Likelihoods for Multivariate Binary Data

Log-Linear Model
We have $2^{n}-1$ distinct probabilities, but we wish to consider formulations that allow more parsimonious descriptions as a function of covariates.
One choice is the log-linear model:

$$
\operatorname{Pr}(\boldsymbol{Y}=\boldsymbol{y})=c(\boldsymbol{\theta}) \exp \left(\sum_{j} \theta_{j}^{(1)} y_{j}+\sum_{j_{1}<j_{2}} \theta_{j_{1} j_{2}}^{(2)} y_{j_{1}} y_{j_{2}}+\ldots+\theta_{12 \ldots n}^{(n)} y_{1} \ldots y_{n}\right),
$$

with $2^{n}-1$ parameters

$$
\boldsymbol{\theta}=\left(\theta_{1}^{(1)}, \ldots, \theta_{n}^{(1)}, \theta_{12}^{(2)}, \ldots, \theta_{n-1, n}^{(2)}, \ldots, \theta_{12 \ldots n}^{(n)}\right)^{\mathrm{T}},
$$

and where $c(\boldsymbol{\theta})$ is the normalizing constant.
This formulation allows calculation of cell probabilities, but is less useful for describing $\operatorname{Pr}(\boldsymbol{Y}=\boldsymbol{y})$ as a function of \boldsymbol{x}.

Note that we have $2^{n}-1$ parameters and we have two aims: reduce this number, and introduce a regression model.

Example: $n=2$.
We have

$$
\operatorname{Pr}\left(Y_{1}=y_{1}, Y_{2}=y_{2}\right)=c(\boldsymbol{\theta}) \exp \left(\theta_{1}^{(1)} y_{1}+\theta_{2}^{(1)} y_{2}+\theta_{12}^{(2)} y_{1} y_{2}\right)
$$

where $\boldsymbol{\theta}=\left(\theta_{1}^{(1)}, \theta_{2}^{(1)}, \theta_{12}^{(2)}\right)^{\mathrm{T}}$ and

$$
\begin{aligned}
& c(\boldsymbol{\theta})^{-1}=\sum_{y_{1}=0}^{1} \sum_{y_{2}=0}^{1} \exp \left(\theta_{1}^{(1)} y_{1}+\theta_{2}^{(1)} y_{2}+\theta_{12}^{(2)} y_{1} y_{2}\right) \\
& \begin{array}{c|c|l}
y_{1} & y_{2} & \operatorname{Pr}\left(Y_{1}=y_{1}, Y_{2}=y_{2}\right) \\
\hline 0 & 0 & c(\boldsymbol{\theta}) \\
1 & 0 & c(\boldsymbol{\theta}) \exp \left(\theta_{1}^{(1)}\right) \\
0 & 1 & c(\boldsymbol{\theta}) \exp \left(\theta_{2}^{(1)}\right) \\
1 & 1 & c(\boldsymbol{\theta}) \exp \left(\theta_{1}^{(1)}+\theta_{2}^{(1)}+\theta_{12}^{(2)}\right) \\
\hline
\end{array}
\end{aligned}
$$

Hence we have interpretations:

$$
\begin{aligned}
\exp \left(\theta_{1}^{(1)}\right) & =\frac{\operatorname{Pr}\left(Y_{1}=1, Y_{2}=0\right)}{\operatorname{Pr}\left(Y_{1}=0, Y_{2}=0\right)} \\
& =\frac{\operatorname{Pr}\left(Y_{1}=1 \mid Y_{2}=0\right)}{\operatorname{Pr}\left(Y_{1}=0 \mid Y_{2}=0\right)}
\end{aligned}
$$

the odds of an event at trial 1, given no event at trial 2;

$$
\begin{aligned}
\exp \left(\theta_{2}^{(1)}\right) & =\frac{\operatorname{Pr}\left(Y_{1}=0, Y_{2}=1\right)}{\operatorname{Pr}\left(Y_{1}=0, Y_{2}=0\right)} \\
& =\frac{\operatorname{Pr}\left(Y_{2}=1 \mid Y_{1}=0\right)}{\operatorname{Pr}\left(Y_{2}=0 \mid Y_{1}=0\right)}
\end{aligned}
$$

