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Integration in the GLMM

As with the NLMEM there are a number of possible approaches for integrating

out the random effects including:

• Analytical approximations, including Laplace, and the closely-related

penalized quasi-likelihood approach.

• Gaussian quadrature.

• Importance sampling Monte Carlo
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Penalized Quasi-Likelihood

Breslow and Clayton (1993) introduced the method of Penalized

Quasi-Likelihood (PQL) which was an attempt to extend quasi-likelihood to

GLMMs. One justification of the method is a first-order Laplace

approximation.

PQL is very poor for binary data but may be OK for binomial and Poisson

data (as long as the counts are not too small).

Within the lme4 package the lmer function may be used to fit GLMMs using

MLE/REML; the required integrals can be approximated using penalized

quasi-likelihood, Laplace, or adaptive Gaussian quadrature.
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GLMMs for the Seizure Data

PQL standard error for β1 looks off here (doesn’t tie in with later analyses).

Adaptive quadrature option is not available for this model.

> library(lme4) # Need Matrix package version 0.995-5

> lmermod1 <- lmer(y ~ x1+x2+x3+(1|ID)+offset(log(time)),family=poisson,

data=seiz,method="PQL")

> summary(lmermod1)

Generalized linear mixed model fit using PQL

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.20035 0.44761

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.076279 0.092852 11.5914 < 2e-16 ***

x1 -0.019602 0.128149 -0.1530 0.87843

x2 0.110798 0.046888 2.3630 0.01813 *

x3 -0.103681 0.065055 -1.5937 0.11099

> lmermod2 <- lmer(y ~ x1+x2+x3+(1|ID)+offset(log(time)),family=poisson,

data=seiz,method="Laplace")

> summary(lmermod2)

Generalized linear mixed model fit using Laplace
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Formula: y ~ x1 + x2 + x3 + (1 | ID) + offset(log(time))

Data: seiz

Family: poisson(log link)

AIC BIC logLik deviance

970.2882 988.7231 -480.1441 960.2882

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.60832 0.77995

# of obs: 295, groups: ID, 59

Estimated scale (compare to 1) 1.671041

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.032640 0.152524 6.7703 1.285e-11 ***

x1 -0.023848 0.210494 -0.1133 0.90980

x2 0.110798 0.046895 2.3627 0.01814 *

x3 -0.103681 0.065065 -1.5935 0.11105

The Laplace approach gives significantly different (and more reliable estimates).
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Random intercepts and slopes

We may also allow the treatment effect to vary between individuals.

> lmermod4 <- lmer(y ~ x1+x2+x3+(1+x2|ID)+offset(log(time)),

family=poisson,data=seiz,method="Laplace")

> summary(lmermod4)

Generalized linear mixed model fit using Laplace

802.2693 828.0782 -394.1347 788.2693

Random effects:

Groups Name Variance Std.Dev. Corr

ID (Intercept) 0.49990 0.70704

x2 0.23189 0.48155 0.166

# of obs: 295, groups: ID, 59

Estimated scale (compare to 1) 1.403177

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0712501 0.1398516 7.6599 1.861e-14 ***

x1 0.0494975 0.1927053 0.2569 0.79729

x2 -0.0023708 0.1078657 -0.0220 0.98246

x3 -0.3072281 0.1501527 -2.0461 0.04075 *
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Bayesian Inference for GLMMs

A Bayesian approach to inference for a GLMM adds a prior distribution for

β, α, to the likelihood L(β, α). Again a proper prior is required for the matrix

D. In general a proper prior is not required for β – the exponential family and

linear link lead to a likelihood that is well-behaved. Closed-form inference is

unavailable, but MCMC is almost as straightforward as in the linear mixed

model case. The joint posterior is

p(β, W , b | y) ∝
mY

i=1

{p(yi | β, bi)p(bi | W)}π(β)π(W).

Suppose we have priors:

β ∼ Nq+1(β0, V 0)

W ∼ Wq+1(r, R
−1)

The conditional distributions for β, τ , W are unchanged from the linear case.

