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CHAPTER 13: HYPOTHESIS TESTING

In this chapter we discuss:

• Frequentist and Bayesian approaches to testing a single hypothesis.

• Multiple hypothesis testing, including variable selection.

Testing hypotheses is very context specific; we consider three distinct scenarios:

1. Confirmatory analyses in which an a priori hypothesis concerning a

particular response/covariate relationship is of interest, and other variables

have been measured and we wish to know which to adjust for.

2. Exploratory analyses where the aim is to gain clues as to structure in the

data. For example, which covariates are causally related to a response, or

characterizing sources of variability.

3. Prediction in which we are not concerned with causality, but merely with

predicting a response given a set of variables.
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Frequentist hypothesis testing

Suppose we are interested in the null hypothesis:

H0 : β = 0

and we have a statistic T , with large values being increasingly unlikely under

the null. The observed value is tobs.

Possibilities for T :

• Squared Wald statistic from a regression analysis.

• Score statistic.

Under regularity conditions, T →n χ2
1 under the null, as n → ∞. If n is not

large then permutation/Monte Carlo can be used to give the distibution of the

statistic under the null.
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Interpetation of p-values

The Pr(T > t|H0) = 1 − F (T ) is uniform under the null. Let

p = Pr(T > tobs|H0)

denote the observed p-value — the probability of observing tobs, or a more

extreme value under the null.

Historically there has two approaches to the use of the above approach.

• Fisher and the pure test of significance. Quote the observed p-value as the

measure of evidence against the null. No concept of rejecting the null in

terms of the alternative, as there is no alternative!

No long-run frequency control of the type I error — α = Pr(T > tfix), the

probability of rejection of the null when it is true.

• Neyman-Pearson: specify an alternative hypothesis (with H0 nested in

H1), and then evaluate the likelihood ratio statistic.

Use of the Neyman-Pearson lemma to find, for fixed α, the most powerful

test. Decision rule: if p < α reject the null; under a fixed threshold this

procedure controls the type I error.
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Critique of Fisherian approach

• How do we decide on whether p is small or not, i.e. how to decide on a

threshold for significance?

• With large sample sizes we will always obtain small p-values because

although the p-value is still uniform under the null, we will be able to

detect very subtle departures from the null with a large sample size:

– To rectify this a confidence interval for β is often given along with the

p-value, so that the scientific significance of the departure can be

determined.

– Suggests that the p-value threshold should decrease with increasing n.

• What is the prescription for finding a suitable T , particularly when we have

nuisance parameters? Intuitively we want a statistic that takes large values

(has high power) for realistic alternatives.

• Another aspect of p-values is that they use a tail area and

Pr(H0|T > tobs) < Pr(H0|T = tobs).
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Critique of Neyman-Pearson approach

• How do we decide on a size α?

• The emphasis is on fixing α, but this should also decrease with increasing n.

• Just stating that a p-value less than α was achieved is throwing away

information — but if we give an observed p-value, how do we interpret.

• What if H0 and H1 are both wrong (always true in practice!).

Under both approaches, wouldn’t we rather know Pr(H0|y)? This requires a

Bayesian approach.
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Bayesian decision theory approach to hypothesis testing

Under a Bayes decision theory approach to hypothesis testing the “decision” δ

is taken that minimizes the posterior expected loss.

L(δ, H) Decision

δ = 0 δ = 1

H0 0 Lα
Truth H

H1 Lβ 0

Table 14: Losses corresponding to the decision δ, when the truth is H, Lα is the

loss associated with a type I error and Lβ with a type II error.
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For hypothesis testing we have two possible data generating mechanisms:

H0 → β0|H0 → y|β0

H1 → β1|H1 → y|β1

As always in the Bayesian approach in which unknowns are treated as random,

the true hypothesis H is viewed as an unknown parameter for which the

posterior may be derived.