the odds of an event at trial 2, given an event at trial 1;

$$
\begin{aligned}
\exp \left(\theta_{12}^{(12)}\right) & =\frac{\operatorname{Pr}\left(Y_{1}=1, Y_{2}=1\right) \operatorname{Pr}\left(Y_{1}=0, Y_{2}=0\right)}{\operatorname{Pr}\left(Y_{1}=1, Y_{2}=0\right) \operatorname{Pr}\left(Y_{1}=0, Y_{2}=1\right)} \\
& =\frac{\operatorname{Pr}\left(Y_{2}=1 \mid Y_{1}=1\right) / \operatorname{Pr}\left(Y_{2}=0 \mid Y_{1}=1\right)}{\operatorname{Pr}\left(Y_{2}=1 \mid Y_{1}=0\right) / \operatorname{Pr}\left(Y_{2}=0 \mid Y_{1}=0\right)}
\end{aligned}
$$

the ratio of odds of an event at trial 2 given an event at trial 1, divided by the odds of an event at trial 2 given a at event at trial 1 . Hence if this parameter is larger than 1 we have positive dependence.

Quadratic Exponential Log-Linear Model

We describe three approaches to modeling binary data: conditional odds ratios, correlations, marginal odds ratios.

Zhao and Prentice (1990) consider the log-linear model with third and higher-order terms set to zero, so that

$$
\operatorname{Pr}(\boldsymbol{Y}=\boldsymbol{y})=c(\boldsymbol{\theta}) \exp \left(\sum_{j} \theta_{j}^{(1)} y_{j}+\sum_{j<k} \theta_{j k}^{(2)} y_{j} y_{k}\right)
$$

For this model

$$
\frac{\operatorname{Pr}\left(Y_{j}=1 \mid Y_{k}=y_{k}, Y_{l}=0, l \neq j, k\right)}{\operatorname{Pr}\left(Y_{j}=0 \mid Y_{k}=y_{k}, Y_{l}=0, l \neq j, k\right)}=\exp \left(\theta_{j}^{(1)}+\theta_{j k}^{(2)} y_{k}\right) .
$$

Interpretation:

- $\exp \left(\theta_{j}^{(1)}\right)$ is the odds of a success, given all other responses are zero.
- $\exp \left(\theta_{j k}^{(2)}\right)$ is the odds ratio describing the association between Y_{j} and Y_{k}, given all other responses are fixed (equal to zero).

Limitations:

1. Suppose we now wish to model $\boldsymbol{\theta}$ as a function of \boldsymbol{x}.

Example: Y respiratory infection, x mother's smoking (no/yes). Then we could let the parameters $\boldsymbol{\theta}$ depend on x, i.e. $\boldsymbol{\theta}(x)$. But the difference between $\theta_{j}^{(1)}(x=1)$ and $\theta_{j}^{(1)}(x=0)$ represent the effect of smoking on the conditional probability of respiratory infection at visit j, given that there was no infection at any other visits. Difficult to interpret, and we would rather model the marginal probability.
2. The interpretation of the $\boldsymbol{\theta}$ parameters depends on the number of responses n - particularly a problem in a longitudinal setting with different n_{i}.

Bahadur Representation

Another approach to parameterizing a multivariate binary model was proposed by Bahadur (1961) who used marginal means, as well as second-order moments specified in terms of correlations.
Let

$$
\begin{aligned}
R_{j} & =\frac{Y_{j}-\mu_{j}}{\left[\mu_{j}\left(1-\mu_{j}\right)\right]^{1 / 2}} \\
\rho_{j k} & =\operatorname{corr}\left(Y_{j}, Y_{k}\right)=\mathrm{E}\left[R_{j} R_{k}\right] \\
\rho_{j k l} & =\mathrm{E}\left[R_{j} R_{k} R_{l}\right] \\
\ldots & \cdot \ldots \\
\rho_{1, \ldots, n} & =\mathrm{E}\left[R_{1} \ldots R_{n}\right]
\end{aligned}
$$

Then we can write

$$
\begin{gathered}
\operatorname{Pr}(\boldsymbol{Y}=\boldsymbol{y})=\prod_{j=1}^{n} \mu_{j}^{y_{j}}\left(1-\mu_{j}\right)^{1-y_{j}} \\
\times\left(1+\sum_{j<k} \rho_{j k} r_{j} r_{k}+\sum_{j<k<l} \rho_{j k l} r_{j} r_{k} r_{l}+\ldots+\rho_{1, \ldots, n} r_{1} r_{2} \ldots r_{n}\right)
\end{gathered}
$$

Appealing because we have the marginal means μ_{j} and "nuisance" parameters.

