρσ2σ1 σ2
2 ρσ2σ3 ρσ2σ4

ρσ3σ1 ρσ3σ2 σ2
3 ρσ3σ4

ρσ4σ1 ρσ4σ2 ρσ4σ3 σ2
4

3
777775

Note that we should be careful when specifying the covariance structure –

identifiability problems may arise if we try to be too flexible.
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Assessment of Assumptions

Each of the approaches to modeling that we have described depend upon

assumptions concerning the structure of the data; to ensure that inference is

appropriate we need to attempt to check that these assumptions are valid.

We first recap the assumptions:

GEE

Model:

Y i = xiβ + ei,

with working covariance model var(ei) = W i(α), i = 1, ..., m.

G1 Marginal model E[Y i] = xiβ is appropriate.

G2 m is sufficiently large for asymptotic inference to be appropriate.

G3 m is sufficiently large for robust estimation of standard errors.

G4 The working covariance W i(α) is not far from the “true” covariance

structure; if this is the case then the analysis will be very inefficient

(standard errors will be much bigger than they need to be).

174



2008 Jon Wakefield, Stat/Biostat 571

LMEM via Likelihood Inference

Model:

Y i = xiβ + zibi + εi,

with bi ∼ N(0, D), εi ∼ N(0, Ei), bi and εi independent (Ei may have

complex structure depending on both independent and dependent terms),

i = 1, ..., m.

L1 Mean model for fixed effects xiβ is appropriate.

L2 Mean model for random effects zibi is appropriate.

L3 Variance model for εi is correct.

L4 Variance model for bi is correct.

L5 Normality of εi.

L6 Normality of bi.

L7 m is sufficiently large for asymptotic inference to be appropriate.

LMEM via Bayesian Inference

Model as for LMEM, plus priors for β and α.

Each of L1–L6 (asymptotic inference is not required if, for example, MCMC is

used, though “appropriate” priors are needed).
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Overall strategy

Before any formal modeling is carried out the data should be examined, in

table and plot form, to see if the data have been correctly read in and to see if

there are outliers.

For those individuals with sufficient data, individual-specific models should also

be fitted, to allow examination of the appropriateness of initially hypothesized

models in terms of the:

• linear component (which covariates, including transformations and

interactions),

• and assumptions about the errors, such as constant variance and serial

correlation.

Following fitting of marginal, mixed models, the assumptions should then be

re-assessed, primarily through residual analysis.
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Residual Analysis

Residuals may be defined with respect to different levels of the model.

A vector of unstandardized population-level (marginal) residuals is given by

ei = Y i − xiβ.

A vector of unstandardized unit-level (Stage One) residuals is given by

εi = Y i − xiβ − zibi.

The vector of random effects, bi, is also a form of (Stage Two) residual.

Estimated versions of these residuals are given by

bei = Y i − xi
bβ

bεi = Y i − xi
bβ − zi

bbi

and bbi, i = 1, ..., m.

Recall from consideration of the ordinary linear model that estimated residuals

have dependencies induced by the estimation procedure; in the dependent data

context the situation is much worse as the “true” residuals have dependencies

due to the dependent error terms of the models used.

Hence standardization is essential to remove the dependence.
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Standardized Population Residuals

If V i(α) is the true error structure then

var(ei) = V i, and var(bei) ≈ V i(bα),

so that the residuals are dependent under the model, which means that it is not

possible to check whether the covariance model is correctly specified (both form

of the correlation structure and mean-variance model).

Plotting beij versus xij may also be misleading due to the dependence within

the residuals.

As an alternative, let bV i = LiL
T
i be the Cholesky decomposition of

bV i = V i(bα), the estimated variance-covariance matrix.
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We can use this decomposition to form

be?
i = L−1

i bei = L−1
i (Y i − xi

bβ).

so that var(e?
i ) ≈ Ini

. We have the model

Y ?
i = x?

i β + e?
i

where Y ?
i = L−1

i Y i, x?
i = L−1

i xi, e?
i = L−1

i ei.

Hence plots of be?
ij against columns of x?

ij should not show systematic patterns,

if the assumed form is correct.

QQ plots of be?
ij versus the expected residuals from a normal distribution can be

used to assess normality (normal residuals are not required for GEE, but will

help asymptotics).

Unstandardized versions will still be normally distributed if the ei are (since

the e?
ij are linear combinations of ei), though the variances may be

non-constant, and there may be strong dependence between different points.

The correctness of the mean-variance relationship can be assessed via

examination of e?2
ij versus bµ?

ij = x?
ij
bβ.

Local smoothers can be added to plots to aid interpretation. Plotting symbols

also useful – unit number, or observation number.
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Stage One Residuals

If εi ∼ N(0, σ2
i Ini

) then residuals

bεi = Y i − xi
bβ − zi

bbi

may be formed. Standardized versions are given by bεi/bσi.

The standardized versions should be used if the σi are unequal across i. Some

uses:

• Plot residuals against covariates. Departures may suggest adding in

covariates, both to xi and zi.

• To provide QQ plots – mean-variance relationship is more important to

detect than lack of normality (so long as sample size is not small).

• assess constant variance assumption – one useful plot is versus

bµij = xij
bβ + zij

bbi.

• assess if serial correlation present in residuals

may be plotted against covariates to assess the form of the model, with QQ

plots assessing normality of the measurement errors.

If εi ∼ N(0, σ2
ε Ri) with Ri a correlation matrix then the residuals should be

standardized, as with population residuals.
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Stage Two Residuals

Predictions of the random effects bbi may be used to assess assumptions

associated with the random effects distribution, in particular:

• Are the random effects normally distributed?

• If we have assumed independence between random effects, does this appear

reasonable?

• Is the variance of the random effects independent of covariates xi?

It should be born in mind that interpretation of random effects predictions is

more difficult since they are functions of the data.

Recall that bbi are shrinkage estimators, and hence assumptions about bi may

not be reflected in bbi.

We may fit curves for particular individuals with ni large, and then check the

assumptions from these.

For the LMEM it is better to examine first and second stage residuals –

population residuals are a mixture so if something wrong not clear at which

stage there is trouble.
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