There is no closed form conditional distribution for β, or for bi, but

Metropolis-Hastings step can be used (or adaptive rejection sampling can be

utilized, the conditional is log concave).
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Priors for β and α in the GLMM

Lognormal Priors

It is convenient to specify lognormal priors for positive parameters θ, since one

may specify two quantiles of the distribution, and directly solve for the two

parameters of the prior. In a GLMM we can often specify priors for more

meaningful parameters than elements of β. For example, eβ1 is the relative

risk/rate in a log linear model, and is the odds ratio in a logistic model.

Suppose we wish to specify a lognormal prior for a generic parameter θ.

Denote by LN(µ, σ) the lognormal distribution with E[log θ] = µ and

var(log θ) = σ2, and let θ1 and θ2 be the q1 and q2 quantiles of this prior.

Then

µ = log(θ1)

„
zq2

zq2 − zq1

«
− log(θ2)

„
zq1

zq2 − zq1

«
, σ =

log(θ1) − log(θ2)

zq1 − zq2

. (44)

As an example, suppose that for θ we believe there is a 50% chance that the

relative risk is less than 1 and a 95% chance that it is less than 5; with

q1 = 0.5, θ1 = 1.0 and q2 = 0.95, θ2 = 5.0, we obtain lognormal parameters

µ = 0 and σ = log 5/1.96 = 0.98.
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Gamma Priors

Consider the random intercepts model with bi ∼iid N(0, σ2).

It is not straightforward to specify a prior for σ, which represents the standard

deviation of the residuals on the linear predictor scale, and is consequently not

easy to interpret.

We specify a gamma prior Ga(a, b) for the precision τ = 1/σ2, with parameters

a, b specified a priori. The choice of a gamma distribution is convenient since it

produces a marginal distribution for the residuals in closed form.

Specifically the two-stage model

bi|σ ∼iid N(0, σ2), τ = σ−2 ∼ Ga(a, b)

produces a marginal distribution for bi which is td(0, λ2), a Student’s t

distribution with d = 2a degrees of freedom, location zero, and scale λ2 = b/a.

We now consider a log link, in which case the above is equivalent to the

residual relative risks following a log t distribution.

We specify the range exp(±R) within which the residual relative risks will lie

with probability q, and use the relationship ±td
q/2

λ = ±R, where tdq is the q-th

quantile of a Student t random variable with d degrees of freedom, to give

a = d/2, b = R2d/2(td
q/2

)2.
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For example, if we assume a priori that the residual relative risks follow a log

Student t distribution with 2 degrees of freedom, and that 95% of these risks

fall in the interval (0.5,2.0) then we obtain the prior, Ga(1, 0.0260).

In terms of σ this results in (2.5%, 97.5%) quantiles of (0.084,1.01) with

posterior median 0.19.

It is important to assess whether the prior allows all reasonable levels of

variability in the residual relative risks, in particular small values should not be

excluded.

The prior Ga(0.001,0.001) which has previously been used (e.g. in the WinBUGS

manual) should be avoided for this very reason (this corresponds to relative

risks which follow a log Student t distribution with 0.002 degrees of freedom).
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Bayesian Inference for the Seizure Data

We fit various models and begin with a discussion of prior specification.

We fit four models to the seizure data.

Model 1 Random intercepts only, π(β) ∝ 1, τ ∼ Ga(1, 0.260) – corresponds to

Student t2 residuals and 95% ∈ (0.5, 2.0).

Model 2 Random intercepts only, π(β) ∝ 1, τ ∼ Ga(2, 1.376) – corresponds to

Student t4 residuals and 95% ∈ (0.1, 10.0).

Model 3 Random effects for intercept and for x2.

Model 4 We allow a bivariate Student t distribution for the pair of random effects

introduced in Model 3.

