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Likelihoods for Multivariate Binary Data

Log-Linear Model

We have 2n − 1 distinct probabilities, but we wish to consider formulations

that allow more parsimonious descriptions as a function of covariates.

One choice is the log-linear model:

Pr(Y = y) = c(θ) exp

0

@

X

j

θ
(1)
j

yj +
X

j1<j2

θ
(2)
j1j2

yj1
yj2

+ ... + θ
(n)
12...n

y1...yn

1

A ,

with 2n − 1 parameters

θ = (θ
(1)
1 , ..., θ

(1)
n , θ

(2)
12 , ..., θ

(2)
n−1,n, ..., θ

(n)
12...n)T,

and where c(θ) is the normalizing constant.

This formulation allows calculation of cell probabilities, but is less useful for

describing Pr(Y = y) as a function of x.

Note that we have 2n − 1 parameters and we have two aims: reduce this

number, and introduce a regression model.
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Example: n = 2.

We have

Pr(Y1 = y1, Y2 = y2) = c(θ) exp
“

θ
(1)
1 y1 + θ

(1)
2 y2 + θ

(2)
12 y1y2

”

,

where θ = (θ
(1)
1 , θ

(1)
2 , θ

(2)
12 )T and

c(θ)−1 =
1

X

y1=0

1
X

y2=0

exp
“

θ
(1)
1 y1 + θ

(1)
2 y2 + θ

(2)
12 y1y2

”

y1 y2 Pr(Y1 = y1, Y2 = y2)

0 0 c(θ)

1 0 c(θ) exp(θ
(1)
1 )

0 1 c(θ) exp(θ
(1)
2 )

1 1 c(θ) exp(θ
(1)
1 + θ

(1)
2 + θ

(2)
12 )
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Hence we have interpretations:

exp(θ
(1)
1 ) =

Pr(Y1 = 1, Y2 = 0)

Pr(Y1 = 0, Y2 = 0)

=
Pr(Y1 = 1|Y2 = 0)

Pr(Y1 = 0|Y2 = 0)

the odds of an event at trial 1, given no event at trial 2;

exp(θ
(1)
2 ) =

Pr(Y1 = 0, Y2 = 1)

Pr(Y1 = 0, Y2 = 0)

=
Pr(Y2 = 1|Y1 = 0)

Pr(Y2 = 0|Y1 = 0)

the odds of an event at trial 2, given an event at trial 1;

exp(θ
(12)
12 ) =

Pr(Y1 = 1, Y2 = 1)Pr(Y1 = 0, Y2 = 0)

Pr(Y1 = 1, Y2 = 0)Pr(Y1 = 0, Y2 = 1)

=
Pr(Y2 = 1|Y1 = 1)/ Pr(Y2 = 0|Y1 = 1)

Pr(Y2 = 1|Y1 = 0)/ Pr(Y2 = 0|Y1 = 0)

the ratio of odds of an event at trial 2 given an event at trial 1, divided by the

odds of an event at trial 2 given a at event at trial 1. Hence if this parameter is

larger than 1 we have positive dependence.
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Quadratic Exponential Log-Linear Model

We describe three approaches to modeling binary data: conditional odds ratios,

correlations, marginal odds ratios.

Zhao and Prentice (1990) consider the log-linear model with third and

higher-order terms set to zero, so that

Pr(Y = y) = c(θ) exp

0

@

X

j

θ
(1)
j yj +

X

j<k

θ
(2)
jk yjyk

1

A .

For this model

Pr(Yj = 1|Yk = yk, Yl = 0, l 6= j, k)

Pr(Yj = 0|Yk = yk, Yl = 0, l 6= j, k)
= exp(θ

(1)
j + θ

(2)
jk yk).

Interpretation:

• exp(θ
(1)
j ) is the odds of a success, given all other responses are zero.

• exp(θ
(2)
jk ) is the odds ratio describing the association between Yj and Yk,

given all other responses are fixed (equal to zero).
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Limitations:

1. Suppose we now wish to model θ as a function of x.

Example: Y respiratory infection, x mother’s smoking (no/yes). Then we

could let the parameters θ depend on x, i.e. θ(x). But the difference

between θ
(1)
j (x = 1) and θ

(1)
j (x = 0) represent the effect of smoking on the

conditional probability of respiratory infection at visit j, given that there

was no infection at any other visits. Difficult to interpret, and we would

rather model the marginal probability.

2. The interpretation of the θ parameters depends on the number of responses

n – particularly a problem in a longitudinal setting with different ni.
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Bahadur Representation

Another approach to parameterizing a multivariate binary model was proposed

by Bahadur (1961) who used marginal means, as well as second-order moments

specified in terms of correlations.

