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CHAPTER 11: SPATIAL DATA

So far we have concentrated on longitudinal data; we now consider spatial data.

Two important distinctions are between lattice and non-lattice data. and

between point data, and data aggregated over space.

Pure spatial data are fundamentally different from longitudinal data from

multiple individuals, since they are a single realization. In this sense they are

closer to time series data, though such data are often regularly spaced (which

under assumptions of stationarity allows simplification of estimation), whereas

with spatial data it is usual to have non-lattice data.

This lack of replication aspect of non-lattice data dictates that sandwich

estimation is not available. Hence we concentrate on likelihood-based methods.

Space-time data do offer replication.
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Motivating Examples

Example: Zinc levels in the Netherlands

This data set gives locations and top soil heavy metal concentrations (in ppm),

along with a number of soil and landscape variables, collected in a flood plain

of the river Meuse, near the village Stein in the South of the Netherlands.

Heavy metal concentrations are bulk sampled from an area of approximately

15m × 15m.

We may be interest in modeling the concentrations as a function of covariates

(spatial regression), or predicting the concentration surface, which requires

modeling the residual surface.
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R code for analysis of the zinc data, using the GeoR package:

> library(geoR)

> data(meuse)

> zmat <- matrix(cbind(meuse$x,meuse$y,log(meuse$zinc)),

ncol=3,nrow=155,byrow=F)

> geozinc <- as.geodata(zmat,coords.col=c(1,2),data.col=c(3))

> plot(geozinc)

Figures 40 and 41 were created using the following code.

> cloudzinc <- variog(geozinc,option="cloud")

> plot(cloudzinc)

> binzinc0 <- variog(geozinc,uvec=seq(0,5000,250))

> plot(binzinc0)
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Figure 39: Exploratory plots for log zinc.
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Figure 40: Variogram cloud for the log zinc data.
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Figure 41: Binned variogram for the log zinc data.
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Childhood Asthma in Anchorage, Alaska

Study details:

• Study PI is Dr Mary Gordian. Data were collected on first grade children

in Anchorage, with questionnaires being sent to the parents of children in

13 school districts (the return rate was 70% which has implications for

interpretation).

• We analyze data on 905 children, with 885 between the ages of 5 and 7.

There were 804 children without asthma, and 101 with asthma.

• The exposure of interest is exposure to pollution from traffic. Traffic counts

were recorded at roads throughout the study region and a 50m buffer was

created at the nearest intersection to the child’s residential address and

within this buffer traffic counts were aggregated (for confidentiality reasons

the exact locations were not asked for in the survey).

Figure 42 shows the residential location of the cases and non-cases in

Anchorage.
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Figure 42: Asthma cases (△) and non-cases (+) in Anchorage.
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Naive non-spatial logistic modeling

• Initially we may ignore confounding and the spatial nature of the data and

fit a logistic regression of asthma incidence on exposure (with the exposure

variable scaled to lie between 0 and 10).

• Such an analysis gives an odds ratio of 1.09 with a 90% confidence interval

of 1.00–1.18.

• This analysis assumes that, given exposure, the Bernoulli 0/1 labels are

independent. Due to unmeasured variables with spatial structure this is

dubious and will result in inappropriate standard errors.
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Scottish Lip Cancer Data

Incidence rates of lip cancer in males in 56 counties of Scotland, registered in

1975–1980. These data were originally reported in the mapping atlas of Kemp,

Boyle, Smans and Muir (1985).

The form of the data is:

• Observed and expected number of cases (based on the county age

populations),

• A covariate measuring the proportion of the population engaged in

agriculture, fishing, or forestry (AFF),

• The standardized morbidity ratio,

• The projections of the longitude and latitude of the area centroid, and the

“position” of each county expressed as a list of adjacent counties.
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County Obs Exp Prop SMR Project Projext Adjacent

No. i Cases Yi Cases Ei AFF N (km) E (km) Counties

1 9 1.4 0.16 6.43 834.7 162.2 5,9,19

2 39 8.7 0.16 4.48 852.4 385.8 7,10

3 11 3.0 0.10 3.67 946.1 294.0 12

4 9 2.5 0.24 3.60 650.5 377.9 18,20,28

5 15 4.3 0.10 3.49 870.9 220.7 1,12,19

6 8 2.4 0.24 3.33 1015.2 340.2 Island

7 26 8.1 0.10 3.21 842.0 325.0 2,10,13,16,17

8 7 2.3 0.07 3.04 1168.9 442.2 Island

9 6 2.0 0.07 3.00 781.4 194.5 1,17,19,23,29

...