We have the posterior probability of Hj :

Pr(Hj |y) =
p(y|Hj) × πj

p(y)

with πj the prior probability of hypothesis Hj and

p(y|Hj) =

Z
p(y|βj)f(βj |Hj) dβj

where f(βj |Hj) is the prior distribution over the parameters associated with

hypothesis Hj , j = 1, 2.
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With respect to Table 14, the posterior expected loss associated with the

decision δ is

E[L(δ, H)] = L(δ, H0) Pr(H0|y) + L(δ, H1) Pr(H1|y)

so that for the two possible decisions (accept/reject H0) the expected losses are:

E[L(δ = 0, H)] = 0 × Pr(H0|y) + Lβ Pr(H1|y)

E[L(δ = 1, H)] = Lα Pr(H0|y) + 0 × Pr(H1|y)
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To find the decision that minimizes posterior expected loss, we therefore need

to take the smaller of:

E[L(δ = 0, H)] = Lβ × Pr(H1|y)

E[L(δ = 1, H)] = Lα × Pr(H0|y).

We should choose δ = 1 if

Lβ × Pr(H1|y) ≥ Lα Pr(H0|y)

i.e. if
Pr(H1|y)

1 − Pr(H1|y)
≥ Lα

Lβ

or

Pr(H1|y) ≥ Lα/Lβ

1 + Lα/Lβ
.

Hence we only need to specify the ratio of losses.

If equal errors choose H1 if Pr(H1|y) > Pr(H0|y).
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Rearranging we can say that we should decide on H1 if

Pr(H0|y)

Pr(H1|y)
= Bayes factor × π0

π1
<

Lβ

Lα

where

Bayes factor =
p(y|H0)

p(y|H1)
=

Posterior Odds

Prior Odds
.

So if a type I error is 4 times as bad as a type II error we should choose H1 if

the posterior odds on H0 drop below 0.25.
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Critique of Bayes Approach

• Need to specify prior distributions on all parameters under null and

alternative, and on the hypotheses. In general cannot get away with

improper priors when hypothesis testing is considered (unlike estimation).

• All of the calculations above should be conditioned on H0 ∪ H1 — we are

really obtaining the posterior probability of the null given one of the null or

alternatives is true, and under our assumed data and prior models.

• The calculation of the Bayes factor requires integals, which will usually be

intractable.

• How to decide on the ratio of losses?
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Calibrating p-values

Let data = T > tobs — we want Pr(H0| data ) but to obtain this we must

specify alternatives – consider a simple alternative, say H1 : β = β1.

Then

Pr(H0| data ) =
Pr( data |H0)π0

Pr( data |H0)π0 + Pr( data |H1)π1

where πj = Pr(Hj), j=0, 1. Dividing by Pr(H1| data ):

Posterior Odds of H0 =
Pr( data |H0)

Pr( data |H1)
× Prior Odds of H0

=
p-value

power at H1
× Prior Odds of H0

which depends on:

• The prior on H0, π0.

• The power, Pr( data |H1) — greater power, more “evidence” in p-value.
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Sellke, Bayarri and Berger (2001) show that for a p-value p < 1/e:

Pr(H0| data ) ≥


1 − 1

e p log p
× π1

π0
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The interpretation of p-values

Sanity check! Why does anyone use p-values?

Historically it was usual to carry out single experiments and the prior on the

alternative was not tiny.

With π0 = 0.5:

• p-value = 0.05 gives Pr(H0| data ) > 0.29.

• p-value = 0.01 gives Pr(H0| data ) > 0.11.

But perhaps this is one of the reasons so many “findings” are not reproducible

(along with confounding, multiple testing, errors-in-variables,...).
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Variable Selection

We define the null model as that which contains an intercept only, the minimal

model as the smallest model which is consistent with prior information.

So for example, in an epidemiological investigation we would almost always

want to include terms for age and gender.

The minimal model may also be a function of the design so in matched

case-control studies we include a term for each of the matching sets. Similarly

in clinical trials in which treatments are randomized within a priori chosen

strata, we again will include a term for strata.
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Selection of Regressors

Trade-off: as we include more covariates, bias is reduced, but variability may be

increased, dependent on how strong a predictor the covariate is (and its

association with other covariates) — this is why we don’t fit the full model.

We now describe some of the approaches to subset selection that have been

proposed in the literature:

Forward selection. Begins with the simplest model. At each stage the ‘best’

unselected variable that satisfies the selection criterion is added. Best here is

defined to be that variable whose deviance (or Wald or score statistic) is

largest. This variable is added to the regression if its statistic is greater than a

threshold of a specified significance level. This value, is contentious. Note that

a maximum of p models will be considered in this procedure (out of 2p).