Limitations:

Unfortunately, the correlations are constrained in complicated ways by the marginal means.
Example: consider measurements on a single individual, Y_{1} and Y_{2}, with means μ_{1} and μ_{2}. We have

$$
\operatorname{corr}\left(Y_{1}, Y_{2}\right)=\frac{\operatorname{Pr}\left(Y_{1}=1, Y_{2}=1\right)-\mu_{1} \mu_{2}}{\left\{\mu_{1}\left(1-\mu_{1}\right) \mu_{2}\left(1-\mu_{2}\right)\right\}^{1 / 2}}
$$

and

$$
\max \left(0, \mu_{1}+\mu_{2}-1\right) \leq \operatorname{Pr}\left(Y_{1}=1, Y_{2}=1\right) \leq \min \left(\mu_{1}, \mu_{2}\right),
$$

which implies complex constraints on the correlation.
For example, if $\mu_{1}=0.8$ and $\mu_{2}=0.2$ then $0 \leq \operatorname{corr}\left(Y_{1}, Y_{2}\right) \leq 0.25$.

Marginal Odds Ratios

An alternative is to parameterize in terms of the marginal means and the marginal odds ratios defined by

$$
\begin{aligned}
\gamma_{j k} & =\frac{\operatorname{Pr}\left(Y_{j}=1, Y_{k}=1\right) \operatorname{Pr}\left(Y_{j}=0, Y_{k}=0\right)}{\operatorname{Pr}\left(Y_{j}=1, Y_{k}=0\right) \operatorname{Pr}\left(Y_{j}=0, Y_{k}=1\right)} \\
& =\frac{\operatorname{Pr}\left(Y_{j}=1 \mid Y_{k}=1\right) / \operatorname{Pr}\left(Y_{j}=0 \mid Y_{k}=1\right)}{\operatorname{Pr}\left(Y_{j}=1 \mid Y_{k}=0\right) / \operatorname{Pr}\left(Y_{j}=0 \mid Y_{k}=0\right)}
\end{aligned}
$$

which is the odds that the j-th observation is a 1 , given the k-th observation is a 1 , divided by the odds that the j-th observation is a 1 , given the k-th observation is a 0 .

Hence if $\gamma_{j k}>1$ we have positive dependence between outcomes j and k.
It is then possible to obtain the joint distribution in terms of the means $\boldsymbol{\mu}$, where $\mu_{j}=\operatorname{Pr}\left(Y_{j}=1\right)$ the odds ratios $\boldsymbol{\gamma}=\left(\gamma_{12}, \ldots, \gamma_{n-1, n}\right)$ and contrasts of odds ratios

We need to find $\mathrm{E}\left[Y_{j} Y_{k}\right]=\mu_{j k}$, so that we can write down the likelihood function, or an estimating function.

For the case of $n=2$ we have

$$
\gamma_{12}=\frac{\operatorname{Pr}\left(Y_{1}=1, Y_{2}=1\right) \operatorname{Pr}\left(Y_{1}=0, Y_{2}=0\right)}{\operatorname{Pr}\left(Y_{1}=1, Y_{2}=0\right) \operatorname{Pr}\left(Y_{1}=0, Y_{2}=1\right)}=\frac{\mu_{12}\left(1-\mu_{1}-\mu_{2}+\mu_{12}\right)}{\left(\mu_{1}-\mu_{12}\right)\left(\mu_{2}-\mu_{12}\right)},
$$

and so

$$
\mu_{12}^{2}\left(\gamma_{12}-1\right)+\mu_{12} b+\gamma_{12} \mu_{1} \mu_{2}=0
$$

where $b=\left(\mu_{1}+\mu_{2}\right)\left(1-\gamma_{12}\right)-1$, to give

$$
\mu_{12}=\frac{-b \pm \sqrt{b^{2}-4\left(\gamma_{12}-1\right) \mu_{1} \mu_{2}}}{2\left(\gamma_{12}-1\right)} .
$$

		Y_{2}		
		0	1	
Y_{1}	0			$1-\mu_{1}$
	1		μ_{12}	μ_{1}
		$1-\mu_{2}$	μ_{2}	

Limitations

In a longitudinal setting (we add an i subscript to denote individuals), finding the $\mu_{i j k}$ terms is computationally complex.