47 2 5.6 0.01 0.36 640.8 277.0 24,31,46,48,49,53

48 3 9.3 0.01 0.32 654.7 282.0 24,44,47,49

49 28 88.7 0.00 0.32 666.7 267.8 38,41,44,47,48,52,53,54

50 6 19.6 0.01 0.31 736.5 342.2 21,29

51 1 3.4 0.01 0.29 678.9 274.9 34,38,42,54

52 1 3.6 0.00 0.28 683.7 257.8 34,40,49,54

53 1 5.7 0.01 0.18 646.6 265.6 41,46,47,49

54 1 7.0 0.01 0.14 682.3 267.9 34,38,49,51,52

55 0 4.2 0.16 0.00 640.1 321.5 18,24,30,33,45,56

56 0 1.8 0.10 0.00 589.9 322.2 18,20,24,27,55
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Figure 43: Labels for 56 counties of Scotland.
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Figure 44: SMRs for male lip cancer in 56 counties of Scotland.
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Figure 45: Map of proportion of individuals in agriculture, fishing and farming,

for 56 counties of Scotland.
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Inference for Spatial Regression

We may extend the GLMM approaches to the spatial setting.

Inference may then proceed via likelihood or Bayesian methods.

Suppose we have data Yi with spatial location si (latitude and longitude, for

example), along with covariates xi, i = 1, ..., n. An obvious GLMM is then

Random Component: Yij |θij , α ∼ p(·) where p(·) is a member of the

exponential family, that is

p(yi|θi, α) = exp[{yiθi − b(θi)})/a(α) + c(yi, α)],

for i = 1, ..., m locations.
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Systematic Component: If µi = E[Yi|θi, α] then we have a link function g(·),

with

g(µi) = xiβ + δi,

so that we have introduced random effects into the linear predictor. The above

defines the conditional part of the model. The spatial effects are then assigned

a distribution, and in a spatial setting it is natural to assume

δ = (δ1, ..., δn)T ∼iid Nn(0,Σ),

where Σ = Σ(α) is an n × n covariance matrix We also have

var(Yi|θi, α) = αv(µi).
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Covariance Models

Many choices are available for the variance-covariance model Σ. A simple

choice has

Σij = σ2
δ exp(−φ | si − sj |),

for i, j = 1, ..., m, with σ2
δ
, φ > 0. This model is isotropic since the covariance

only depends on the distance between points.

Obvious links with the AR(1) models we considered in longitudinal data

analysis (but here we have no replication over units).

It is sometimes useful to think of the δi’s as arising from a Gaussian Random

Field (GRF). Specifically, a random field δ(s) ∈ R2 is a (bivariate) Gaussian

random field if δ(s1), ..., δ(sn) is multivariate normal for any si ∈ R2,

i = 1, ..., n. This allows us to do prediction to arbitrary locations.

An obvious extension to the linear predictor is to add independent and

identically random effect also. For example, we might fit the model

g(µi) = xiβ + δi + ǫi,

with ǫi ∼iid N(0, σ2
ǫ ), i = 1, ..., n.

363

2008 Jon Wakefield, Stat/Biostat 571

Example: Zinc Measurements

For these data a natural starting point is a Gaussian model

Assume we have data Yi, i = 1, ..., n with (possibly after transformation):

Y = (Y1, ..., Yn) ∼ Nn(µ,Σ)

where µ = µ(β) = (µ1, ..., µn) with regression parameters β and Σ = Σ(α) is

an n × n variance-covariance matrix, with parameters α.

Hence we have log-likelihood

l(β, α) = −
1

2
log |Σ| −

1

2
(Y − µ)TΣ

−1(Y − µ).

In general, there are not closed from estimators.
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Covariance Models

With a nugget effect σ2
ǫ we have

Σ = σ2
ǫ I + σ2

δR

where I is the n × n identity matrix, and R is an n × n correlation matrix.