Backward elimination. Begins with the full model. At each stage the covariate

with the smallest deviance value that is less than a specified value is removed.

Stepwise regression (Efroymson’s algorithm). Follows forward selection with

backward elimination.
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Difficulties

There are a number of problems with selection methods (Miller, 1990). In the

conventional use of a hypothesis test, for the correct interpretation of

significance levels the hypotheses must be specified before the data are

examined. Note: same problem with transformations of y and/or x, choice of

variance models and error distributions.

As a Bayesian all of the possible models that will be fitted should be assigned,

priorm with model averaging producing the summaries, averaging over all

models.

Similarly for interval estimates to be valid the model must be specified a priori.

There now exists great potential for over-fitting in which models become too

dataset-specific as they are refined on the basis of the examination of

diagnostics.

In practice, if refinement is carried out through the fitting of alternative models

(e.g. transformation of covariates, choice of distribution for the responses), then

interval estimates will often be too narrow since they are produced by

conditioning on the final model, and hence do not reflect the mechanism by

which the model was selected.
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We illustrate some of the difficulties of model selection with two simple

examples.

Example 1: If we carry out a single hypothesis test and report the estimate of

β1 in a simple linear regression only if the null hypothesis of β1 = 0 is rejected.

Figure 53 results – the bias is clear.

There are close links with publication bias in meta-analysis.

402



2008 Jon Wakefield, Stat/Biostat 571

(a)

β̂1

F
re

qu
en

cy

−1 0 1 2 3

0
50

0
10

00
15

00

(b)

β̂1

F
re

qu
en

cy

−1 0 1 2 3

0
50

0
10

00
15

00

Figure 53: E[bβ1] = 1.00, while E[bβ1| rejection of H0] = 1.27. 403
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Example 2: Suppose we are interested in β1 but we wish to “control” for β2 by

testing whether the latter is significant.

In the following simulation, a multiple linear regression in X1 and X2 was

carried out. The true values were β1 = β2 = 1 and X1, X2 were simulated from

a bivariate normal with means zero, variances one, and correlation 0.7.

Figure 54 shows the results, in (a) we display the sampling distributions of bβ1

from the adjusted model. The mean and standard deviation of the distribution

of bβ1 are 1.00 and 1.23.

Panel (b) displays the sampling distribution of the reported estimator.

The mean and standard deviation of the distribution of the reported estimate of

β1 are 1.23 and 1.01, respectively, showing positive bias and a reduced variance.
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Figure 54: (a) Sampling distribution of bβ1, (b) sampling distribution of bβ1 given

“control” for the possibility that β2 6= 0.
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Frequentist model selection difficulties

From a frequentist standpoint estimators and test statistics should be

examined via their long-run behaviour given the model-fitting process,

including refinement. To be more explicit, let P denote the procedure by which

a final model M is decided upon. Then suppose it is of interest to examine the

bias of a statistic T ,

E[T |P ] = EM|P {E[T |M ]}. (50)

In general it will be incorrect to report T | cM where cM is the final model

chosen, since this does not reflect the procedure by which cM was chosen, but

rather acts as if the final model is the “truth”.

We know that

var(T |P ) = EM|P [var(T |M)] + varM|P (E[T |M ]).

but var(T |cM) is reported (which approximates the first term only).

Under a frequentist approach inference follows from the behaviour of an

estimator under repeated sampling.
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Bayesian model selection difficulties

From a Bayesian standpoint the same problem of dredging exists because the

posterior distribution should reflect all sources of uncertainty and a priori all

possible models that may be entertained should be explicitly stated, with prior

distributions being placed upon different likelihoods and the parameters of

these likelihoods.

Model averaging (see later) should then be carried out across the different

possibilities, a process which is fraught with difficulties not least in placing

“comparable” priors over what may be fundamentally different objects.

(One solution is to place prior on “model-free” quantities.)
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Model Averaging

Suppose the action concerns a parameter of interest T (which for simplicity we

assume is univariate) that is well-defined for all models.

