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Example: Dental Growth Curves – Initial Plots

We now present some initial plots for the dental data – should not be viewed as

comprehensive.

• Initial plots: QQ plots of LS estimates, both univariate (Figure 12) and

bivariate (Figure 13).

• Estimates of σε: 0.97, 0.59, 0.95, 0.30, 0.58, 0.43, 0.47, 0.19, 0.58, 0.85, 0.89

– not a great deal of variability, so common variance assumption seems

reasonable.

• No apparent mean-variance relationship (Figure 14).

• Figure 15 shows that there are clear differences in intercepts, and some

variability in slopes.
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Figure 12: QQ plots of LS estimates: bβ0 (left), bβ1 (right).

183



2008 Jon Wakefield, Stat/Biostat 571

20 22 24 26

0.2
0.3

0.4
0.5

0.6
0.7

0.8

β̂0

β̂ 1

1

2

3

4

5

6

7

8

9

10

11

Figure 13: Bivariate plot of LS estimates.
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Figure 15: Fitted curves for all data.
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Example: Dental Growth Curves – Initial Plots

We now present some residual plots for the dental data.

> cnt1 <- rep(4,11); cnt2 <- 1:11

> lme1 <- lme(distance ~ I(age-11), data = Orthgirl, random = ~1 | Subject )

> lmeres1ind <- resid( lme1, level = 1, resType="n") # ind-level resids

> lmefit1ind <- fitted( lme1 )

> plot(I(Orthgirl$age-11),lmeres1,xlab="Centered age",ylab="LME indiv residuals",

ylim=c(-max(abs(range(lmeres1))),max(abs(range(lmeres1)))),type="n")

> text(I(Orthgirl$age-11),lmeres1,labels=c(rep(cnt2,cnt1))); abline(0,0)

> lines(lowess(I(Orthgirl$age-11),lmeres1))

> qqnorm(lmeres1,main="")

> plot(lmefit1ind,lmeres1ind^2)

> lines(lowess(lmefit1ind,lmeres1ind^2))

Figure 16 shows no syystematic deviations between residuals with time. Figure

17 that normality reasonable, and Figure 18 that there is no mean variance

relationship.
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Figure 16: LME normalized residuals versus time.
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Figure 17: QQ plot of LME normalized residuals.
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Figure 18: LME normalized residuals versus fitted values.
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Assessing Adequacy of the Temporal Covariance Structure

An informal method for assessing whether there is residual temporal

dependence is to plot residuals versus time, we now consider more formal tools

such as the correlgram and the variogram.

We begin with some definitions.

Consider a stochastic process Y (t) and let

γ(t, s) = cov{Y (t), Y (s)} = E[{Y (t) − µ(t)}{Y (s) − µ(s)}],

denote the autocovariance function of Y (t).

The term serial dependence signifies that there is dependence between Y (t) and

Y (s) for at least some pairs (s, t) with s 6= t.
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We write

Y (t) = µ(t) + e(t),

where µ(t) is the deterministic trend component.

Definition: A process e(t) is second-order stationary if E[e(t)] is constant, for

all t, and γ(t, s) depends only on |t − s|. For a residual process any non-zero

constant has been absorbed into µ(t).

Example: The simplest example of a stationary random sequence is white noise

which consists of a sequence of mutually independent random variables, each

with mean 0 and finite variance σ2.

There is a fundamental difficulty with trying to decompose Y (t) into the trend

and the stochastic component in a single series because the two are

unidentifiable without further assumptions.

Is it serial dependence in the residuals, or a high-order polynomial trend for

example?
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The Autocorrelation Function

For a second-order stationary random process, the autocovariance function is

cov{Y (t), Y (t + u)} = cov{e(t), e(t + u)},

so that C(0) is the variance of Y (t) for all t.

The autocorrelation function is defined as

ρ(u) =
C(u)

C(0)
.

