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First Extension to GEE

To formalize the method of moments estimator for o, Prentice (1988) proposed

using a second set of estimating equations for c. In the context of data with

var(Y;;) oc v(ps):

Gi(B,a) = > DIW; '(Y;—uw,)
=1

G:(B, @) = > EIH;'(T;-%)
=1

where R;; = {Yij — pij}/v(pij)'/?, to give “data”
T; = (RiRiz, .., Rin,—1Rin;, R\, ..., R,

¥, (o) = E[T}] is a model for the correlations and variances of the standardized
residuals, E; = %, and H; = cov(T;) is the working covariance model. Gy is

of dimension (k+ 1) x 1 and G2 is a X 1 where k+ 1 = dim(83) and a = dim(c).

The vector T'; has n;(n; —1)/2 4+ n; (so X is a model for the covariances and
variances, and depends on parameters o) elements in general — the working

covariance model H; is in general complex.

306

2008 Jon Wakefield, Stat/Biostat 571

Advantages:

e It is straightforward to incorporate a regression model, i.e. & = f(ax), for
the variance-covariance parameters. In geepack there are three estimating

equations, one each for the mean, scale and correlation parameters.
e If G2 is correctly specified then there will be efficiency gains.
Disadvantages:

e If E[T] # X then we will not get a consistent estimate of the true variance
model — but consistency of 3 through G is guaranteed, so long as &
converges to something (intuition: the weight matrix W is not optimal,
but we get consistency of 3 for any choice of non-singular W — GLS is
consistent for any fixed W).

e For general H we will require the estimation of fourth order statistics,
i.e. var(T'), which is highly unstable unless we have lots of data; H; = I,
i.e. working independence may be used as an alternative (suggested by
DHLZ).
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Example: Assume for simplicity n; = n = 3 so that

T! =[Ri1Ri2 Ri1Ris Ri2Ri3 3?1 R?z R?B

with an exhangeable model:
()" =E[T]] =[a102 ajae araa a1 ar aq]

so that «a; is the “excess” variance, and s is the correlation on obser-
vations on the same unit.
With an identity H; the EF for « is

/_ Ri1Rio ] [ aran _\
Ri1R;3 (0587
. Qo (g (A9 1 1 1 }%2}%3 o 109
G_Z a; a; a; 0 0 O R? o1
i—1 11
R, a1
\ | R7 i [ @1 )
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Hence we need to simultaneously solve the two equations:

m

3
@y [Y RijRi—axda| + Y (R} —a1) = 0
j=1

i=1 j<k
m
> a1 |) RijRi—aidy| = 0
i=1 j<k
Dividing the second of these by ay gives
1 m
G1 = 7 — Z Z Ri;Rix
=1 j<k
and substituting this into the first equation gives
1 m
~ 2
R I
m < )
=1 j<k

to give a pair of method-of-moment estimators.
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Second Extension to GEE: Connected Estimating Equations, GEE2?2

In GEE2, there are a connected set of joint estimating equations for 3 and .
Such an approach was proposed by Zhao and Prentice (1990), and Prentice and
Zhao (1991).

This approach is particularly appealing if the variance-covariance model is of

interest.

To motivate such a pair, consider the following model for a single individual

with n independent observations:
}/1|ﬁ7 a ~ipag N {IU/l(B)’ 21(137 Oé)} )

where, for example, we may have 2;(8,a) = au;(8)%, i =1, ..., n.

We have the likelihood

(B, ) = ——ZlogE - —Z¥

=1

2#GEE1 is the method in which we have a single estimating equation, and a consistent

estimator of a.
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The score equations are given by
ol o\ 1 "L foui\T (Y — LGN (05T (Vi — ps)?
v _ __Z( ) _,_Z( NZ) ( Mz)+_z( z) (z QPJ%)
oB oB E = > 2 — oB DX

1
_ i(aa%f (Y;E—im) Q;(ZZ)T [(n—ggg—zi] (47)

=1
and
al 1A (0%\" 1 105" (Y — wi)?
da _§;(aa> E_Z+§izzl<8a) E?
= ALY = p)? =5
- > () e (43)
P oo 2%

This pair of quadratic estimating functions, are unbiased given correct
specification of the first two moments — so note that if the variance model is

wrong, we are no longer guaranteed a consistent estimator of 3.