We have

E[T |y] =
JX

j=1

E[T |y, Mj ] × Pr(Mj |y),

and

var(T |y) =

JX

j=1

var(T |y, Mj) × Pr(Mj |y)

+

JX

j=1

{E[T |y, Mj ] − E[T |y]}2 × Pr(Mj |y).

This latter term shows how not only parameter uncertainty but model

uncertainty is accounted for.

• Specification of priors is not trivial.

• Interpretation.

• Continuous model expansion.
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A possible compromise

One solution is to never refine the model for a given data set. This approach is

operationally pure but pragmatically dubious (unless one is in the context of a

randomized experiment) since we may obtain appropriate inference for a model

that is a very poor description of the phenomenon under study.

The philosophy suggested here is to think as carefully as possible about the

initial model class before the analysis proceeds, but after fitting to carry out

model checking and refine the model in the face of clear model misspecification,

with refinement ideally being carried out within distinct a priori known classes.

With reference to (50), if a model is chosen because it is clearly superior to the

alternatives, then it may be reasonable to assume that E[T | P ] ≈ E[T | cM ],

because cM would be consistently chosen in repeated sampling under these

circumstances.

So, for example, examining quantile-quantile plots for different t distributions

and picking the one that produces the straightest line would not be a good idea.

Inference then proceeds as if the final model were the one that were chosen

initially. This is clearly a subjective procedure but can be informally justified

via either philosophical approaches.
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In a similar vein, under a Bayesian approach the above procedure is consistent

with model-averaging but with the posterior model weight being concentrated

upon the chosen model (since alternative models are only rejected on the basis

of clear inadequacy).

The aim is to provide probability statements, from either philosophical

standpoints that are “honest” representations of uncertainty. The above

approach is relevant to analyses that are more confirmatory in their outlook, as

opposed to being used for prediction, or for more exploratory purposes (for

example, to gain clues to models that may be appropriate for future data

analyses).
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Conclusions

• For Confirmatory studies – try to avoid any model selection. Use

background context to specify model.

• Exploratory studies – stepwise and all subsets may point to important

variables, but attaching a p-value is difficult. Model averaging is another

possibility.

• Prediction – some form of shrinkage should be used. Cross-validation may

be used to choose a model. Bayesian model averaging also useful.
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Lindley’s Paradox

Lindley (1957) gave a much-quoted example in which Bayesian and frequentist

inference differ.

We assume that Y |θ ∼ N(θ, σ2/n) with σ2 known and θ unknown.

We first state Lindley’s paradox, without loss of generality suppose the null is

H0 : θ = 0, with alternative H1 : θ 6= 0.

Let

yn = Zpσ/
√

n

where p is the p-value and Zp is the corresponding quantile of the normal

distribution, i.e. that Zp such that Pr(Z > Zp) = p/2 = Pr(Z < −Zp).

We define yn in this way so that as n increases the p-value remains constant.
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For a Bayesian analysis assume that we assign π0 to H0, and under the

alternative θ ∼ N(0, τ2). Then we have

Pr(H0|yn) =
BF × PO

1 + BF × PO

where the Bayes factor is given by

BF =
p(yn|H0)

p(yn|H1)

and PO = π0/(1 − π0) is the prior odds.

We have

yn|H0 ∼ N(0, σ2/n)

yn|H1 ∼ N(0, σ2/n + τ2)

so that

BF =

(2πσ2/n)−1/2 exp

»
− y2

n

2σ2/n

–

(2π[σ2/n + τ2])−1/2 exp
h
− y2

n

2(σ2/n+τ2)

i
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For σ2 = 1, τ2 = 0.22, π0 = 0.5, p = 0.05 and n = 1, ..., 100, 000, Figure 55

shows the posterior probability of the null as a function of n.

From the starting position of Pr(H0|yn) = 0.5 the curve initially falls, reaching

a minimum at around n = 100, and then increases towards 1, illustrating the

“paradox”.

For large values of n, yn is very close to the null value of 0, but there is high

power to detect any difference from 0, and so a p-value of 0.05 is not difficult to

achieve.