We have already seen the common spatial exponential model with correlations

Rij = exp(−dijφ)

and dij = |si − sj |.
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GeoR Example: Modeling of zinc concentration

Figure 46 was created using the following code, and removes the linear effects
of distance and elevation from the log zinc measurements:

> binzinc <- variog(geozinc,uvec=seq(0,5000,250),trend=~meuse$dist+meuse$elev)

> plot(binzinc)
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Figure 46: Binned variogram for the log zinc data, after removal of distance from

river and elevation covariates effect.
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Figure 47 was created using the following set of code:

> olsfit <- variofit(binzinc,ini=c(.2,500),weights="equal")

> wlsfit <- variofit(binzinc,ini=c(.2,500))

> mlfit <- likfit(geozinc,ini=c(.2,224),trend=~meuse$dist+meuse$elev)

> mlfit

beta0 beta1 beta2 tausq sigmasq phi

" 8.6162" " -2.1072" " -0.2690" " 0.0010" " 0.2065" "241.1982"

likfit: maximised log-likelihood = -54.66

> remlfit<-likfit(geozinc,ini=c(.55,224),method="RML",trend=~meuse$dist+meuse$elev)

> remlfit

beta0 beta1 beta2 tausq sigmasq phi

" 8.6396" " -2.1215" " -0.2701" " 0.0061" " 0.2248" "289.1468"

likfit: maximised log-likelihood = -52.85

> plot(binzinc,max.dist=3000)

> lines(olsfit,max.dist=3000)

> lines(wlsfit,max.dist=3000,lty=2)

> lines(mlfit,max.dist=3000,lty=3)

> lines(remlfit,max.dist=3000,lty=4)

> legend(1500,.075,legend=c("OLS","WLS","ML","REML"),lty=c(1,2,3,4),bty="n")
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Figure 47: Binned variogram with fitted models.
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Prediction of a Spatial Surface

We now describe how to construct a predicted spatial surface for a continuous

variable. We construct on a geostatistical technique known as kriging, which

has many flavors.

Consider the model

Yi = xiβ + δi + ǫi

for the observed data Y1, ..., Yn. We have a noisy version of a spatial process.

We suppose that we would like to predict the underlying spatial surface, S0, at

a location s0.

Hence we wish to predict

S0 = x0β + δ0

where δ0 is the spatial random effect associated with location s0.

We have seen that an optimal estimator is:

eS0 = E[S0|Y ]

To get specific forms we need to have a more detailed model.

369

2008 Jon Wakefield, Stat/Biostat 571

Consider the model

Yi = xiβ + δi + ǫi

where Ui are spatial effects with δ = (δ1, ..., δn) ∼ Nn(0, σ2
δ
R) and

ǫi ∼iid N(0, σ2
ǫ ).

Then we have
2
4 S0

Y

3
5 ∼ Nn+1

0
@

2
4 x0β

xβ

3
5 ,

2
4 σ2

δ σ2
δRT

0

σ2
δ
R0 σ2

ǫ I + σ2
δ
R

3
5

1
A

where R0 is an n × 1 column vector with i-th entry describing the correlation

between locations s0 and si, i = 1, ..., n.

Then, using properties of the multivariate normal distribution

eS0 = E[S0|Y ] = x0β + σ2
δRT

0 (σ2
ǫ I + σ2

δR)−1(Y − xβ)

= x0β +

nX

i=1

wiri

where wi are a set of weights and ri = Yi − xiβ are the set of residuals.
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Note that if there is no spatial dependence (σ2
δ

= 0) the weights are zero and

we only have contributions from x0. The sizes of the weights depend on the

proximity of the new location to the n data points, and on the magnitude of

the spatial dependence, in comparison with the non-spatial.

The variance of the prediction is given by

var(eS0) = σ2
δ − σ2

δRT
0 (σ2

ǫ I + σ2
δR)−1R0σ2

δ

The above estimator may also be justified as the best linear unbiased estimator

(if the data are not Gaussian then the optimal estimator will not necessarily be

linear in the data).

In practice estimates of β, α are substituted into the above formulas.
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Example: Predictions of log zinc

Figure 48 is the raw data (note the reference box which we carry out prediction
over later) and was created using the commands:

> points(geozinc,pt.divide="rank.prop")

> abline(h=330000,lty=2);abline(h=332000,lty=2)

> abline(v=179000,lty=2);abline(v=181000,lty=2)

Now we detrend the data and then look at the residuals in Figure 49:

> lmfit <- lm(geozinc$data~meuse$dist+meuse$elev)

> lmfit

Coefficients:

(Intercept) meuse$dist meuse$elev

8.4845 -1.9600 -0.2607

> detrend <- as.geodata(cbind(geozinc$coords,lmfit$residuals))

> points(detrend,pt.divide="rank.prop")

> abline(h=330000,lty=2);abline(h=332000,lty=2)

> abline(v=179000,lty=2);abline(v=181000,lty=2)
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Figure 48: Values of log zinc at sampling locations.
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Figure 49: Values of log residuals, after removing effect of distance from river

and elevation.

