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Generalized Linear Mixed Models

A GLMM is defined by

1. Random Component: Yij |θij , α ∼ p(·) where p(·) is a member of the

exponential family, that is

p(yij |θij , α) = exp[{yijθij − b(θij)})/a(α) + c(yij , α)],

for i = 1, ..., m units, and j = 1, ..., ni, measurements per unit.

2. Systematic Component: If µij = E[Yij |θij , α] then we have a link function

g(·), with

g(µij) = xijβ + zijbi,

so that we have introduced random effects into the linear predictor. The

above defines the conditional part of the model. The random effects are

then assigned a distribution, and in a GLMM this is assumed to be

bi ∼iid N(0, D).

We also have

var(Yij |θij , α) = αv(µij).
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Marginal Moments

Mean:

E[Yij ] = E{E[Yij |bi]}

= E[µij ] = Eb[g
−1(xijβ + zijbi)].

Variance:

var(Yij) = E[var(Yij |bi)] + var(E[Yij |bi])

= αEb[v{g
−1(xijβ + zijbi)}] + varb[g

−1(xijβ + zijbi)].

Covariance:

cov(Yij , Yik) = E[cov(Yij , Yik|bi)] + cov(E[Yij |bi],E[Yik|bi])

= cov{g−1(xijβ + zijbi), g
−1(xikβ + zikbi)}

6= 0,

for j 6= k due to shared random effects, and

cov(Yij , Ylk) = 0,

for i 6= l, as there are no shared random effects.
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Example: Log-Linear Regression for Seizure Data

Data on seizures were collected on 59 epileptics.

For each patient the number of epileptic seizures were recorded during a

baseline period of eight weeks, after which patients were randomized to

treatment with the anti-epileptic drug progabide, or to placebo.

The number of seizures was then recorded in four consecutive two-week periods.

The age of the patient was also available.

Figures 31-33 contain summaries.
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Figure 31: Number of seizures for selected individuals over time for placebo

group.
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Figure 32: Number of seizures for selected individuals over time for progabide

group.
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Figure 33: Summaries for seizure data.
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A model for the seizure data

Let

Yij = number of seizures on patient i at occasion j

tij = observation period on patient i at occasion j

xi1 = 0/1 if patient i was assigned placebo/progabide

xij2 = 0/1 if j = 0/1, 2, 3, 4

with tij = 8 if j = 0 and tij = 2 if j = 1, 2, 3, 4, i = 1, ..., 59.

The question of primary scientific interest here is whether progabide reduces

the number of seizures.

A marginal mean model is given by

E[Yij ] = tij exp(β0 + β1xi1 + β2xij2 + β3xi1xij2)

Group j = 0 period j = 1, 2, 3, 4 period

Placebo β0 β0 + β2

Progabide β0 + β1 β0 + β1 + β2 + β3

Table 9: Parameter interpretation.
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Precise definitions:

• exp(β0) is the expected number of seizures in the placebo group in time

period 0;

• exp(β1) is the ratio of the expected seizure rate in the progabide group,

compared to the placebo group, in time period 0;

• exp(β2) is the ratio of the expected seizure rate at times j = 1, 2, 3, 4, as

compared to j = 0, in the placebo group;

• exp(β3) is the ratio of the expected seizure rates in the progabide group in

the j = 1, 2, 3, 4 period, as compared to the placebo group, in the same

period. Hence exp(β3) is the parameter of interest.

More colloquially:

• β0 INTERCEPT

• β1 BASELINE TREATMENT EFFECT

• β2 PERIOD EFFECT

• β3 TREATMENT × PERIOD EFFECT
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Mixed Effects Model for Seizure Data

Stage 1: Yij |β, bi ∼ind Poisson(µij), with

g(µij) = log µij = log tij + xijβ + bi,

where

xijβ = β0 + β1xij1 + β2xi2 + β3xij1xi2.

Hence

E[Yij |bi] = µij = tij exp(xijβ + bi), var(Yij |bi) = µij .

Stage 2: bi ∼iid N(0, σ2).

The marginal mean is given by

E[Yij ] = tij exp(xijβ + σ2/2),

and the marginal median by

tij exp(xijβ).
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The marginal variance is given by

var(Yij) = E[µij ] + var(µij)

= E[Yij ]{1 + E[Yij ](e
σ2

− 1)} = E[Yij ](1 + E[Yij ] × κ)

where κ = eσ2
− 1 > 0 illustrating excess-Poisson variation which increases as

σ2 increases.

For the marginal covariance

cov(Yij , Yik) = cov{tij exp(xijβ + bi), tij exp(xikβ + bi)}

= tij exp(xijβ + xikβ) × eσ2
{eσ2

− 1} = E[Yij ]E[Yik]κ.