For equally-spaced data we could fit a model and then examine the

autocorrelation function (ACF) of the residuals,

et =
yt − byt

cvar(Yt)1/2
.
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Consider a stochastic process e(t), and realizations et, t = 1, ..., n. The

emprical autocorrelation is defined as

bρ(u) = dcorr{e(t), e(t + u)} =

Pn−u
t=1 etet+u/(n − u)Pn

t=1 e2
t /n

,

for u = 0, 1, ....

A correlogram plot is bρ(u) versus u. If the residuals are a white noise process,

we have the asymptotic result

√
n et →d N(0, 1),

to give confidence bands ±2/
√

n.
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The Variogram

For unequally-spaced data the ACF is not so convenient, unless we round the

observations.

An alternative is provided by the semi-variogram which is defined, for a process

et and d ≥ 0.

γ(d) =
1

2
var (et − et−d) =

1

2
E
h
{et − et−d}2

i
.

Recall that for a second-order stationary process, E[et] = µ for all t and

cov(et, et−d) only depends on the distance d (which implies constant variance).

A smooth process is L2-continuous, i.e.

E{(et − et−d)2} → 0

as d → 0. For a second-order stationary smooth process

γ(d) =
1

2

˘
E[e2

t ] + E[e2
t−d] − 2E[etet−d]

¯

= σ2
e{1 − ρ(d)},

where var(e) = σ2
e .
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The semi-variogram is also well-defined for an intrinsically stationary process

for which E[et] = µ and for which

E[(et − et−d)2] = 2γ(d).

As d increases then for observatons far apart in time

γ(d) → var(et) = σ2
e ,

which (recall) is assumed constant.

Consider measurement error, εt with E[εt] = 0, var(εt) = σ2
ε , and

Yt = µt + et + εt,

so that we no longer have a smooth process. Then

γ(d) =
1

2
E
h
{Yt − Yt−d}2

i
= σ2

e{1 − ρ(d)} + σ2
ε ,

and we have a “nugget” effect σ2
ε s.
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The Variogram in Longitudinal Data Analysis

Define the semi-variogram of the population residuals, eij = Yij − xijβ, as

γi(dijk) =
1

2
E
h
{eij − eik}2

i
,

for dijk =| tij − tik |≥ 0. We emphasize that we are examining differences on

the same individual.

The sample semi-variogram uses the empirical halved differences between pairs

of population residuals

vijk =
1

2
(eij − eik)2,

along with the spacings uijk = tij − tik.

With highly-irregular sampling times the variogram can be estimated from the

pairs (uijk, vijk), i = 1, ..., m, j < k = 1, ..., ni, with the resultant plot being

smoothed.
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The marginal distribution of each vijk is χ2
1, and this large variability can make

the variogram difficult to interpret.

The total variance is estimated as the average of 1
2
(eij − elk)2, for i 6= l, since

1

2
E
ˆ
(eij − elk)2

˜
=

1

2

˘
E[e2

ij ] + E[e2
lk]
¯

= σ2,

assuming that observations on different individuals are independent (and the

variance is constant over time, and for different individuals).

Consider the interpretation of the variogram for the model

Yij = xijβ + bi + δij + εij ,

where bi ∼ind N(0, σ2
0) (note, univariate), εij ∼ind N(0, σ2

ε ), and δij represent

error terms with serial dependence.

A simple and commonly-used form for serial dependence is the AR(1) model

given by

cov(δij , δik) = σ2
δρ|tij−tik|.

Under this model

var(Yij |β) = σ2 = σ2
0 + σ2

δ + σ2
ε .
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Consider the theoretical variogram for the residuals

eij = Yij − xijβ = bi + δij + εij ,

i = 1, ..., m; j = 1, ...ni, with the AR(1) model.

For differences in residuals on the same individual

eij − eik = bi + δij + εij − bi − δik − εik = δij + εij − δik − εik,

and so

γi(dijk) =
1

2
E
ˆ
(eij − eik)2

˜
= σ2

δ (1 − ρdijk ) + σ2
ε . (42)

As dijk → 0, γi(dijk) → σ2
ε and bi is the mean of eij and so its variance does

not appear in (42).