Model 5 We introduce “measurement error” into the model.
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WinBUGS for Model 1

model

{

for (i in 1:n){

for (j in 1:k){

Y[i,j] ~ dpois(mu[i,j])

log(mu[i,j]) <- log(t[j])+beta0+beta1*x1[i]+beta2*x2[j]+

beta3*x1[i]*x2[j]+b[i]

}

b[i] ~ dnorm(0,tau)

}

tau ~ dgamma(1,0.260)

sigma <- 1/tau

beta0 ~ dflat()

beta1 ~ dflat()

beta2 ~ dflat()

beta3 ~ dflat()

}
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# Data

list(k = 5, n = 59, t = c(8,2,2,2,2), x2 = c(0,1,1,1,1),

x1 = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

Y = structure(.Data = c(11,5,3,3,3,11,3,5,3,3,6,2,4,0,5,8,4,4,1,4,66,7,18,9,21,

27,5,2,8,7,12,6,4,0,2,52,40,20,23,12,23,5,6,6,5,10,14,13,6,0,52,26,12,6,22,

33,12,6,8,4,18,4,4,6,2,42,7,9,12,14,87,16,24,10,9,50,11,0,0,5,18,0,0,3,3,

111,37,29,28,29,18,3,5,2,5,20,3,0,6,7,12,3,4,3,4,9,3,4,3,4,17,2,3,3,5,

28,8,12,2,8,55,18,24,76,25,9,2,1,2,1,10,3,1,4,2,47,13,15,13,12,76,11,14,9,8,

38,8,7,9,4,19,0,4,3,0,10,3,6,1,3,19,2,6,7,4,24,4,3,1,3,31,22,17,19,16,

14,5,4,7,4,11,2,4,0,4,67,3,7,7,7,41,4,18,2,5,7,2,1,1,0,22,0,2,4,0,13,5,4,0,3,

46,11,14,25,15,36,10,5,3,8,38,19,7,6,7,7,1,1,2,3,36,6,10,8,8,11,2,1,0,0,

151,102,65,72,63,22,4,3,2,4,41,8,6,5,7,32,1,3,1,5,56,18,11,28,13,24,6,3,4,0,

16,3,5,4,3,22,1,23,19,8,25,2,3,0,1,13,0,0,0,0,12,1,4,3,2),.Dim = c(59,5)))

# Initial estimates

list(b=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

beta0=0, beta1=0, beta2=0, beta3=0, tau=1)
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Estimates (standard deviations)

Model 1 Model 2 Model 3 Model 4 Model 5

β0 1.03 (0.15) 1.03 (0.15) 1.08 (0.13) 0.92 (0.15) 1.00 (0.18)

β1 -0.024 (0.21) -0.034 (0.21) 0.042 (0.19) 0.16 (0.20) 0.091 (0.24)

β2 0.11 (0.047) 0.11 (0.047) 0.0045 (0.11) -0.030 (0.11) 0.012 (0.10)

β3 -0.11 (0.065) -0.10 (0.065) -0.31 (0.15) -0.32 (0.15) -0.30 (0.14)

σ0 0.64 (0.13) 0.66 (0.13) 0.71 (0.072) 0.71 (0.10) 0.82 (0.084)

σ1 – – 0.473 (0.062) 0.399 (0.078)

ρ – – 0.19 (0.16) 0.21 (0.21)

σe – – – – 0.39 (0.033)

Table 10: Posterior means and standard deviations for Bayesian analysis of

seizure data; σ0 is the standard deviation of the random intercepts, σ1 is the

standard deviation of the random period effect, and ρ is the correlation between

these random effects; σe is the standard deviation of the measurement error.
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Poisson Model with a “nugget” effect

Recall the model

Yij |bi ∼ Poisson(tij exp(xijβ + bi))

bi ∼ N(0, σ2
0)

has a single parameter only, σ0 to allow for excess-Poisson variability and

between-individual variability.

In the LMEM model we have

E[Yij |bi] = xijβ + bi + ǫij

bi ∼ N(0, σ2
0)

ǫij ∼ N(0, σ2
e)

with bi and ǫij independent.
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By analogy we might consider the model:

Yij |bi, bij ∼ Poisson(tij exp(xijβ + bi + bij))

bi ∼ N(0, σ2
0)

bij ∼ N(0, σ2
e)

with bi and bij independent.

We now two parameters to allow for between-individual variability, σ0, and

excess-Poisson variability, σe.