Hence for individual i we have variance-covariance matrix
2
666664

µi1 + µ2
i1κ µi1µi2κ ... µi1µini

κ

µi2µi1κ µi2 + µ2
i2κ ... µi2µini

κ

... ... ... ...

µini
µi1κ µini

µi2κ ... µini
+ µ2

ini
κ

3
777775

,

where κ = eσ2
− 1 > 0. A deficiency of this model is that we only have a single

parameter (σ2) to control both excess-Poisson variability and dependence.
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Likelihood Inference

In general there are two approaches to inference from a likelihood perspective:

1. Carry out conditional inference in order to eliminate the random effects.

2. Make a distributional assumption for bi, and then carry out likelihood

inference (using some form of approximation to evaluate the required

integrals).

We first consider the conditional likelihood approach.
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Conditional Likelihood

Recall the definition of conditional likelihood. Suppose the distribution of the

data may be factored as

p(y | β, γ) = h(y) × p(t1, t2 | β, γ) = h(y) × p(t1 | t2, β) × p(t2 | β, γ),

where we choose to ignore the second term and consider the conditional

likelihood

Lc(β) = p(t1 | t2, β) =
p(t1, t2 | β, γ)

p(t2 | β, γ)
.

Maximizing the conditional likelihood yields an estimator, bβc with the usual

properties, for example

Ic(β)1/2(bβc − β) →d N(0, I),

and Ic(β) is the expected information derived from the conditional likelihood.
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Conditional Likelihood for GLMMs

In the context of GLMMs we have

Lc(β) =
mY

i=1

p(t1i | t2i, β) =
mY

i=1

p(t1i, t2i | β, bi)

p(t2i | β, bi)

where

p(t1i, t2i | β, bi) ∝ p(yi | β, bi)

and

p(t2i | β, bi) =
X

S2i

p(u1i, t2i | β, bi),

and S2i is the set of values of yi such that T2i = t2i, a set of disjoint events.

The different notation is to emphasize that T1i takes on values different to t1i.
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For simplicity we assume the canonical link function,

g(µij) = θij = xijβ + zijbi

and assume α = 1. Viewing bi as fixed effects we have the likelihood

L(β, b) = exp

8
<
:

mX

i=1

niX

j=1

yijxijβ + yijzijbi − b(xijβ + zijbi)

9
=
; ,

so that

t1 =
mX

i=1

t1i =
mX

i=1

niX

j=1

yijxij

and

t2i =

niX

j=1

yijzij .

We emphasize that no distribution has been specified for the bi, and they are

being viewed as fixed effects.
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Conditional Likelihood for the Poisson GLMM

Assume for simplicity that zijbi = bi, so that we have the random intercepts

only model. Also, in an obvious change in notation

xijβ + xiβ1 + bi = xijβ + γi

so that β are the regression associated with covariates that change within an

individual.

Then

p(y | β, γ) =
mY

i=1

p(yi | β, γi) =
mY

i=1

exp
“
−
Pm

j=1
µij +

Pm
j=1

yij log µij

”

Qni
j=1

yij !

= c1

mY

i=1

exp

0
@−µi+ + yi+γi +

niX

j=1

yij log (tij exp(xijβ))

1
A

where c−1

1
=
Q

i

Q
j yij ! and µi+ =

Pm
j=1

tij exp(xijβ).
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In this case the distribution of the conditioning statistic is straightforward:

yi+ | β, γi ∼ Poisson(µi+)

so that

p(yi+ | β, γi) = c2

mY

i=1

exp(−µi+ + yi+ log µi+)

= c2

mY

i=1

exp

0
@−µi+ + yi+γi + yi+ log

0
@

niX

j=1

tij exp(xijβ)

1
A
1
A

where c−1
2

= yi+!

Hence

p(y | y1+, ..., yni+, β) =
p(y | β, γ)

p(y1+, ..., yni+ | β, γ)

which is given by

c1
Q

i exp
“
−µi+ + yi+γi +

Pni
j=1

yij log(tij exp(xijβ)
”

c2
Qm

i=1
exp

“
−µi+ + yi+γi + yi+ log

“Pni

j=1
tij exp(xijβ)

””
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After simplification:

p(y | y1+, ..., yni+, β) =
c1
Qm

i=1

Qni
j=1

(tij exp(xijβ))yij

c2
Qm

i=1

“Pni
j=1

tij exp(xijβ)
”yi+

=

0
@ yi+

yi1...yini

1
A

mY

i=1

niY

j=1

 
tij exp(xijβ)Pni

l=1
til exp(xilβ)

!yij

which is a multinomial likelihood (we have conditioned a set of Poisson counts

on their total so obvious!):

yij | yi+, β ∼ Multni
(yi+, πi)

where πT
i = (πi1, ..., πini

) and

πij =
tij exp(xijβ)Pni

l=1
til exp(xilβ)

.