Figure 19 shows the theoretical semi-variogram under this model and for the

population residuals.
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The variogram is limited in its use for population residuals for the LMEM, as

we now illustrate.

Consider, the mixed effects model with random intercepts and independent

random slopes:

bi0 ∼ N(0, υ2
00), bi1 ∼ N(0, υ2

11)

leads to non-constant marginal variance

var(Yij |β) = υ2
00 + 2υ2

11t2ij ,

so that we would not want to look at a variogram of population residuals

because we do not have second-order stationarity. However, we could look at

individual residuals after the random intercepts and slopes model has been

fitted.

In my experience the variogram is often dominated by sampling variability

(and there can be strong dependence in the plot since each residual contributes

many points).
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Figure 19: Theoretical variogram for a model with a random intercept, serial

correlation, and measurement error.
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Example: Air Pollution Data

We illustrate the correlogram and variogram for the air pollution data.

We fit a Poisson log-linear regression model in PM10 and ozone.

In Figure 20 we clearly see strong dependence in the Pearson residuals, hence

the quasi-likelihood standard errors quoted earlier will be wrong.

The dependence is confirmed by the dependence in the variogram in Figure 21.

In the left-hand panel we have only plotted 1000 of the 53301 (327 × 326/2)

points.
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Figure 20: Time series plots and correlogram of residuals for air pollution data.
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Figure 21: Variogram of residuals for air pollution data.
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CHAPTER 9: GENERAL REGRESSION MODELS

We begin by considering the class of non-linear mixed effects models

(NLMEMs) before turning to Generalized Linear Mixed Models (GLMMs).

In this chapter we will again consider both a conditional approach to modeling,

via the introduction of random effects, and a marginal approach using GEEs.

Likelihood and Bayesian methods will be used for inference in the conditional

approach.

Non-linear Mixed Effects Models

Example: Pharmacokinetics of Indomethacin

Six human volunteers received bolus intravenous doses (of the same size) of

Indomethacine, and subsequently 11 blood samples were taken, and the drug

concentrations recorded.

Figure 22 shows the concentration-time data – the curves follow a similar

pattern but there is clearly person to person variability.
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Figure 22: Concentration time data for Indomethacin.
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Non-Linear Mixed Effects Models

Consider the two-stage model:

Stage 1: Response model, conditional on random effects:

yi = fi(β, bi, xij) + εi, (43)

where fi = [fi1, ..., fini
]T are a set of functions that are non-linear in the

parameters β and bi, and εi is an ni × 1 zero mean vector of error terms.

Stage 2: Model for random terms:

E[εi] = 0, var(εi) = Ei(α),

E[bi] = 0, var(bi) = D(α),

cov(bi, εi) = 0

where α is the vector of variance-covariance parameters.

A common model assumes

εi ∼ind N(0, σ2
ε Ini

), bi ∼iid N(0, D),
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A particular form that covers a lot of longitudinal situations is to assume

fi(ηij , tij) where

ηij = xijβ + zijbi,

where

• a (k + 1) × 1 vector of fixed effects, β,

• a (q + 1) × 1 vector of random effects, bi, with q ≤ k.

• xi = (xi1, ..., xini
)T, the design matrix for the fixed effect with

xij = (1, xij1, ..., xijk)T, and

• zi = (zi1, ..., zini
)T, and design matrix for the random effects with

zij = (1, zij1, ..., zijq)T.

Let α represent σ2
ε and the parameters of D and N =

P
i ni.
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Example: Pharmacokinetics of Indomethacin

Let Yij represent the concentration of drug on individual i at time tij ,

i = 1, ..., 6, j = 1, ..., 11 The compartmental model that has previously been

used for this drug is the two-compartment bi-exponential model:

E[Yij | β] = A1i exp{−α1itij} + A2i exp{−α2itij},

where Yij is concentration and A1i, A2i, α1i, α2i > 0.