Unfortunately there is no simple marginal interpretation of σ0 and σe:

E[Yij ] = tij exp(xijη + σ2
e/2 + σ2

o) = µij

var(Yij) = µij + µ2
ij(e

σ2
e − 1)(eσ2

0 − 1)

cov(Yij) = tijtik exp(xijβ + xikβ)eσ2
0 (eσ2

0 − 1)

Another possibility would be to start with a negative binomial distibution, and

then introduce a random effect, bi. This reveals the “heaven and hell” of

mixed-effects models — we have a lot of flexibility in the models we can fit, but

many formulations that are similar produce different marginal mean and

covariance structures, and often there is no obvious “right” choice.
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WinBUGS for Model 1

# Model 3 - Poisson lognormal for nugget also

model

{

for (i in 1:n){

for (j in 1:k){

Y[i,j] ~ dpois(mu[i,j])

log(mu[i,j]) <- log(t[j])+beta0+beta1*x1[i]+beta2*x2[j]+

beta3*x1[i]*x2[j]+b[i]+be[i,j]

be[i,j] ~ dnorm(0,taue)

}

b[i] ~ dnorm(0,tau)

}

taue ~ dgamma(1,0.26)

tau ~ dgamma(1,0.26)

sigma <- sqrt(1/tau)

sigmae <- 1/sqrt(taue)

beta0 ~ dflat()

beta1 ~ dflat()

beta2 ~ dflat()

beta3 ~ dflat()

}
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Seizure Data

Patient 49 had counts 151,102,65,72,63 under progabide — very surprising.

In DHLZ dropping this individual gave a parameter of interest of -0.30.

Posterior medians of bij for this individual (i = 49, j = 0, 1, 2, 3, 4) are:

-0.61, 0.61, 0.18, 0.27, 0.65, 0.15

Conclusions: there is evidence of a statistically significant treatment effect,

under Model 4 the 95% credible interval on β3 is (-0.60,-028).

Under model 5 the 95% credible interval on β3 is (-0.59,-0.030).
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Generalized Estimating Equations (GEEs)

Liang and Zeger (1986, Biometrika), and Zeger and Liang (1986, Biometrics)

considered GLMs with dependence within individuals (in the context of

longitudinal data).

Theorem (Liang and Zeger, 1986): the estimator bβ that satisfies

G(β, bα) =
mX

i=1

DT
i W−1

i (Y i − µi) = 0,

where Di = ∂µi

∂β
, W i = W i(β, α) is the working covariance model, µi = µi(β)

and bα is a consistent estimator of α, is such that

V
−1/2

β (bβ − β) →d N(0, I),

where V β is given by

 

m
X

i=1

D
T
i W

−1
i Di

!

−1( m
X

i=1

D
T
i W

−1
i cov(Y i)W

−1
i Di

) 

m
X

i=1

D
T
i W

−1
i Di

!

−1

.

In practice an empirical estimator of cov(Y i) is substituted to give bV β .
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Choice of Working Covariance Models

As in the linear case, various assumptions about the form of the working

covariance may be assumed (what is a natural choice?); we write

W i = ∆
1/2

i Ri(α)∆
1/2

i ,

where ∆i = diag[var(Yi1), ..., var(Yini
)]T and Ri is a working correlation

model, for example, independence, exchangeable, AR(1), unstructured.

• For small m the sandwich estimator will have high variability and so

model-based variance estimators may be preferable (but would we trust

asymptotic normality if m were small anyway?).

• Model-based estimators are more efficient if the model is correct.

Published comments:

– Liang and Zeger (1986): “little difference when correlation is moderate”.

– McDonald (1993): “The independence estimator may be reccomended

for practical purposes”.

– Zhao, Prentice and Self (1992): Assuming independence “can lead to

important losses of efficiency”.

– Fitmaurice, Laird and Rotnitsky (1993): “important to obtain a close

approximation to cov(Y i) in order to achieve high efficiency”.
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GEE for the Seizure Data

We have the log-linear model is given

log E[Yij ] = log µij = log tij + β⋆
0 + β1xi1 + β2xij2 + β3xi1xij2

and var(Yij) = αµij . Recall β1 is baseline comparison of rates, β2 is period

effect in the placebo group and β3 is treatment × period effect of interest.