374



2008 Jon Wakefield, Stat/Biostat 571

Now we carry out Kriging on the residual surface. Figures 50 and 51 show the
predicted surface and the standard error surface (note the low standard errors
at the sampling points) and were created using the following code:

> mlfit2 <- likfit(detrend,ini=c(.2,224))

> mlfit2

beta tausq sigmasq phi

" 0.0306" " 0.0000" " 0.2076" "238.0914"

likfit: maximised log-likelihood = -54.82

> pred.grid <- expand.grid(seq(179000,181000,l=51),seq(330000,332000,l=51))

> kc <- krige.conv(detrend,loc=pred.grid,krige=krige.control(obj.m=mlfit2))

> image(kc,loc=pred.grid,val=kc$predict,col=gray(seq(1,.1,l=30)))

> image(kc, val=sqrt(kc$krige.var),col=gray(seq(1,.1,l=30)))
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Figure 50: Predicted spatial residual surface.
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Figure 51: Standard error of prediction of residual.
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Childhood Asthma

We carried out a number of regression models from a Bayesian perspective.

Table 12 summarizes these analyses for the odds ratio of interest. We consider

the model:

• Stage 1:

Yi|xi, δi ∼ Bernoulli{p(xi, δi)},

for i = 1, . . . , n, where Yi is the case/non-case status, xi is a vector

containing the exposure of interest and confounders, and δi represent

unmeasured spatial effect.

• Stage 2:

logit {p(x, bi)} = xiβ + δ(si),

where δi = δ(si) is a realization of a GRF.

• Stage 3: Priors on β and the parameters of the GRF.

Adjustment for spatial dependence was carried out with covariances between

points d apart being given by σ2
δ

exp(−dφ).
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The results are almost identical across the different models, all giving evidence

of an association between asthma and exposure to traffic.

The prior on φ was uniform on (0,50) and the posterior median was 25 with

95% credible interval was 2–49, indicating that the prior has hardly been

changed.

The spatial variance parameter σ2
δ

has posterior median 0.002, again providing

evidence that there is no evidence of spatial dependence in the residuals.

Adjust for Adjustment for Odds Ratio 95% Interval

confounders spatial exp(β)

No No 1.08 0.99–1.20

Yes No 1.08 0.98–1.20

No Yes 1.08 0.98–1.19

Yes Yes 1.08 0.97–1.19

Table 12: Odds ratio summaries (posterior medians and credible intervals) under

various models.
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Scottish Lip Cancer Data

The individual-level model Yij ∼iid Bernoulli(eβ0+β1xij ) for individual i,

j = 1, ..., Ni, leads to

Yi ∼iid Poisson(Ni{(1 − xi)e
β0 + xie

β0+β1}),

i = 1, ..., m.

Random effects can be added to the linear predictor, spatial or non-spatial (or

both). Here there is a large change in e
bβ1 , because the exposure has spatial

structure.

Model Relative risk St. Err.

Quasi-likelihood 22.7 7.0

Non-spatial ǫ 22.5 7.8

GRF model (δ) 6.3 3.0

Table 13: Estimates and standard errors for individual relative risk, eβ1 .

380



2008 Jon Wakefield, Stat/Biostat 571

For a Bayesian analysis we require a proper prior on α1.

Assigning an improper uniform prior to β0 we integrate this parameter from

the model to give

p(β1|y) ∝

nY

i=1

„
Ni[(1 − xi) + xie

β1 ]Pn
i=1

Ni[(1 − xi) + xieβ1 ]

«yi

,

which tends to the constant

nY

i=1

„
Ni(1 − xi)Pn

i=1
Ni(1 − xi)

«yi

(49)

as β1 → −∞, showing that a proper prior is required. The constant (49) is

non-zero unless xi = 1 in any area with yi 6= 0.