An obvious NLMEM would take

log A1i = β1 + b1i

log A2i = β2 + b2i

log α1i = β3 + b3i

log α2i = β4 + b4i

with bi = [b1i, b2i, b3i, b4i]
T ∼iid N4(0, D).
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Likelihood Inference

See Pinheiro and Bates (2000, Chapter 7).

The likelihood is, as usual, obtained by integrating out the random effects:

L(β, α) = (2πσ2
ε )−N/2(2π)−m/2|D|−m/2

×
mY

i=1

Z
exp

»
− (yi − fi)

T(yi − fi)

2σ2
ε

− bT
i D−1bi

2

–
dbi.

where fi is made up of terms f(ηij , tij), i = 1, ..., m, j = 1, ..., ni.
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Difficulties

1. The first difficulty is how to calculate the required integrals, which for

non-linear models are analytically intractable, recall for linear models they

were available in closed form. Even the first two moments are not available

in closed form in general:

E[Yij | β, α] = Ebi|D[f(β, bi, xij)] 6= f(β,0, xij)

var(Yij | β, α) = σ2
ε + varbi|D

[f(β, bi, xij)]

cov(Yij , Yij′ | β, α) = covbi|D
(f(β, bi, xij), f(β, bi, xij′)]

cov(Yij , Yi′j′ | β, α) = 0, i 6= i′

Note that

Ebi|D
[f(β, bi, xij)] 6= f(β,0, xij)

we had equality for the linear model.

The data do not have a known marginal distribution.

2. How do we then maximize the resultant likelihood? For the linear model

we used EM or Newton-Raphson algorithms.
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Overview of Integration Techniques

We describe a number of generic integration techniques, in particular:

• Laplace approximation (an analytical approximation).

• Quadrature (numerical integration).

• Importance sampling (a Monte Carlo method).

Before the MCMC revolution these techniques were used in a Bayesian context.
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Laplace Approximation

Let

I =

Z
exp{ng(θ)}dθ,

denote a generic integral of interest and suppose m is the maximum of g(·).
We have

ng(θ) = n
∞X

k=0

(θ − m)k

k!
g(k)(m),

where g(k)(m) represents the k−th derivative of g evaluated at m. Hence

I =

Z
exp

(
n

∞X

k=0

(θ − m)k

k!
g(k)(m)

)
dθ

≈ eng(m)

Z
exp


(θ − m)2

2/[ng(2)(m)]

ff
dθ

= eng(m)(2πv)1/2n−1/2

wherev = −1/[g(2)(m)], and we have ignored terms in cubics or greater in the

Taylor series.
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Laplace Approximation in the NLMEM

See Pinheiro and Bates, Chapter 7.

We wish to evaluate

p(yi | β, α) = (2πσ2)−ni/2(2π)−(q+1)/2 | D |−1/2

Z
exp{nig(bi)} dbi,

where

−2nig(bi) = [yi − fi(β, bi, xi)]
T[yi − fi(β, bi, xi)]/σ2

ε + bT
i D−1bi.

A Laplace approximation is a second-order Taylor series expansion of g about

bbi = arg min
bi

−g(bi)

which will not be available in closed form for a non-linear model.
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Gaussian Quadrature

A general method of integration is provided by quadrature (numerical

integration) in which an integral

I =

Z
f(u) du,

is approximated by

bI =

nwX

i=1

f(ui)wi,

for design points u1, ..., unw and weights w1, ..., wnw . Different choices of

(ui, wi) lead to different integration rules.

In mixed model applications we have integrals with respect to a normal density,

Gauss-Hermite quadrature is designed for problems of this type.

Specifically, it provides exact integration of
Z ∞

−∞
g(u)e−u2

du,

where g(·) is a polynomial of degree 2nw − 1.
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The design points are the zeroes of the so-called Hermite polynomials.