Both quasi-likelihood and working independence GEE have estimating equation

G(β, bα) =

mX

i=1

xT
i (Y i − µi) = 0,

but differ in the manner in which the standard errors are calculated.
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Estimates (standard errors)

Poisson Quasi-Lhd GEE Ind GEE Exch GEE AR(1)

β⋆
0 1.35 (0.034) 1.35 (0.15) 1.35 (0.16) 1.35 (0.16) 1.31 (0.16)

β1 0.027 (0.047) 0.027 (0.21) 0.027 (0.22) 0.027 (0.22) 0.015 (0.21)

β2 0.11 (0.047) 0.11 (0.21) 0.11 (0.12) 0.11 (0.12) 0.16 (0.11)

β3 -0.10 (0.065) -0.10 (0.29) -0.10 (0.22) -0.10 (0.22) -0.13 (0.27)

α1, α2 1.0, 0 19.7, 0 19.4, 0 19.4, 0.78 20.0, 0.89

Table 11: Parameter estimates and standard errors under various models; α1 is

a variance parameter, and α2 a correlation parameter.

The point estimates under Poisson, quasi-likelihood and GEE working

independence will always agree. The Poisson standard errors are clearly much

too small. The quasi-likelihood standard errors are increased by
√

19.7 = 4.4,

but do not acknowledge dependence on observations on the same individual (it

is as if we have 59 × 5 independent observations). The standard errors of

estimated parameters that are associated with time-varying covariates (β2 and

β3) are reduced under GEE, since within-person comparisons are being made.

The coincidence of the estimates and standard errors for independence and

exchangeability is a consequence of the balanced design.

288

2008 Jon Wakefield, Stat/Biostat 571

Interpretation of Marginal and Conditional Coefficients

In a marginal model (which we consider under GEE), we have

E[Y | x] = exp(γ0 + γ1x)

in which case eγ1 is the change in the average response when we increase x by 1

unit in the population under consideration.

Under the conditional (mixed effects) model the interpretation of regression

coefficients is conditional on the value of the random effect.

For the model

E[Y | x, b] = exp(β0 + β1x + b),

with b ∼iid N(0, σ2), the marginal mean is given by:

E[Y | x] = Eb|σ2{E[Y | x, b]} = exp(β0 + σ2/2 + β1x).

Hence for the log-linear model, eβ1 has the same marginal interpretation to eγ1

(the marginal intercept is γ0 = β0 + σ/2), though estimation of the latter via

GEE produces a consistent estimator in more general circumstances (though

there is an efficiency loss if the random effects model is correct).

289



2008 Jon Wakefield, Stat/Biostat 571

In the model

E[Y | x, b] = exp{β0 + b0i + (β1 + b1i)xi}
eβ1 is the relative risk between two populations with the same b but whose x

values differ by one unit, that is:

exp(β1) =
E[Y | x, b]

E[Y | x − 1, b]
.

An alternative interpretation is to say that it is the expected change between

two “typical individuals”, that is, individuals with random effects, b = 0.

With b ∼iid N(0, D) we have the marginal mean

E[Y | x] = exp{β0 + D00/2 + x(β1 + D01) + x2D11/2}

so that there is no marginal mean interpretation of exp(β1) (the latter is the

marginal median).
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Stochastic Covariates

In some longitudinal situations, the response at time t on individual i may

depend on not just the current covariates, but also previous values.

For example, in an investigation into the health effects of recent air pollution

we may believe that the response depends on not just today’s exposure, but

also the preceeding days.

In such situations, obtaining the correct form of the model will in general be

difficult, and instead we might decide to estimate the association for a simpler

model.

As an example, suppose that we have a single covariate, and we decide to

examine the cross-sectional association:

µij = E[Yij | Xij ]. (45)

In such a situation great care must be taken to obtain a consistent estimator.

We demonstrate with a GEE approach, though the pitfalls of estimation apply

equally to likelihood and Bayesian approaches.
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Example

Suppose the “true” model is given by:

E[Yit|Xit, Xit−1] = γ0 + γ1Xit + γ2Xit−1

Xit = ρXit−1 + ǫit

with |ρ| < 1. For example Xit may represent an air pollutant on day t, and Yit

a measure of an individual’s lung function.