The Bayes factor calculates the density under the alternative also, and values

close to 0 are more likely under the null, Figure 56 illustrates for n = 1000, the

green vertical line denotes yn.
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Figure 55: Posterior probability of the null for a fixed p-value of 0.05.
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Figure 56: Numerator (blue) and denominator (red) of the Bayes factor for

n = 1000. The green line represents yn for this n.
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Bayesian analysis with a tail-area

We now consider a Bayesian analysis in which the data appear in the form of

knowing that |Y n| ≥ yn, a censored observation. This is clearly not realistic

since a Bayesian would condition on the actual value observed, but it does

allow considerations of statements about power made by several authors.

We have

BF =
Pr(|Y n| ≥ yn|H0)

Pr(|Y n| ≥ yn|H1)

so that the numerator is the p-value, and the denominator is given by

Pr(|Y n| ≥ yn|H1) =

Z
Pr(|Y n| ≥ yn|θ)π(θ)dθ

=

Z ˘
Pr(Y n ≥ yn|θ) + Pr(Y n ≤ −yn|θ)

¯
π(θ)dθ

=

Z 
Φ

„
Z ≥

√
n(y − θ)

σ

«
+ Φ

„
Z ≤

√
n(−y − θ)

σ

«ff
π(θ)dθ

where Z ∼ N(0, 1), so that we are evaluating the average of the power over the

prior π(θ).

We emphasize that it is the post-data power that is being evaluated, i.e. it is

based on the observed value of the statistic.

417

2008 Jon Wakefield, Stat/Biostat 571

Figure 57 gives the average power as a function of n, and we see a monotonic

increase with sample size towards the value 1.

Hence, as seen in Figure 58 the Bayes factor based on the tail-area information

is monotonic decreasing towards the p-value as n increases (with π0 = 0.5 this

gives the posterior probability of the null also). Hence this justifies the claims

of a number of authors that greater credence should be given to p-values based

on large sample sizes/power.

The difference in behavior between a genuine Bayesian analysis that conditions

on the actual statistic and that based on the tail area is apparent.

As noted by Lindley (1957, p. 189–190), “...the paradox arises because the

significance level argument is based on the area under a curve and the Bayesian

argument is based on the ordinate of the curve”.
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Figure 57: Average power under the N(0, 0.22) prior for a fixed p-value of 0.05.
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Figure 58: Bayes factor based on the observed tail area.
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Multiple Hypothesis Testing

In subgroup analyses we want to examine the data for effects in different

sub-groups.

Possibilities when m tests are performed and K are flagged as requiring further

attention:

Non-Flagged Flagged

H0 A B m0

H1 C D m1

m − K K m

• m0 is the number of true nulls.

• B is the number of type I errors.

• C is the number of type II errors.

How do we select a rule that will determine K?
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The Statistical Set-Up

The p-value was introduced in a single test situation to control the Type I error

rate – historically the emphasis was placed on avoiding a Type I error.

The family-wise error rate (FWER) is the probability of making at least one

Type I error, i.e. Pr(B ≥ 1| all H0 true ).

More recently there has been more interest in the false discovery rate — the

expected proportion of rejected nulls that are actually true, see Benjamini and

Hochberg (1995) and Storey (2002).
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Let Bi be the event that the i-th null is incorrectly rejected, so that

B = ∪m
i=1Bi is the total number of incorrectly rejected nulls.

The FWER is given by:

α = Pr(B ≥ 1| all H0 true ) = Pr (∪m
i=1Bi| all H0 true )

≤
mX

i=1

Pr(Bi| all H0 true )

= mα⋆

where α⋆ is the level for each test.

Bonferroni takes α⋆ = α/m to give FWER ≤ α.

For control at α = 0.05 with m = 10 tests take α⋆ = 0.05/10 = 0.005.

Such stringent rules lead to a loss of power, but not ridiculous if you think

there is a reasonable chance that all nulls could be true
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Bayesian Bonferroni

If we have prior probability of the null π0i = π0 for i = 1, ..., m then

Π0 = Pr( prior probability that all nulls are true) = πm
0

For example, if π0 = 0.5 and m = 10, Π0 = 0.00098, which may be deemed too

small.

Westfall et al. (1997) show that if we take π0i = Π
1/m
0 (so that the probability

that all nulls are true is Πo) — call this prior 2 — then for independent tests

we have approximately

αB = Pr(H0i|yi, prior 2 ) ≈ m × Pr(H0i|yi, prior 1 ) = m × α⋆
B

where prior 1 is π0i = Π0.
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CHAPTER 14: MISSING DATA

A serious problem in data analysis is the existence of missing data. We

concentrate on missing responses in a dependent data situation.