Specifically, for a rule of nw points, ui is the i−th zero of Hnw (u), the Hermite

polynomial of degree nw, and

wi =
wnw−1nw!

√
π

n2
w[Hnw−1(ui)]2

.

Now suppose θ is two-dimensional and we wish to evaluate

I =

Z
f(θ)dθ =

Z Z
f(θ1, θ2)dθ2dθ1 =

Z
f∗(θ1)dθ1,

where

f∗(θ1) =

Z
f(θ1, θ2)dθ2.

Now form

bI =

m1X

i=1

wi
bf∗(θ1i),

where

bf∗(θ1i) =

m2X

j=1

ujf(θ1i, θ2j).
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Then we have

bI =

m1X

i=1

m2X

j=1

wiujf(θ1i, θ2j),

which is known as the Cartesian Product.

Scaling and reparameterization

To implement this method the function must be centered and scaled in some

way, for example we could center and scale by the current estimates of the

mean, m, and variance-covariance matrix, V – known as adaptive quadrature.

We then form

X = L(θ − m)

where L′L = V −1 and carry out integation in the space of X.

There is no guarantee that the most efficient rule is obtained by scaling in

terms of the posterior mean and variance, but we note that the ‘best’ normal

approximation to a density (in terms of Kullbach-Leibler divergence) has the

same mean and variance.
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Gauss-Hermite Code in R

Nodes and weights for n = 4:

> n <- 4

> quad <- gauss.quad(n,kind="hermite")

> quad$nodes

[1] -1.6506801 -0.5246476 0.5246476 1.6506801

> quad$weights

[1] 0.08131284 0.80491409 0.80491409 0.08131284

Nodes and weights for n = 5:

> n <- 5

> quad <- gauss.quad(n,kind="hermite")

> quad$nodes

[1] -2.0201829 -0.9585725 0.0000000 0.9585725 2.0201829

> quad$weights

[1] 0.01995324 0.39361932 0.94530872 0.39361932 0.01995324
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Importance Sampling

Rather than deterministically selecting points we may randomly generate

points from some density h(θ).

We have

I =

Z
f(θ)dθ =

Z
f(θ)

h(θ)
h(θ)dθ = E[w(θ)],

where w(θ) = f(θ)/h(θ).

Hence we have the obvious estimator

bI =
mX

i=1

w(θi),

where θi ∼iid h(·). We have E[bI] = I and

V = var(bI) =
1

m
var{w(θ)}.

From this expression it is clear that a good h(·) produces an approximately

constant w(θ).
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We may estimate V via

bV =
1

m

mX

i=1

f2(θi)

h2(θi)
− 1

m
bI2,

and (appealing to the central limit theorem) Î is asymptotically normal and so

a 100(1 − α)% confidence interval is given by

Î ± Zα/2V̂ 1/2

where Zα/2 is the α/2 point of an N(0, 1) random variable.

Hence the accuracy of the approximation may be directly assessed, providing

an advantage over analytical approximations and quadrature methods.

Notes on Importance Sampling

• We require an h(·) with heavier tails than the integrand. We can carry out

importance sampling with any h but if the tails are lighter we will have an

estimator with infinite variance (and hence an inconsistent procedure).

Many suggestions for h have been made including Student t distributions

and mixtures of Student t distributions.

• Iteration may again be used to obtain an estimator with good properties.

220

2008 Jon Wakefield, Stat/Biostat 571

Notes on Implementation

• If the number of parameters is small then numerical integration techniques

(e.g. quadrature) are highly efficient in terms of the number of function

evaluations required. Hence if, for example, obtaining a point on the

likelihood surface is computationally expensive (as occurs if a large

simulation is required) then such techniques are preferable to Monte Carlo

methods.

• The method employed will depend on whether it is for a one-off

application, in which case ease-of-implementation is a consideration, or for

a great deal of use, in which case an efficient method may be required.