Large numbers of nuisance odds ratios if n_{i} 's are large - assumptions such as $\gamma_{i j k}=\gamma$ for all i, j, k may be made.
Another possibility is to take

$$
\log \gamma_{i j k}=\alpha_{0}+\alpha_{1}\left|t_{i j}-t_{i k}\right|^{-1}
$$

so that the degree of association is inversely proportional to the time between observations.

Modeling Multivariate Binary Data Using GEE

For a marginal Bernoulli outcome we have

$$
\operatorname{Pr}\left(Y_{i j}=y_{i j} \mid \boldsymbol{x}_{i j}\right)=\mu_{i j}^{y_{i j}}\left(1-\mu_{i j}\right)^{1-y_{i j}}=\exp \left(y_{i j} \theta_{i j}-\log \left\{1+\mathrm{e}^{\theta_{i j}}\right\}\right),
$$

where $\theta_{i j}=\log \left(\mu_{i j} /\left(1-\mu_{i j}\right)\right.$, an exponential family representation.
For independent responses we therefore have the likelihood

$$
\operatorname{Pr}(\boldsymbol{Y} \mid \boldsymbol{x})=\exp \left[\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} y_{i j} \theta_{i j}-\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} \log \left\{1+\mathrm{e}^{\theta_{i j}}\right\}\right]=\exp \left[\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} l_{i j}\right] .
$$

To find the MLEs we consider the score equation:

$$
\boldsymbol{G}(\boldsymbol{\beta})=\frac{\partial l}{\partial \boldsymbol{\beta}}=\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} \frac{\partial l_{i j}}{\partial \theta_{i j}} \frac{\partial \theta_{i j}}{\partial \boldsymbol{\beta}}=\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} x_{i j}\left(y_{i j}-\mu_{i j}\right)=\sum_{i=1}^{m} \boldsymbol{x}_{i}^{\mathrm{T}}\left(\boldsymbol{y}_{i}-\boldsymbol{\mu}_{i}\right) .
$$

So GEE with working independence can be implemented with standard software, though we need to "fix-up" the standard errors via sandwich estimation.

Non-independence GEE

Assuming working correlation matrices: $\boldsymbol{R}_{i}(\boldsymbol{\alpha})$ and estimating equation

$$
\boldsymbol{G}(\boldsymbol{\beta})=\sum_{i=1}^{m} \boldsymbol{D}_{i}^{\mathrm{T}} \boldsymbol{W}_{i}^{-1}\left(\boldsymbol{y}_{i}-\boldsymbol{\mu}_{i}\right)
$$

where $\boldsymbol{W}_{i}=\boldsymbol{\Delta}_{i}^{1 / 2} \boldsymbol{R}_{i}(\boldsymbol{\alpha}) \boldsymbol{\Delta}_{i}^{1 / 2}$.
Here $\boldsymbol{\alpha}$ are parameters that we need a consistent estimator of (Newey 1990, shows that the choice of estimator for $\boldsymbol{\alpha}$ has no effect on the asymptotic efficiency).

Define a set of $n_{i}\left(n_{i}-1\right) / 2$ empirical correlations

$$
R_{i j k}=\frac{\left(Y_{i j}-\mu_{i j}\right)\left(Y_{i k}-\mu_{i k}\right)}{\left[\mu_{i j}\left(1-\mu_{i j}\right) \mu_{i k}\left(1-\mu_{i k}\right)\right]^{1 / 2}} .
$$

We can then define a set of moment-based estimating equations to obtain estimates of $\boldsymbol{\alpha}$.