Let

Rj =
Yj − µj

[µj(1 − µj)]1/2

ρjk = corr(Yj , Yk) = E[RjRk]

ρjkl = E[RjRkRl]

... · ...

ρ1,...,n = E[R1...Rn]

Then we can write

Pr(Y = y) =
n

Y

j=1

µ
yj

j (1 − µj)
1−yj

×

0

@1 +
X

j<k

ρjkrjrk +
X

j<k<l

ρjklrjrkrl + ... + ρ1,...,nr1r2...rn

1

A

Appealing because we have the marginal means µj and “nuisance” parameters.
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Limitations:

Unfortunately, the correlations are constrained in complicated ways by the

marginal means.

Example: consider measurements on a single individual, Y1 and Y2, with means

µ1 and µ2. We have

corr(Y1, Y2) =
Pr(Y1 = 1, Y2 = 1) − µ1µ2

{µ1(1 − µ1)µ2(1 − µ2)}1/2

and

max(0, µ1 + µ2 − 1) ≤ Pr(Y1 = 1, Y2 = 1) ≤ min(µ1, µ2),

which implies complex constraints on the correlation.

For example, if µ1 = 0.8 and µ2 = 0.2 then 0 ≤ corr(Y1, Y2) ≤ 0.25.
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Marginal Odds Ratios

An alternative is to parameterize in terms of the marginal means and the

marginal odds ratios defined by

γjk =
Pr(Yj = 1, Yk = 1) Pr(Yj = 0, Yk = 0)

Pr(Yj = 1, Yk = 0)Pr(Yj = 0, Yk = 1)

=
Pr(Yj = 1 | Yk = 1)/ Pr(Yj = 0 | Yk = 1)

Pr(Yj = 1 | Yk = 0)/ Pr(Yj = 0 | Yk = 0)

which is the odds that the j-th observation is a 1, given the k-th observation is

a 1, divided by the odds that the j-th observation is a 1, given the k-th

observation is a 0.

Hence if γjk > 1 we have positive dependence between outcomes j and k.

It is then possible to obtain the joint distribution in terms of the means µ,

where µj = Pr(Yj = 1) the odds ratios γ = (γ12, ..., γn−1,n) and contrasts of

odds ratios
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We need to find E[YjYk] = µjk, so that we can write down the likelihood

function, or an estimating function.

For the case of n = 2 we have

γ12 =
Pr(Y1 = 1, Y2 = 1) Pr(Y1 = 0, Y2 = 0)

Pr(Y1 = 1, Y2 = 0)Pr(Y1 = 0, Y2 = 1)
=

µ12(1 − µ1 − µ2 + µ12)

(µ1 − µ12)(µ2 − µ12)
,

and so

µ2
12(γ12 − 1) + µ12b + γ12µ1µ2 = 0,

where b = (µ1 + µ2)(1 − γ12) − 1, to give

µ12 =
−b ±

p

b2 − 4(γ12 − 1)µ1µ2

2(γ12 − 1)
.

Y2

0 1

Y1 0 1 − µ1

1 µ12 µ1

1 − µ2 µ2
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Limitations

In a longitudinal setting (we add an i subscript to denote individuals), finding

the µijk terms is computationally complex.

Large numbers of nuisance odds ratios if ni’s are large – assumptions such as

γijk = γ for all i, j, k may be made.

Another possibility is to take

log γijk = α0 + α1|tij − tik|
−1,

so that the degree of association is inversely proportional to the time between

observations.
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Modeling Multivariate Binary Data Using GEE

For a marginal Bernoulli outcome we have

Pr(Yij = yij |xij) = µ
yij

ij (1 − µij)
1−yij = exp(yijθij − log{1 + eθij }),

where θij = log(µij/(1 − µij), an exponential family representation.

For independent responses we therefore have the likelihood

Pr(Y |x) = exp

2

4

m
X

i=1

ni
X

j=1

yijθij −
m

X

i=1

ni
X

j=1

log{1 + eθij }

3

5 = exp

2

4

m
X

i=1

ni
X

j=1

lij

3

5 .

To find the MLEs we consider the score equation:

G(β) =
∂l

∂β
=

m
X

i=1

ni
X

j=1

∂lij

∂θij

∂θij

∂β
=

m
X

i=1

ni
X

j=1

xij(yij − µij) =
m

X

i=1

xT
i (yi − µi).