The reason for the impropriety is that β1 = −∞ corresponds to a relative risk

of zero, so that exposed individuals cannot get the disease, which is not

inconsistent with the observed data unless xi = 1 in an area (all individuals are

exposed), and yi 6= 0, in which case clearly the cases are due to exposure. A

similar argument holds as β1 → ∞ with replacement of 1 − xi by xi in (49)

providing the limiting constant. Figure 52 illustrates this behavior for the

Scottish lip cancer example, for which xi = 0 in five areas.
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Figure 52: Log posterior for β1 for the Scottish data; the horizontal line is the

constant to which this function tends to as β1 → ∞.
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GeoBUGS has spatial models, and allows maps to be drawn.

model

{

for (i in 1 : N) {

Y[i] ~ dpois(mu[i])

log(mu[i]) <- log(E[i]) +

log( (1-X[i])*exp(beta0) + X[i]*exp(beta0+beta1)) + delta[i]

mean[i] <- 0

}

# Multivariate prior distribution for spatial random effects:

delta[1:N] ~ spatial.exp(mean[], xm[], ym[], tau.delta, phi, 1)

#

# The following prior is derived by assuming there is a 5% chance that corrs

# die to 0.5 in < 5km, and a 95% chance that they die to 0.5 in < 100km.

dhalf ~ dlnorm(3.107,0.9106)

phi <- 0.6931/dhalf

beta0 ~ dflat()

# Prior says 50% RR less than one, 95% less than 50.

beta1 ~ dnorm(0.0,0.1768)

tau.delta ~ dgamma(1,0.260)

# Parameters of interest

base <- exp(alpha0)

RRx <- exp(alpha1)

}
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list(N = 56, Y = c( 9, 39, 11, 9, 15, 8, 26, 7, 6, 20, 13, 5, 3, 8, 17, 9, 2, 7,

9, 7, 16, 31, 11, 7, 19, 15, 7, 10, 16, 11,5, 3, 7, 8, 11, 9, 11, 8,

6, 4, 10, 8, 2, 6, 19, 3, 2, 3, 28, 6, 1, 1, 1, 1, 0, 0), E = c(

1.4, 8.7, 3.0, 2.5, 4.3, 2.4, 8.1, 2.3, 2.0, 6.6, 4.4, 1.8, 1.1,

3.3, 7.8, 4.6, 1.1, 4.2, 5.5, 4.4, 10.5,22.7, 8.8, 5.6,15.5,12.5,

6.0, 9.0,14.4,10.2, 4.8, 2.9, 7.0, 8.5,12.3,10.1,12.7, 9.4, 7.2,

5.3, 18.8,15.8, 4.3,14.6,50.7, 8.2, 5.6, 9.3,88.7,19.6, 3.4, 3.6,

5.7, 7.0, 4.2, 1.8),X = c(0.16,0.16,0.10,0.24,0.10,0.24,0.10, 0.07,

0.07,0.16, 0.07,0.16,0.10,0.24, 0.07,0.16,0.10, 0.07, 0.07,0.10,

0.07,0.16,0.10, 0.07, 0.01, 0.01, 0.07, 0.07,0.10,0.10,

0.07,0.24,0.10, 0.07, 0.07, 0,0.10, 0.01,0.16, 0, 0.01,0.16,0.16, 0,

0.01, 0.07, 0.01, 0.01, 0, 0.01, 0.01, 0, 0.01, 0.01,0.16,0.10),

xm = c(

162.1894, 385.7761, 293.9555, 377.9338, 220.6786,340.1739, 324.9915, 442.2445, 194.5176, 367.6924,

112.8916, 247.7566, 289.5922, 227.9563, 342.3574,351.3505, 280.4916, 341.6081, 249.6855, 359.5902,

348.7138, 388.7655, 180.4228, 295.4908, 333.1159,312.0605, 290.1701, 359.4153, 291.3727, 303.4219,

257.4402, 264.9711, 336.4464, 258.0319, 227.1801,234.5294, 218.3428, 279.1010, 235.0805, 254.1736,

250.8301, 287.1202, 292.3773, 288.0333, 320.5682,257.8758, 276.9737, 281.9644, 267.8444, 342.226,

274.8713, 257.8069, 265.5934, 267.8921, 321.4991,322.1780),

ym =c(834.7496, 852.3782, 946.0722, 650.501,870.9356, 1015.154, 842.0317, 1168.904, 781.3746,

828.219, 903.1592, 924.9536, 842.3052, 561.1628,713.0808, 792.1617, 801.0356, 628.6406, 825.8545,

610.6554, 760.2982, 812.7655, 699.6693, 635.7658,701.8189, 691.102, 586.6673, 669.4746, 746.2605,

670.1395, 605.9585, 568.3428, 658.671, 716.452,598.2521, 668.0481, 641.4785, 670.285, 697.044,

677.589, 657.4675, 680.7535, 699.3761, 665.2905,671.6064, 631.046, 640.8285, 654.6629, 666.7073,

736.4561, 678.8585, 683.7104, 646.5754, 682.2943,640.1429, 589.9408))
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