• In general it is difficult to assess the accuracy of Laplace/numerical

integration techniques.

• For simulation methods we note that independent samples are ideal for

assessing Monte Carlo error since standard errors on expectations of

interest may be simply calculated.

• Evans and Swartz (1995, Statistical Science) provide a good review of

integration techniques.

221



2008 Jon Wakefield, Stat/Biostat 571

The nlme algorithm

Within nlme an algorithm, introduced by Lindstrom and Bates (1990) is used.

The algorithm alternates between two steps:

Penalized Non-linear Least Squares (PNLS)

Condition on the current estimates of bD and bσ2
ε and then minimize

1

bσ2
ε

mX

i=1

(yi − fi)
T(yi − fi) + bi

bD−1
bi,

to obtain estimates bβ,bb1, ...,bbm, which may be viewed as finding the posterior

mode for β and b1, ..., bm.
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Linear Mixed Effects (LME)

Carry out a first-order Taylor series of fi about bβ,bbi.

This results in a linear mixed effects model which can be maximized to obtain

estimates of D and σ2
ε .

We have likelihood

L(β, α) =| D |−m/2 σ−N
ε

Z
exp

(
−1

2

mX

i=1

(yi − fi)
T(yi − fi) − bT

i D−1bi

)
dbi

where fi = f(β, bi, xi), i = 1, ..., m.

Carry out a first-order Taylor series expansion of fi about the estimates,

obtained in the PNLS step at iteration k, of β and bi, call these bβ(k)
and bb(k)

i .
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Specifically

f i(β, bi) ≈ f i

“
bβ(k)

,
bb(k)

i

”
+ bx(k)

i

“
β −

bβ(k)
”

+ bz(k)
i

“
bi −

bbi
(k)

”

where

bx(k)
i =

∂fi

∂βT

˛̨
˛̨

bβ
(k)

,bb
(k)

i

bz(k)
i =

∂fi

∂bT
i

˛̨
˛̨

bβ
(k)

,
bb
(k)

i

This gives

yi − f i(β, bi) ≈ y
(k)
i

− bx(k)
i

β − bz(k)
i

bi

where

y
(k)
i

= yi − f i

“
bβ(k)

,
bb(k)

i

”
+ bx(k)

i
bβ(k)

+ bz(k)
i

bb(k)

i
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The integral can now be evaluated in closed-form to give the log-likelihood

l(α) = −1

2

mX

i=1

log | bV i| −
1

2

mX

i=1

(y
(k)
i − bx(k)

i β)T bV −1
i (Y i − bxiβ)

where
bV i = bz(k)

i Dbz(k)T
i + σ2

ε Ii,

which may be maximized to give ML estimates. REML estimates are obtained

by adding the term

−1

2

mX

i=1

log | bx(k)T
i

bV i(α)bx(k)
i |

The Laplace approximation is generally more accurate than the LB algorithm,

it is, however, more computationally expensive.
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Asymptotic Inference

Under the LB algorithm, the asymptotic distribution of the REML estimator bβ
is  

mX

i=1

bxT
i
bV −1

i bxi

!1/2

(bβ − β) →d Np+1(0, Ip+1),

where bxi = bx(k)
i with k the final iteration, i = 1, ..., m

Similarly, the asymptotic distribution of α is based on the information as

calculated from the linear approximation to the likelihood.

The LB estimator is inconsistent if the ni’s are fixed and m → ∞.

Empirical Bayes estimates for the random effects are available, but caution

should be given to using these for checking assumptions since they are strongly

influenced by the assumption of normality being correct. If ni is large then this

will be less of a problem.
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Approaches for NLMEMs

Various other approaches to likelihood inference have been suggested, we briefly

summarize.

In general we need to carry out m integrals of dimension q + 1 for each

likelihood evaluation, so with large m and q this can be computationally

expensive.