First Extension to GEE

Rather than have a method of moments estimator for $\boldsymbol{\alpha}$, Prentice (1988) proposed using a second set of estimating equations for $\boldsymbol{\alpha}$. In the context of data with $\operatorname{var}\left(Y_{i j}\right)=v\left(\mu_{i j}\right)$:

$$
\begin{aligned}
& \boldsymbol{G}_{1}(\boldsymbol{\beta}, \boldsymbol{\alpha})=\sum_{i=1}^{m} \boldsymbol{D}_{i}^{\mathrm{T}} \boldsymbol{W}_{i}^{-1}\left(\boldsymbol{Y}_{i}-\boldsymbol{\mu}_{i}\right) \\
& \boldsymbol{G}_{2}(\boldsymbol{\beta}, \boldsymbol{\alpha})=\sum_{i=1}^{m} \boldsymbol{E}_{i}^{\mathrm{T}} \boldsymbol{H}_{i}^{-1}\left(\boldsymbol{T}_{i}-\boldsymbol{\Sigma}_{i}\right)
\end{aligned}
$$

where $R_{i j}=\left\{Y_{i j}-\mu_{i j}\right\} / v\left(\mu_{i j}\right)^{1 / 2}$, to give "data"

$$
\boldsymbol{T}_{i}^{\mathrm{T}}=\left(R_{i 1} R_{i 2}, \ldots, R_{i n_{i}-1} R_{i n_{i}}, R_{i 1}^{2}, \ldots, R_{i n_{i}}^{2}\right)
$$

$\boldsymbol{\Sigma}_{i}(\boldsymbol{\alpha})=\mathrm{E}\left[\boldsymbol{T}_{i}\right]$ is a model for the correlations and variances of the standardized residuals, $\boldsymbol{E}_{i}=\frac{\partial \Sigma_{i}}{\partial \alpha}$, and $\boldsymbol{H}_{i}=\operatorname{cov}\left(\boldsymbol{T}_{i}\right)$ is the working covariance model.
The vector \boldsymbol{T}_{i} has $n_{i}\left(n_{i}-1\right) / 2+n_{i}$ elements in general - the working covariance model \boldsymbol{H}_{i} is in general complex.

In the context of binary data Prentice (1988) the variances are determined by the mean and so the last n_{i} terms of \boldsymbol{T}_{i} are dropped; he also suggests taking a diagonal working covariance model, \boldsymbol{H}_{i}, i.e. ignoring the covariances. The theoetical variances ae given by
$\operatorname{var}\left(R_{i j} R_{i k}\right)=1+\left(1-2 p_{i j}\right)\left(1-2 p_{i k}\right)\left\{p_{i j}\left(1-p_{i j}\right) p_{i k}\left(1-p_{i k}\right)\right\}^{-1 / 2} \Sigma(\boldsymbol{\alpha})_{i j k}-\Sigma(\boldsymbol{\alpha})_{i j k}^{2}$
which depend on the assumed correlation model $\boldsymbol{\Sigma}$ - these may be taken as the diagonal elements of \boldsymbol{H}_{i}.

Application of GEE Extension to Marginal Odds Model

We have the marginal mean model

$$
\operatorname{logit} \mathrm{E}\left[Y_{i j} \mid \boldsymbol{X}_{i j}\right]=\boldsymbol{\beta} \boldsymbol{X}_{i j}
$$

Suppose we specify a model for the associations in terms of the marginal log odds ratios:

$$
\alpha_{i j k}=\log \left\{\frac{\operatorname{Pr}\left(Y_{i j}=1, Y_{i k}=1\right) \operatorname{Pr}\left(Y_{i j}=0, Y_{i k}=0\right)}{\operatorname{Pr}\left(Y_{i j}=1, Y_{i k}=0\right) \operatorname{Pr}\left(Y_{i j}=0, Y_{i k}=1\right)}\right\}
$$

These are nuisance parameters, but how do we estimate them?
Carey et al. (1992) suggest the following approach fo estimating $\boldsymbol{\beta}$ and $\boldsymbol{\alpha}$.
Let

$$
\begin{aligned}
\mu_{i j} & =\operatorname{Pr}\left(Y_{i j}=1\right) \\
\mu_{i k} & =\operatorname{Pr}\left(Y_{i k}=1\right) \\
\mu_{i j k} & =\operatorname{Pr}\left(Y_{i j}=1, Y_{i k}=1\right)
\end{aligned}
$$