Implications of missing data:

1. Data are unbalanced – not a problem given modern regression techniques.

2. Information loss.

3. Depending on the mechanism of missingness, bias in estimation may result.

Missing data can arise in numerous ways, and understanding the mechanism is

crucial to appropriate modeling assumptions.

In a longitudinal study, if drop-out occurs at a certain time then no additional

data are observed after that point.
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Examples:

1. In a health-air pollution study an individual may be unavailable for

measurement because he/she took a job in another area.

2. In a clinical trial, patients may be removed from the study if their

longitudinal measurements are below/above some limit.

3. Censoring – measurement instruments may be inaccurate below a lower

limit of detection, this limit is then reported.

4. The value of the outcome may itself determine the missingness, but the

outcome is unobserved.

In 1, the missingness will not be a problem unless the person moved area

because of health problems. In 2, the missingness will be a function of the

responses on previous occasions, while in 3 and 4 it depends on the actual

measurement that would have been recorded.
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Example: Simulated Data

Data were simulated in which the data (m = 200, ni = 10, i = 1, ..., m) were

generated from a linear mixed model in which intercepts and slopes are random

(and independent), with measurement error and β0 = 100, β1 = −5.

Figure 59 shows the resultant data.

We then simulated drop-out by a mechanism in which if the outcome falls below

65, the subsequent observations are lost (but we retain the initial one below 65).

Figure 60 shows the resultant data (509 data points were lost).
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Figure 59: Full simulated data set: solid line is truth and dashed the LS line.
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Figure 60: Simulated data set with drop-out: solid line is truth and dashed the

LS line.
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Mechanisms of Missingness

The impact of missing data depends crucially on the mechanism of missingness,

that is the probability model for missingness.

We let Ri be a vector of response indicators for the i-th units so that

Rij =

8
<
:

1 if Yij is observed

0 if Yij is missing

We partition the complete data vector Y i = (Y O
i , Y M

i ) into those components

that are observed, Y O
i , and those that are missing Y M

i .

There are two ways of factroring the data:

p(Y , R | x) = p(Y | x) × p(R | Y , x)

p(Y , R | x) = p(Y | R, x) × p(R | x)

The first is known as a selection model (individuals are selected according to

their outcome), and the second as a pattern mixture model (we “mix” pattern

specific models). We concentrate on the former.
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Three situations are distinguished:

1. Missing completely at random (MCAR).

2. Missing at random (MAR).

3. Not missing at random (NMAR).

each of which we now discuss in detail.

Unfortunately the terminology is confusing!
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Missing Completely at Random (MCAR)

Data are MCAR if

Pr(Rij = 1 | Y O, Y M , x) = Pr(Rij | x),

so that the missingness does not depend on the response data, observed or

unobserved.

This implies that

E[Yij |Rij = 1, Xi] = E[Yij |Xi]

No selection bias.

Missing at Random (MAR)

Data are MCAR if

Pr(Rij = 1 | Y O , Y M , x) = Pr(Rij | Y O, x),

so that the missingness may depend on observed values.

This implies that

E[Yij |Rij = 1, Xi] 6= E[Yij |Xi]

which suggests that the GEE approach might be in trouble in terms of biased

parameter estimates.
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Not Missing at Random (NMAR)

If the missingness depends on Y M , i.e.

Pr(Rij = 1 | Y O, Y M , x) = Pr(Rij | Y O , Y M , x).

In this case the mechanism is also sometimes referred to as non-ignorable.

This selection bias is not fixable, since we don’t know the outcomes that caused

the problems. Models can be postulated, but are not checkable from the

observed data alone.

In general it is obviously best if we know why the data are missing.
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Approaches

Complete-case analysis

A simple approach is to exclude units that did not provide data at all intended

occasions. Clearly there is a loss of information in this process, and bias will

result unless the data are MCAR. Not to be recommended.

Available-case analysis

This approach uses the largest set of available data for estimating parameters.

Will provide biased estimates unless the data are MCAR.

Last observation carried forward

In a longitudinal setting we could simply “fill-in” the missing values,

extrapolating from the last observed value. As a general method not to be

recommended.