260

2008 Jon Wakefield, Stat/Biostat 571

Conditional Likelihood for the Seizure Data

Recall

Yij = number of seizures on patient i at occasion j

tij = observation period on patient i at occasion j

xi1 = 0/1 if patient i was assigned placebo/progabide

xij2 = 0/1 if j = 0/1, 2, 3, 4

with tij = 8 if j = 0 and tij = 2 if j = 1, 2, 3, 4, i = 1, ..., 59.

A log-linear random intercept model is given by

log E[Yij | bi] = log tij + β0 + β1xi1 + β2xij2 + β3xi1xij2 + bi
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Precise definitions:

• exp(β0) is the expected number of seizures for a typical individual in the

placebo group in time period 0;

• exp(β1) is the ratio of the expected seizure rate in the progabide group,

compared to the placebo group, for a typical individual, i.e. one with

bi = 0, in time period 0;

• exp(β2) is the ratio of the expected seizure rate at times j = 1, 2, 3, 4, as

compared to j = 0, for a typical individual in the placebo group;

• exp(β3) is the ratio of the expected seizure rates in the progabide group in

the j = 1, 2, 3, 4 period, as compared to the placebo group, in the same

period for a typical individual. Hence exp(β3) is the parameter of interest.
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In the conditional likelihood notation:

log E[Yij | γi] = log tij + γi + β2xij2 + β3xi1xij2

where γi = β0 + β1xi1 + bi so that we cannot estimate β1, which is not a

parameter of primary interest.

Since xi1 = xi2 = xi3 = xi4 and ti0 = 8 =
P4

j=1
tij , we effectively have two

observation periods which we label (slightly abusing our previous notation),

j = 0, 1. Let Yi1 =
P

4
j=1

Yij .

For the placebo group:

Yi1 ∼ind Binomial(Yi+, πi1)

for i = 1, ..., 29, with

πi1 =
exp(β2)

1 + exp(β2)
.

For the progabide group:

Yi1 ∼ind Binomial(Yi+, πi1)

for i = 30, ..., 59, where

πi1 =
exp(β2 + β3)

1 + exp(β2 + β3)
.

.
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This model is straightforward to fit in R:

> xcond <- c(rep(0,28),rep(1,31))

> condmod <- glm(cbind(y1,y0)~xcond,family=binomial)

> summary(condmod)

Call:

glm(formula = cbind(y1, y0) ~ xcond, family = binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.11080 0.04689 2.363 0.0181 *

xcond -0.10368 0.06505 -1.594 0.1110

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 306.50 on 58 degrees of freedom

Residual deviance: 303.96 on 57 degrees of freedom

Hence the treatment effect is exp(−.10) = 0.90 so that the rate of seizures is

estimated as 10% less in the progabide group, though this change is not

statistically significant.
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Conditional Likelihood for the Seizure Data

The overall fit of the random intercept model is poor (304 on 57 degrees of

freedom).

Once possibility is to extend the model to allow a random slope for the effect of

treatment xij2, i.e. β2i = β2 + b2i, but a conditional likelihood approach for

this model will condition away the information relevant for estimation of β3.

We will examine such a model using a mixed effects approach.
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Likelihood Inference in the Mixed Effects Model

As with the linear mixed effects model (LMEM) we maximize L(β, α) where α

denote the variance components in D, and

L(β, α) =

mY

i=1

Z
p(yi|β, bi) × p(bi|α) dbi.

As with the NLMEM the required integrals are not available in closed form and

so some sort of analytical or numerical approximation is required.
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Example: Log-linear Poisson regression GLMM

With a single random effect we have α = σ2.

L(β, α) =
mY

i=1

Z niY

j=1

exp(−µij)µ
yij

ij

yij !
× (2πσ2)−1/2 exp

„
−

1

2σ2
b2i

«
dbi

=
mY

i=1

(2πσ2)−1/2 exp

 
niX

i=1

yijxijβ

!

×

Z
exp

0
@−ebi

niX

j=1

exijβ +

niX

j=1

yijbi −
1

2σ2
b2i

1
A dbi

=
mY

i=1

exp

 
niX

i=1

yijxijβ

!
×

Z
h(bi)

exp{−b2i /(2σ2)}

(2πσ2)−1/2
dbi,

an integral with respect to a normal random variable (which is analytically

intractable).
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