It is easy to show that

$$
\begin{aligned}
\frac{\operatorname{Pr}\left(Y_{i j}=1 \mid Y_{i k}=y_{i k}\right)}{\operatorname{Pr}\left(Y_{i j}=0 \mid Y_{i k}=y_{i k}\right)} & =\exp \left(y_{i k} \alpha_{i j k}\right) \frac{\operatorname{Pr}\left(Y_{i j}=1, Y_{i k}=0\right)}{\operatorname{Pr}\left(Y_{i j}=0, Y_{i k}=0\right)} \\
& =\exp \left(y_{i k} \alpha_{i j k}\right)\left(\frac{\mu_{i j}-\mu_{i j k}}{1-\mu_{i j}-\mu_{i k}+\mu_{i j k}}\right)
\end{aligned}
$$

which can be written as a logistic regression model in terms of conditional probabilities:

$$
\begin{aligned}
\operatorname{logit} \mathrm{E}\left[Y_{i j} \mid Y_{i k}\right] & =\log \left(\frac{\operatorname{Pr}\left(Y_{i j}=1 \mid Y_{i k}=y_{i k}\right)}{\operatorname{Pr}\left(Y_{i j}=0 \mid Y_{i k}=y_{i k}\right)}\right) \\
& =y_{i k} \alpha_{i j k}+\log \left(\frac{\mu_{i j}-\mu_{i j k}}{1-\mu_{i j}-\mu_{i k}+\mu_{i j k}}\right)
\end{aligned}
$$

where the term on the right is a known offset (the μ 's are a function of $\boldsymbol{\beta}$ only). Suppose for simplicity that $\alpha_{i j k}=\alpha$ then given current estimates of $\boldsymbol{\beta}, \alpha$, we can fit a logistic regression model by regressing $Y_{i j}$ on $Y_{i k}$ for $1 \leq j<k \leq n_{i}$, to estimate α - this can then be used within the working correlation model. Carey et al. (1992) refer to this method as alternating logistic regressions.

Indonesian Children's Health Example

```
> summary(geese(y ~ xero+age,corstr="independence",id=id,family="binomial"))
Mean Model:
    Mean Link: logit
    Variance to Mean Relation: binomial
    Coefficients:
                    estimate san.se wald p
(Intercept) -2.38479528 0.117676276 410.699689 0.000000e+00
age -0.02605769 0.005306513 24.113112 9.083967e-07
xero 0.72015485 0.419718477 2.943985 8.619783e-02
Scale Model:
    Scale Link: identity
    Estimated Scale Parameters:
                    estimate san.se wald p
(Intercept) 0.977505 0.2766052 12.48871 0.0004094196
Correlation Model:
    Correlation Structure: independence
Number of clusters: 275 Maximum cluster size: 6
```

```
> summary(geese(y ~ age+xero, corstr="exchangeable", id=id,family="binomial"))
            estimate san.se wald p
(Intercept) -2.37015400 0.117210489 408.902887 0.000000e+00
age -0.02532507 0.005271204 23.082429 1.552026e-06
xero 0.58758892 0.449818037 1.706371 1.914569e-01
    Estimated Scale Parameters:
                estimate san.se wald p
(Intercept) 0.9681312 0.2618218 13.67278 0.0002175859
    Estimated Correlation Parameters:
        estimate san.se wald p
alpha 0.04423924 0.03222984 1.884079 0.1698713
> summary(geese(y ~ age+xero, corstr="ar1", id=id,family="binomial"))
    Coefficients:
            estimate san.se wald p
(Intercept) -2.37470963 0.11733291 409.620156 0.000000e+00
age -0.02597886 0.00528451 24.167452 8.831225e-07
xero 0.63692645 0.44374132 2.060245 1.511859e-01
    Estimated Scale Parameters:
                estimate san.se wald p
(Intercept) 0.9715817 0.2694961 12.99732 0.0003119374
    Estimated Correlation Parameters:
        estimate san.se wald p
alpha 0.05844094 0.04528613 1.665344 0.1968834
```