If it’s correct, however, there will be a gain in efficiency.
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Let
Si = (Vi — ps)?
with, under the model,
E[S;]] = %
var(S;) E[S?] — E[S;]? = 3%? — x2 = 2%?

Hence we can rewrite (47) and (48)

al n n

5 = S DIV — i) + > EW (S — X)
'8 =1 =1

ol n .

— = FW; (S — 5

o > Fw )

where D; = 0p; /08, E; = 0£;/08 and F; = 0%;/0«.

This can be compared with the usual estimating equation specification:
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GEE2 Continued

The general form of estimating equations, in the dependent data setting, is
given by

. T —1
D; O VvV, C; Y, —

S _

~ | E, F; cT w; S — % 0

where D; = 0u; /03, E; = 0%;/03 and F; = 0%;/0«a, and we have “working”
variance-covariance structure

VvV, = var(Yy)
C, = cov(Y,;,S;)
W, = var(S;)
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When C; = 0 we obtain

Gi(B,a) = ZD’{V;l(Yi—MHZEZ-W;l(Si—zi)
=1 =1

Ga(B ) = Y FW; (S —3)
=1

which are the dependent data version of the normal score equations we
obtained earlier.

Prentice and Zhao show that these equations arise from a so-called quadratic

exponential model:
p(Yi|9i, )\i) = k:z»_l eXp[Y;rei —+ S;r>\Z —+ CZ(Yl)]
For example, ¢; = 0 gives the multivariate normal.

For consistency of ,@ we require models for both Y; and S; to be correct —

increased eficiency if models are correct.
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CHAPTER 10: BINARY DATA MODELS

We devote an entire chapter to binary data since such data are challenging,
both in terms of modeling the dependence, and parameter interpretation.

We again consider mixed effects models approached (with inference from
likelihood or Bayes perspectives), and GEE.

Motivating Data - Indonesian Child Health

DHLZ describe a dataset in which the response is the absence/presence of
respiratory illness in 275 children, with mutiple measurements being collected
over time — quarterly measurements were taken for up to six consecutive

quarters. Age also recorded.
Question of interest:

Is the prevalence of respiratory infection higher amongst children who suffer
from xerophthalmia, an ocular manifestation of chronic vitamin A deficiency?

Figure 36 shows the infection indicator versus time for the first 49 children.
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Figure 36: Respiratory infection versus time for the first 49 children.
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Figure 37: Xerophthalmia versus time for the first 49 children.
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Exploratory Summaries

With binary responses and covariates, plots are not so informative - instead
look at tables.

> table(n) # no of Y=1 counts per child (ie 22 children one y=1),1200 in total
1 2 3 4 5 6
22 32 29 b5 15 122

> xtabs(“xerocross+ycross) # cross-sectional comparison of respiratory

ycross # event (ycross) and xerophthalmia (xerocross)
xerocross O 1 # at first time point

0 234 31

1 9 1

> 234/(9%31)
[1] 0.8387097

> summary (glm(cbind(ycross,1l-ycross)

xerocross, family="binomial"))
Estimate Std. Error z value Pr(>|zl|)

(Intercept) -2.0213 0.1911 -10.576 <2e-16 *x*x*

Xerocross -0.1759 1.0712 -0.164 0.87

> exp(-.1759)

[1] 0.8387018
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Now add in age (potential confounder).