First-Order Approximation

Let βi = xiβ + bi, and then carry out a first-order Taylor series about

E[bi] = 0 to give

yi = fi(βi) + εi ≈ fi(xiβ) +
∂fi

∂βi

∂βi

∂bi
bi + εi.

In contrast to the LB algorithm which considered an expansion about the

subject-specific mean, the expansion here is about the population-averaged

mean. The first-order estimator is inconsistent and has bias even if ni and m

go to infinity, see Demidenko (2004, Chapter 8)

Adaptive Gaussian quadrature may also be used.
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Example: Pharmacokinetics of Indomethacin

The compartmental model that has previously been used for this drug is the

two-compartment bi-exponential model:

E[Y ] = A1 exp{−α1t} + A2 exp{−α2t},

where Y is concentration, and t is time, and A1, A2, α1, α2 > 0.

Note: this model is unidentifiable since the parameter set (A1, α1, A2, α2) gives

the same fitted curve (and hence likelihood) as the set (A2, α2, A1, α1). If this

is a practical problem for a particular dataset (say α1 ≈ α2) then we may

parameterize in terms of α1 and α2 − α1.

Figure 23 gives the log concentrations versus time – such a plot can be useful

for picking the number of exponentials (and modeling the log concentration can

provide initial estimates). Certainly not linear in time so more than a single

exponential needed.
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Figure 23: Log concentration time data for Indomethacin.
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Individual fits

Let Yij be the drug concentration at time tij on indvidual i, j = 1, ..., 11,

i = 1, ..., 6. We first fit bi-exponential models to each individual, using

non-linear least squares.

We parameterize as

E[Yij | βi] = β1i exp{−eβ3i tij} + β2i exp{−eβ4i tij},

for i = 1, ..., 6.

Even though the data are balanced, the standard errors are different for

different individuals, as we see in Figure 24.

230

2008 Jon Wakefield, Stat/Biostat 571

R code for fitting individual models:

> indiv.lis <- nlsList( conc ~ SSbiexp(time,A1,lrc1,A2,lrc2),data=Indometh )

> indiv.lis

Call:

Model:conc~SSbiexp(time,A1,lrc1,A2,lrc2)|Subject

Data: Indometh

Coefficients:

A1 lrc1 A2 lrc2

1 2.029277 0.5793887 0.1915475 -1.7877849

4 2.198132 0.2423124 0.2545223 -1.6026859

2 2.827673 0.8013195 0.4989175 -1.6353512

5 3.566103 1.0407660 0.2914970 -1.5068522

6 3.002250 1.0882119 0.9685230 -0.8731358

3 5.468312 1.7497936 1.6757522 -0.4122004

Degrees of freedom: 66 total; 42 residual

Residual standard error: 0.0755502

> plot( intervals(indiv.lis) )
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Figure 24: Asymptotic 95% CIs for elements of βi, i = 1, ..., 6.
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Now we fit some NLMEMs, we first assume a diagonal D with random effects
for first three elements only.

> nlme.indo <- nlme( indiv.lis,random=pdDiag(A1+lrc1+A2~1))

> summary(nlme.indo)

Nonlinear mixed-effects model fit by maximum likelihood

Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)

Random effects:

Formula: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1)

Level: Subject

Structure: Diagonal

A1 lrc1 A2 Residual

StdDev: 0.57135 0.1581214 0.1115283 0.08149631

Fixed effects: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)

Value Std.Error DF t-value p-value

A1 2.8276029 0.2639744 57 10.711656 0e+00

lrc1 0.7732529 0.1100086 57 7.029021 0e+00

A2 0.4610197 0.1127560 57 4.088648 1e-04

lrc2 -1.3450041 0.2313139 57 -5.814627 0e+00

Correlation:

A1 lrc1 A2

lrc1 0.055

A2 -0.102 0.630

lrc2 -0.139 0.577 0.834
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Now assume a non-diagonal D for all four parameters.