Conditional Likelihood: Binary Longitudinal Data

Recall that conditional likelihood is a technique for eliminating nuisance parameters, here what we have previously modeled as random effects.
Consider individual i with binary observations $y_{i 1}, \ldots, y_{i n_{i}}$ and assume the random intercepts model $Y_{i j} \mid \gamma_{i}, \boldsymbol{\beta} \sim \operatorname{Bernoulli}\left(p_{i j}\right)$, where

$$
\log \left(\frac{p_{i j}}{1-p_{i j}}\right)=\boldsymbol{x}_{i j} \boldsymbol{\beta}+\gamma_{i}
$$

where $\gamma_{i}=\boldsymbol{x}_{i} \boldsymbol{\beta}+b_{i}$ and $\boldsymbol{x}_{i j}$ (a slight change from our usual notation), are those covariates which change within an individual.

We have

$$
\begin{aligned}
\operatorname{Pr}\left(y_{i 1}, \ldots, y_{i n_{i}} \mid \gamma_{i}, \boldsymbol{\beta}\right) & =\prod_{j=1}^{n_{i}} \frac{\exp \left(\gamma_{i} y_{i j}+\boldsymbol{x}_{i j} \boldsymbol{\beta} y_{i j}\right)}{1+\exp \left(\gamma_{i}+\boldsymbol{x}_{i j} \boldsymbol{\beta}\right)} \\
& =\frac{\exp \left(\gamma_{i} \sum_{j=1}^{n_{i}} y_{i j}+\sum_{j=1}^{n_{i}} \boldsymbol{x}_{i j} y_{i j} \boldsymbol{\beta}\right)}{\prod_{j=1}^{n_{i}}\left[1+\exp \left(\gamma_{i}+\boldsymbol{x}_{i j} \boldsymbol{\beta}\right)\right]} \\
& =\frac{\exp \left(\gamma_{i} t_{2 i}+\boldsymbol{t}_{1 i} \boldsymbol{\beta}\right)}{\prod_{j=1}^{n_{i}}\left[1+\exp \left(\gamma_{i}+\boldsymbol{x}_{i j} \boldsymbol{\beta}\right)\right]} \\
& =\frac{\exp \left(\gamma_{i} t_{2 i}+\boldsymbol{t}_{1 i} \boldsymbol{\beta}\right)}{k\left(\gamma_{i}, \boldsymbol{\beta}\right)} \\
& =p\left(t_{1 i}, \boldsymbol{t}_{2 i} \mid \gamma_{i}, \boldsymbol{\beta}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{t}_{1 i} & =\sum_{j=1}^{n_{i}} \boldsymbol{x}_{i j} y_{i j}, \quad t_{2 i}=\sum_{j=1}^{n_{i}} y_{i j} \\
k\left(\gamma_{i}, \boldsymbol{\beta}\right) & =\prod_{j=1}^{n_{i}}\left[1+\exp \left(\gamma_{i}+\boldsymbol{x}_{i j} \boldsymbol{\beta}\right)\right] .
\end{aligned}
$$

We have

$$
L_{c}(\boldsymbol{\beta})=\prod_{i=1}^{m} p\left(\boldsymbol{t}_{1 i} \mid t_{2 i}, \boldsymbol{\beta}\right)=\prod_{i=1}^{m} \frac{p\left(\boldsymbol{t}_{1 i}, t_{2 i} \mid \gamma_{i}, \boldsymbol{\beta}\right)}{p\left(t_{2 i} \mid \gamma_{i}, \boldsymbol{\beta}\right)}
$$

where

$$
p\left(\boldsymbol{t}_{2 i} \mid \gamma_{i}, \boldsymbol{\beta}\right)=\frac{\sum_{l=1}^{\binom{n_{i}}{y_{i+}}} \exp \left(\gamma_{i} \sum_{j=1}^{n_{i}} y_{i j}+\sum_{k=1}^{n_{i}} \boldsymbol{x}_{i k} y_{i k}^{l} \boldsymbol{\beta}\right)}{k\left(\gamma_{i}, \boldsymbol{\beta}\right)}
$$