> modglm <- glm(cbind(ycross,l-ycross) ~ agecross+xerocross, family="binomial")
> summary (modglm) # Cross-sectional analyses
Coefficients:
Estimate Std. Error z value Pr(>|zl|)
(Intercept) -2.17017 0.21785 -9.962  <2e-16 **x*
agecross -0.02395 0.01059 -2.262 0.0237 *
Xerocross 0.22630 1.09367 0.207 0.8361
Null deviance: 197.79 on 274 degrees of freedom
Residual deviance: 192.17 on 272 degrees of freedom
> modglmg <- glm(cbind(ycross,l-ycross) ~ agecross+xerocross,family=quasibinomial())
> summary (modglmq)
Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -2.17017 0.21493 -10.097  <2e-16 **x*
agecross -0.02395 0.01045 -2.293 0.0226 *
Xerocross 0.22630 1.07900 0.210 0.8340
(Dispersion parameter for quasibinomial family taken to be 0.9733635)
Null deviance: 197.79 on 274 degrees of freedom
Residual deviance: 192.17 on 272 degrees of freedom
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Overview of Modeling Clustered Binary Data

For a single binary variable, Y, all moments are determined by p = E[Y].
Specifically E[Y"] = p for r > 1.

Consider n observations from a single individual Y = (Y7, ..., Y,)™.

The saturated model has 2" — 1 parameters (in contrast to n means, n
variances and n(n — 1)/2 correlations for the saturated normal model).

There is no obvious or natural manner by which multivariate binary data can
be specified. We begin with a random effects formulation that induces
correlations.
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Logistic Mixed Effects Models

A GLMM for binary data takes the binomial exponential family, with canonical
link being logistic.

We have

Stage 1: Y;; ~inq Binomial(n;;, p;;) with

DPij
Og(l—pij) =x;; B+ zi;b;

Stage 2: b; ~;;q N(0, D).

Marginal moments are not available in closed form.
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Conjugate model

Y |p ~ Binomial(n,p)
p ~ Beta(a,b)

gives

. mTe+b) Ta+y)l'(b+n—y) B
Pr(Y =y) = (y) I'(a)T'(b) I'(a+b+n) » ¥=01.n.

Marginal moments:

a at+b+n
—_ Y) =nE[p|(1 — E _—
"y var(Y') = nE[p|( [p])a+b+1

Limitations: likelihood is complex, extension to covariates increases complexity,
and no tractable way to allow random effect slopes.
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Parameter Interpretation

For the random intercepts model the conditional parameters 3¢ and marginal

parameters 3" are approximately linked through

B exp(zB™)
ElY] = W—Eb{E[Ylb]}
- [ exp(zB° + b) }% exp(zB°/[c?0® +1]'/2)
"1+ exp(xB+b)] 1+ exp(xB°/[c2o2 + 1]1/2)

where ¢ = 161/3/(157). Hence the marginal coefficients are attenuated towards
zero; Figure 38 illustrates for particular values of (g, 31, 08.

For the model
E[Y | b]
S\1-E[Y |8

where b ~;;4 Ng11(0, D) we obtain

)zmﬁc+zb

E(y] ~ P (@8 | ED=2T 4 Ly |7 (HD/2)
T4 exp (B | 2Dzz" + I 441 |~(a+1)/2)

so that
6m %’ CQDZZT +Iq+1 ‘—(q+1)/2 I@C
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Probabity

Figure 38: Individual-level curves (dotted lines) from random intercepts logistic
GLMM with log(E[Y | b])/(1 — E[Y | b])) = Bo + fiz, with Bop = —2,61 =
1 and b ~;;q N(0,22), along with marginal curve (solid curve). Approximate

attenuation is 1.54.
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> library(lme4)
> memmodl <- lmer(cbind(y,1-y) ~ age+xero+(1]|id),family=binomial,method="PQL")
> summary (memmod1)
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 3.7334 1.9322
Fixed effects:
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -2.6920622 0.1795893 -14.9901 < 2.2e-16 **x
age -0.0229009 0.0088506 -2.5875 0.009667 *x*
xero 0.1219975 0.5379760 0.2268 0.820602
memmod2 <- lmer(cbind(y,1-y) ~ age+xero+(1|id),family=binomial,method="Laplace")
> summary (memmod?2)
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 3.7334 1.9322
Fixed effects:
Estimate Std. Error =z value Pr(>|z|)
(Intercept) -2.6920622 0.1810916 -14.8658 < 2e-16 **x*
age -0.0229009 0.0089756 -2.5515 0.01073 =*
Xero 0.1219975 0.5380319  0.2267 0.82062
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