So GEE with working independence can be implemented with standard

software, though we need to “fix-up” the standard errors via sandwich

estimation.
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Non-independence GEE

Assuming working correlation matrices: Ri(α) and estimating equation

G(β) =
m

X

i=1

DT
i W−1

i (yi − µi),

where W i = ∆
1/2
i Ri(α)∆

1/2
i .

Here α are parameters that we need a consistent estimator of (Newey 1990,

shows that the choice of estimator for α has no effect on the asymptotic

efficiency).

Define a set of ni(ni − 1)/2 empirical correlations

Rijk =
(Yij − µij)(Yik − µik)

[µij(1 − µij)µik(1 − µik)]1/2
.

We can then define a set of moment-based estimating equations to obtain

estimates of α.
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First Extension to GEE

Rather than have a method of moments estimator for α, Prentice (1988)

proposed using a second set of estimating equations for α. In the context of

data with var(Yij) = v(µij):

G1(β, α) =
m

X

i=1

DT
i W−1

i (Y i − µi)

G2(β, α) =
m

X

i=1

ET
i H−1

i (T i − Σi)

where Rij = {Yij − µij}/v(µij)
1/2, to give “data”

TT
i = (Ri1Ri2, ..., Rini−1Rini

, R2
i1, ..., R2

ini
),

Σi(α) = E[T i] is a model for the correlations and variances of the standardized

residuals, Ei = ∂Σi

∂α
, and Hi = cov(T i) is the working covariance model.

The vector T i has ni(ni − 1)/2 + ni elements in general — the working

covariance model Hi is in general complex.
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In the context of binary data Prentice (1988) the variances are determined by

the mean and so the last ni terms of T i are dropped; he also suggests taking a

diagonal working covariance model, Hi, i.e. ignoring the covariances. The

theoetical variances ae given by

var(RijRik) = 1+(1−2pij)(1−2pik){pij(1−pij)pik(1−pik)}−1/2Σ(α)ijk−Σ(α)2ijk

which depend on the assumed correlation model Σ — these may be taken as

the diagonal elements of Hi.
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Application of GEE Extension to Marginal Odds Model

We have the marginal mean model

logit E[Yij | Xij ] = βXij .

Suppose we specify a model for the associations in terms of the marginal log

odds ratios:

αijk = log



Pr(Yij = 1, Yik = 1) Pr(Yij = 0, Yik = 0)

Pr(Yij = 1, Yik = 0) Pr(Yij = 0, Yik = 1)

ff

.

These are nuisance parameters, but how do we estimate them?

Carey et al. (1992) suggest the following approach fo estimating β and α.

Let

µij = Pr(Yij = 1)

µik = Pr(Yik = 1)

µijk = Pr(Yij = 1, Yik = 1)

338

2008 Jon Wakefield, Stat/Biostat 571

It is easy to show that

Pr(Yij = 1 | Yik = yik)

Pr(Yij = 0 | Yik = yik)
= exp(yikαijk)

Pr(Yij = 1, Yik = 0)

Pr(Yij = 0, Yik = 0)

= exp(yikαijk)

„

µij − µijk

1 − µij − µik + µijk

«

which can be written as a logistic regression model in terms of conditional

probabilities:

logit E[Yij | Yik] = log

„

Pr(Yij = 1 | Yik = yik)

Pr(Yij = 0 | Yik = yik)

«

= yikαijk + log

„

µij − µijk

1 − µij − µik + µijk

«

where the term on the right is a known offset (the µ’s are a function of β only).

Suppose for simplicity that αijk = α then given current estimates of β, α, we

can fit a logistic regression model by regressing Yij on Yik for 1 ≤ j < k ≤ ni,

to estimate α — this can then be used within the working correlation model.

Carey et al. (1992) refer to this method as alternating logistic regressions.
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Indonesian Children’s Health Example

> summary(geese(y ~ xero+age,corstr="independence",id=id,family="binomial"))

Mean Model:

Mean Link: logit

Variance to Mean Relation: binomial

Coefficients:

estimate san.se wald p

(Intercept) -2.38479528 0.117676276 410.699689 0.000000e+00

age -0.02605769 0.005306513 24.113112 9.083967e-07

xero 0.72015485 0.419718477 2.943985 8.619783e-02

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 0.977505 0.2766052 12.48871 0.0004094196

Correlation Model:

Correlation Structure: independence

Number of clusters: 275 Maximum cluster size: 6
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> summary(geese(y ~ age+xero, corstr="exchangeable", id=id,family="binomial"))

estimate san.se wald p

(Intercept) -2.37015400 0.117210489 408.902887 0.000000e+00

age -0.02532507 0.005271204 23.082429 1.552026e-06

xero 0.58758892 0.449818037 1.706371 1.914569e-01

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 0.9681312 0.2618218 13.67278 0.0002175859