We may be interested in the cross-sectional effect of the pollutant, e.g. suppose

we have data on Xit only. We have

E[Yit|Xit] = β0 + β1Xit

where β0 = γ0 and β1 = γ1 + ργ2.
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Estimation for Stochastic Covariate Situations

The full covariate conditional mean (FCCM) condition is given by

µit ≡ E[Yit|Xit] = E[Yit|Xi1, Xi2, ..., XiT ]

and if true gives an unbiased GEE estimating equation, as we now illustrate.

In the example we just described the FCCM condition was not satisfied.

With a GLM:

ηij = g(µij) = xijβ,

and assume for simplicity β = (β0, β1)T. The generalized estimating function is

given by

G(β) =
mX

i=1

DT
i W−1

i (Y i − µi)

which has second row

G2(β) =
mX

i=1

2
4

niX

j=1

niX

k=1

XijW ⋆
ijk(Yik − µik)

3
5

where (45) is the assumed model, i.e. µik = E[Yij | Xik], and W ⋆
ijk =

∂µij

∂ηij
W jk

i

with W jk
i the (j, k)-th element of W−1

i .
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To obtain consistency we require

E[G(β)] = 0.

Previously we have seen that if the mean specification is correct then we obtain

consistency of bβ.

Since now the estimating function depends on the random variables

X = (X1, ..., Xm)T the expectation is with respect to X and Y . Specifically

EY,X [G2(β)] =
mX

i=1

EYi,Xi

2
4

niX

j=1

niX

k=1

XijW ⋆
ijk(Yik − µik)

3
5

and

EYi,Xi

h
XijW ⋆

ijk(Yik − µik)
i

= EXi

n
EYi|Xi

[XijW ⋆
ijk(Yik − µik)

i

= EXi

n
XijW ⋆

ijk(E
ˆ
Yik | Xi1, ..., Xini

˜
− µik)

o

Hence to ensure an unbiased estimating function, in general, and hence

consistency of our estimator, we require the FCCM condition:

E
ˆ
Yik | Xi1, ..., Xini

˜
= µik = E[Yik | Xik],

otherwise we have bias.
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Suppose we assume working independence, the above simplifies to

G2(β) =
mX

i=1

niX

j=1

XijW ⋆
ijj(Yij − µij),

so that

E[G(β)] =
mX

i=1

niX

j=1

EXij

ˆ
XijW ⋆

ijj(E[Yij | Xij ] − µij)
˜

= 0,

and we obtain a consistent estimator.

For more details see DHLZ, Section 12.3.1.
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Cross-Sectional Versus Longitudinal Studies

Consider modeling Y = FEV1 as a function of age. We might envisage that Y

changes both over time within an individual, and that individuals may have

different baseline levels of Y from which they begin, due to “cohort” effects. A

birth cohort is a group of individuals who were born in the same year.

Cohort effects include the effects of environmental pollutants, and differences in

lifestyle choices and medical treatment.

In a cross-sectional study a group of individuals are measured at a single time

point. A great advantage of longitudinal studies, over cross-sectional studies is

that both cohort and aging effects can be estimated.
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As an illustration Figure 34 shows three hypothetical individuals outcome

trajectory over calendar time — the starting positions are different due to

cohort effects.

1970 1975 1980 1985 1990 1995 2000

295
300

305
310

calendar year

y

Cohort 1
Cohort 2
Cohort 3

Figure 34: Three individual’s trajectories over time.

297



2008 Jon Wakefield, Stat/Biostat 571

Figure 35 shows the same individuals but with trajectories plotted versus age,

and the cross-sectional association, which would resolve from observing the

final measurement only, highlighted.

40 45 50 55 60 65 70

295
300

305
310

age (years)

y

Cross−sectional 

Figure 35: Relationship between cross-sectional and longitudinal effects in hy-

pothetical example with three individuals.
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To illustrate, consider the model:

E[Yij | xij , xi1] = β0 + βCxi1 + βL(xij − xi1)

where Yij is the j-th FEV1 measurement on individual i and xij is the age of

the individual when that measurement was taken, with xi1 begin the age on a

certain day (so that all the individuals are comparable).

Parameter interpretation

We have

E[Yi1 | xi1] = β0 + βCxi1,

so that βC is the average change in Y between two populations who differ by

one unit in their baseline ages; said another way we are examining the

differences in Y between two birth cohorts a year apart.