where the summation is over the $\binom{n_{i}}{y_{i+}}$ ways of choosing y_{i+} ones out of n_{i}, and $\boldsymbol{y}_{i}^{l}=\left(y_{i 1}^{l}, \ldots, y_{i n_{i}}^{l}\right), l=1, \ldots,\binom{n_{i}}{y_{i+}}$ is the collection of these ways.
Hence

$$
\begin{aligned}
L_{c}(\boldsymbol{\beta}) & =\prod_{i=1}^{m} \frac{\exp \left(\gamma_{i} \sum_{j=1}^{n_{i}} y_{i j}+\sum_{j=1}^{n_{i}} \boldsymbol{x}_{i j} y_{i j} \boldsymbol{\beta}\right)}{\sum_{l=1}^{\binom{n_{i}}{y_{i+}}} \exp \left(\gamma_{i} \sum_{j=1}^{n_{i}} y_{i j}+\sum_{k=1}^{n_{i}} \boldsymbol{x}_{i k} y_{i k}^{l} \boldsymbol{\beta}\right)} \\
= & \prod_{i=1}^{m} \frac{\exp \left(\sum_{j=1}^{n_{i}} \boldsymbol{x}_{i j} y_{i j} \boldsymbol{\beta}\right)}{\sum_{l=1}^{\binom{n_{i}}{y_{i+}}} \exp \left(\sum_{k=1}^{n_{i}} \boldsymbol{x}_{i k} y_{i k}^{l} \boldsymbol{\beta}\right)}
\end{aligned}
$$

Notes

- Can be computationally expensive to evaluate likelihood if n_{i} is large,
e.g. if $n_{i}=20$ and $y_{i+}=10,\binom{n_{i}}{y_{i+}}=184,756$.
- There is no contribution to the conditional likelihood from individuals:
- With $n_{i}=1$.
- With $y_{i+}=0$ or $y_{i+}=n_{i}$.
- For those covariates with $x_{i 1}=\ldots=x_{i n_{i}}=x_{i}$. The conditional likelihood estimates β 's that are associated with within-individual covariates. If a covariate only varies between individuals, then it cannot be estimated using conditional likelihood.
For covariates that vary both between and within individuals, only the within-individual contrasts are used.
- The similarity to Cox's partial likelihood may be exploited to carry out computation.
- We have not made a distributional assumption for the γ_{i} 's!

Examples:

If $n_{i}=3$ and $\boldsymbol{y}_{i}=(0,0,1)$ so that $y_{i+}=1$ then

$$
\boldsymbol{y}_{i}^{1}=(1,0,0), \quad \boldsymbol{y}_{i}^{2}=(0,1,0), \quad \boldsymbol{y}_{i}^{3}=(0,0,1),
$$

and the contribution to the conditional likelihood is

$$
\frac{\exp \left(\boldsymbol{x}_{i 3} \boldsymbol{\beta}\right)}{\exp \left(\boldsymbol{x}_{i 1} \boldsymbol{\beta}\right)+\exp \left(\boldsymbol{x}_{i 2} \boldsymbol{\beta}\right)+\exp \left(\boldsymbol{x}_{i 3} \boldsymbol{\beta}\right)} .
$$

If $n_{i}=3$ and $\boldsymbol{y}_{i}=(1,0,1)$ so that $y_{i+}=2$ then

$$
\boldsymbol{y}_{i}^{1}=(1,1,0), \quad \boldsymbol{y}_{i}^{2}=(1,0,1), \quad \boldsymbol{y}_{i}^{3}=(0,1,1),
$$

and the contribution to the conditional likelihood is

$$
\frac{\exp \left(\boldsymbol{x}_{i 1} \boldsymbol{\beta}+\boldsymbol{x}_{i 3} \boldsymbol{\beta}\right)}{\exp \left(\boldsymbol{x}_{i 1} \boldsymbol{\beta}+\boldsymbol{x}_{i 2} \boldsymbol{\beta}\right)+\exp \left(\boldsymbol{x}_{i 1} \boldsymbol{\beta}+\boldsymbol{x}_{i 3} \boldsymbol{\beta}\right)+\exp \left(\boldsymbol{x}_{i 2} \boldsymbol{\beta}+\boldsymbol{x}_{i 3} \boldsymbol{\beta}\right)} .
$$