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.04423924 0.03222984 1.884079 0.1698713

> summary(geese(y ~ age+xero, corstr="ar1", id=id,family="binomial"))

Coefficients:

estimate san.se wald p

(Intercept) -2.37470963 0.11733291 409.620156 0.000000e+00

age -0.02597886 0.00528451 24.167452 8.831225e-07

xero 0.63692645 0.44374132 2.060245 1.511859e-01

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 0.9715817 0.2694961 12.99732 0.0003119374

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.05844094 0.04528613 1.665344 0.1968834
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Conditional Likelihood: Binary Longitudinal Data

Recall that conditional likelihood is a technique for eliminating nuisance

parameters, here what we have previously modeled as random effects.

Consider individual i with binary observations yi1, ..., yini
and assume the

random intercepts model Yij | γi, β ∼ Bernoulli(pij), where

log

„

pij

1 − pij

«

= xijβ + γi

where γi = xiβ + bi and xij (a slight change from our usual notation), are

those covariates which change within an individual.
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We have

Pr(yi1, ..., yini
| γi, β) =

ni
Y

j=1

exp (γiyij + xijβyij)

1 + exp (γi + xijβ)

=
exp

“

γi
Pni

j=1 yij +
Pni

j=1 xijyijβ
”

Qni
j=1 [1 + exp (γi + xijβ)]

=
exp (γit2i + t1iβ)

Qni
j=1 [1 + exp (γi + xijβ)]

=
exp (γit2i + t1iβ)

k(γi, β)

= p(t1i, t2i | γi, β)

where

t1i =

ni
X

j=1

xijyij , t2i =

ni
X

j=1

yij

k(γi, β) =

ni
Y

j=1

[1 + exp (γi + xijβ)] .
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We have

Lc(β) =
m

Y

i=1

p(t1i | t2i, β) =
m

Y

i=1

p(t1i, t2i | γi, β)

p(t2i | γi, β)

where

p(t2i | γi, β) =

P

“

ni
yi+

”

l=1 exp
“

γi
Pni

j=1 yij +
Pni

k=1 xikyl
ikβ

”

k(γi, β)
,

where the summation is over the
` ni

yi+

´

ways of choosing yi+ ones out of ni,

and yl
i = (yl

i1, ..., yl
ini

), l = 1, ...,
` ni

yi+

´

is the collection of these ways.

Hence

Lc(β) =
m

Y

i=1

exp
“

γi
Pni

j=1 yij +
Pni

j=1 xijyijβ
”

P

“

ni
yi+

”

l=1 exp
“

γi
Pni

j=1 yij +
Pni

k=1 xikyl
ikβ

”

=
m

Y

i=1

exp
“

Pni

j=1 xijyijβ
”

P

“

ni
yi+

”

l=1 exp
`Pni

k=1 xikyl
ikβ

´
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Notes

• Can be computationally expensive to evaluate likelihood if ni is large,

e.g. if ni = 20 and yi+ = 10,
` ni

yi+

´

= 184, 756.

• There is no contribution to the conditional likelihood from individuals:

– With ni = 1.

– With yi+ = 0 or yi+ = ni.

– For those covariates with xi1 = ... = xini
= xi. The conditional

likelihood estimates β’s that are associated with within-individual

covariates. If a covariate only varies between individuals, then it cannot

be estimated using conditional likelihood.

For covariates that vary both between and within individuals, only the

within-individual contrasts are used.

• The similarity to Cox’s partial likelihood may be exploited to carry out

computation.

• We have not made a distributional assumption for the γi’s!

345



2008 Jon Wakefield, Stat/Biostat 571

Examples:

If ni = 3 and yi = (0, 0, 1) so that yi+ = 1 then

y1
i = (1, 0, 0), y2

i = (0, 1, 0), y3
i = (0, 0, 1),

and the contribution to the conditional likelihood is

exp(xi3β)

exp(xi1β) + exp(xi2β) + exp(xi3β)
.

If ni = 3 and yi = (1, 0, 1) so that yi+ = 2 then

y1
i = (1, 1, 0), y2

i = (1, 0, 1), y3
i = (0, 1, 1),

and the contribution to the conditional likelihood is

exp(xi1β + xi3β)

exp(xi1β + xi2β) + exp(xi1β + xi3β) + exp(xi2β + xi3β)
.
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