Also

E[Yij | xij , xi1] − E[Yi1 | xi1] = βL(xij − xi1)

so that βL is the longitudinal effect, that is the change in the average response

between two populations who are in the same birth cohort, and whose ages

differ by one year.
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The usual cross-sectional model is given by:

E[Yij | xij ] = β0 + β1xij (46)

= β0 + β1xi1 + β1(xij − xi1)

so that the model implicitly assumes equal longitudinal and cohort effects,

i.e. β1 = βL = βC .

In a cohort study with model (46) we have

bβ1 =

Pm
i=1

Pni
j=1

(xij − x)(Yij − Y )
Pm

i=1

Pni
j=1

(xij − x)2

with x = 1

N

Pm
i=1

Pni
j=1

xij , Y = 1

N

Pm
i=1

Pni
j=1

Yij with N =
Pm

i=1
ni. The

expected value of this estimator is

E[bβ1] = βL +

Pm
i=1

ni(xi1 − x1)(xi − x)Pm
i=1

Pni

j=1
(xij − x)2

(βC − βL)

so that the estimate if of a combination of cohort and longitudinal effects.

The cross-sectional regression model will give an unbiased estimate of the

longitudinal association if βL = βC or if {xi1} and {xi} are orthogonal.

This illustrates that a benefit of a longitudinal study is the ability to estimate

both cohort and longitudinal effects.
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If we write β0i = β0 + βCxi1 then we could fit the model

E[Yij | xij , xi1] = β0i + βL(xij − xi1)

so that each individual has their own intercept, though this runs into problems

with individuals with sparse data (can’t use a random effects model since the

intercepts are related to xi1, invalidating an assumption of the model).
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Design Implications of a Longitudinal Study

To examine a the implications of carrying out a longitudinal study, as compared

to a cross-sectional study, we consider a very simple situation in which we wish

to compare two treatments, coded as -1 and +1, and we have a linear model.

Cross-Sectional Study:

A single measurement is taken on each of m = 4 individuals where

Yi1 = β0 + β1xi1 + ǫi1,

i = 1, ..., m = 4, ǫi1 iid with var(ǫi1) = σ2 and

x11 = −1, x21 = −1, x31 = 1, x41 = 1.

Note: E[Y1|x = 1] − E[Y1|x = −1] = 2β1.

In lectures will show that

bβc
0 =

P4
i=1

Yi1

4
, bβc

1 =
Y31 + Y41 − (Y11 + Y21)

4
,

and

var(bβc
0) = var(bβc

1) =
σ2

4
.
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Longitudinal Study:

We assume the model

Yij = β0 + β1xij + bi + δij ,

with bi and δij independent and with var(bi) = σ2
0
, var(δij) = σ2

δ . We therefore

have marginally:

var(Yij |β0, β1) = σ2
0 + σ2

δ = σ2,

and

cov(Yi1, Yi2) = σ2
0 .

We let ρ = σ2
0
/σ2, represent the correlation on observations on the same

individual.

We consider two situations, both with two observations on two individuals:

Constant treatment for each individual:

x11 = x12 = −1, x21 = x22 = 1.

Changing treatment for each individual:

x11 = x22 = 1, x12 = x21 = −1.
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Using Generalized Least Squares we have

bβl
= (xTR−1x)−1xTR−1Y ,

and

var(bβl
) = (xTR−1x)−1σ2,

where

R =

2
666664

1 ρ 0 0

ρ 1 0 0

0 0 1 ρ

0 0 ρ 1

3
777775

.

In lectures we will show that

var(bβl
1) =

σ2(1 − ρ2)

4 − 2ρ(x11x12 + x21x22)
.
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The efficiency e is given by

e =
var(bβl

1
)

var(bβc
1
)

=
(1 − ρ2)

1 − ρ(x11x12 + x21x22)/2
.

Usually we have ρ > 0.

For the constant treatment longitudinal study

e = 1 + ρ,

so that the cross-sectional study is preferable since we have lost information

due to the correlation.

For the changing treatment longitudinal study

e = 1 − ρ,

so that the longitudinal study is more efficient, because each individual is acting

as their own control, that is, we are making within-individual comparisons.

If ρ = 0 the designs have the same efficiency.
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