> nlme2.indo2 <- update( nlme.indo, random=A1+lrc1+A2+lrc2~1)

> summary(nlme.indo2)

Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)

Random effects: Formula: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

A1 0.77583020 A1 lrc1 A2

lrc1 0.26863662 0.963

A2 0.38707000 0.459 0.682

lrc2 0.48253192 0.153 0.414 0.948

Residual 0.06962038

Fixed effects: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)

Value Std.Error DF t-value p-value

A1 2.8531611 0.3485825 57 8.185039 0e+00

lrc1 0.8755645 0.1253269 57 6.986245 0e+00

A2 0.6357872 0.1715520 57 3.706091 5e-04

lrc2 -1.2757709 0.2161119 57 -5.903288 0e+00

Correlation:

A1 lrc1 A2

lrc1 0.907

A2 0.411 0.676

lrc2 0.108 0.378 0.912
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Figure 25: Comparison of non-linear LS and nlme estimates, with

the latter from the model nlme.indo Created using the command

plot(compareFits(coef(indiv.lis),coef(nlme.indo))).
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Figure 26: Data with fitted curves from nlme analysis superim-

posed from the model nlme.indo. Created with the command

plot(augPred(nlme.indo),aspect=’’xy’’,grid=T).
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The following commands produced Figures 27–29.

> plot(nlme.indo,resid(.,type="n")~fitted(.),id=0.05,adj=-1) # id=0.05 gives

# outliers outside of 95% of distn, adj=-1 adjusts the text which

# labels these outliers

> plot(nlme.indo,resid(.,type="n")~time,id=0.05,adj=-1)

> qqnorm(nlme.indo)

> plot(augPred(nlme.indo,level=0:1)) # Obtain predictions at population and

# individual level of hierarchy
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Figure 27: Standardized residuals versus fitted values.
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Figure 28: Standardized residuals versus time.
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Figure 29: QQ plot of normalized residuals.
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Figure 30: Solid lines are population predictions, dashed lines individual predic-

tions.
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Bayesian Approach

A Bayesian approach adds a prior distribution for β, α, to the likelihood

L(β, α). As with the linear model proper prior is required for the matrix D. In

general a proper prior is required for β also, to ensure the propriety of the

posterior distribution. Closed-form inference is unavailable, but MCMC is

almost as straightforward as in the LMEM case. The joint posterior is

p(β1, ..., βm, τ, β, W , b | y) ∝
mY

i=1

{p(yi | βi, τ)p(βi | β, W)}π(β)π(τ)π(W).

Suppose we have priors:

β ∼ Nq+1(β0, V 0)

τ ∼ Ga(a0, b0)

W ∼ Wq+1(r, R
−1)

The conditional distributions for β, τ , W are unchanged from the linear case.

There is no closed form conditional distribution for βi, which is given by:

p(βi | β, τ, W , y) ∝ p(yi | βi, τ) × p(βi | β, W)

but a Metropolis-Hastings step can be used.
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Generalized Estimating Equations

If interest lies in population parameters then we may use the estimator bβ that

satisfies

G(β, bα) =
mX

i=1

DT
i W−1

i (Y i − µi) = 0,

where Di = ∂µi

∂β
, W i = W i(β, bα) is the working covariance model, µi = µi(β)

and bα is a consistent estimator of α. Sandwich estimation may be used to

obtain an empirical estimate of the variance, V β :

 
mX

i=1

DT
i W−1

i Di

!−1( mX

i=1

DT
i W−1

i cov(Y i)W
−1
i Di

) 
mX

i=1

DT
i W−1

i Di

!−1

.

We then have

V
−1/2
β (bβ − β) →d N(0, I).

In practice an empirical estimator of cov(Y i) is substituted to give bV β .

GEE has not been extensively used in a non-linear (non-GLM) setting. This is

probably because in many settings (e.g. pharmacokinetic/pharmacodynamic)

interest focuses on understanding between individual-variability, and explaining

this in terms of individual-specific covariates.
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