Imputation

An appealing approach is to “fill-in”, or impute, the missing values and then

carry out a conventional analysis. Complex models for the missingness can be

incorporated (closely related to data augmentation which we describe later).
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Likelihood-based approach

Let θ be the parameters of the model for Y , and φ the parameters for R.

In general, a natural way to decompose the data as

p(Y O , Y M , R | θ, φ) = p(Y O, Y M | θ, φ) × Pr(R | Y O, Y M , θ, φ)

= p(Y O, Y M | θ) × Pr(R | Y O, Y M , φ)

where we have also assumed that the data and missingness models have

distinct parameters.

We require a distribution for the observed data, Y O , R:

p(Y O, R | θ, φ) =

Z
p(Y O , Y M | θ) × Pr(R | Y O, Y M , φ) dY M .

This is an example of a selection model.

435

2008 Jon Wakefield, Stat/Biostat 571

Suppose we are in the MAR situation so that

Pr(R | Y O , Y M , φ) = Pr(R | Y O , φ).

In this situation the likelihood is given by

p(Y O, R | θ, φ) =

Z
p(Y O , Y M | θ) dY M × Pr(R | Y O, φ)

= p(Y 0 | θ) × Pr(R | Y O, φ)

Hence we have the log-likelihood

log p(Y 0 | θ) + log Pr(R | Y O, φ)

and can ignore the second term and don’t have to model the missingness

mechanism.

Important Point: We need to get the model right!!!
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Simulation Study

Model bβ1 (s.e.) bβ2 (s.e.)

GEE ind 101.0 0.715 −5.084 0.109

GEE exch 101.0 0.715 −5.084 0.109

LMEM1 101.0 0.981 −5.084 0.037

LMEM2 101.0 0.720 −5.084 0.109

GEEiDO ind 95.0 0.894 −2.796 0.134

GEEDO exch 98.8 0.787 −4.304 0.114

LMEM1DO 98.8 0.837 −4.282 0.041

LMEM2DO 100.1 0.722 −5.097 0.112

Table 15: Results of GEE and LMEM analyses of full and drop-out simulated

data, LMEM1 is random intercepts only, LMEM2 is random intercepts and

slopes.

• Bias for GEE is bad (particularly working independence).

• Bias for LMEM if we only assume random intercepts (terrible se on bβ2).

• LMEM with random intercepts and slopes recovers the truth.
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Models for Drop-out

If the missingness is monotone, in the sense that if Rij = 0 then Rik = 0 for all

k > j, then we define the drop-out time as

Di = min
k

{Rik = 0}.

Hence 2 ≤ Di ≤ ni + 1, with Di = ni + 1 for an individual that does not drop

out.

The reason for drop-out may be that the individual was not responding well,

and their outcomes reflect this.

To examine this possibility we could fit logistic models of the form:

log

„
Pr(Di = k|Di ≥ k, Yi1, ...., Yik)

Pr(Di > k|Di ≥ k, Yi1, ...., Yik)

«
= φ0 + φ1Yik−1

and look for evidence that φ1 6= 0.
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Bayesian Inference via Data Augmentation

Data augmentation is a auxiliary variable method that treats the missing

observations as unknown parameters – this can lead to simple MCMC schemes.

General formulation: we have posterior

p(θ, Y M | Y O) = p(θ | Y M , Y O)p(Y M | Y O)

= p(Y M | θ, Y O)p(θ | Y O)

MCMC scheme:

1. Auxiliary variables:

Y M ∼ p(Y M | Y O , θ).

2. Model parameters:

θ ∼ p(θ | Y O , Y M ).

The auxiliary variable scheme may be modified to p(Y M | Y O, θ) ∼ p(Y M | θ),

depending on the missing data model, as we now illustrate.
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Example: Censoring Model

Suppose we have data Yi measured at times ti, j = 1, ..., n, but measurements

below the lower limit of detection, D (assumed known) are not recorded. Also

suppose that the data generating model (likelihood) is:

Y | β, σ ∼ind N(η(β, t), σ2).

Clearly setting such measurements to zero or ignoring the measurements will

lead to bias in estimation.

Figure 61 illustrates for a set of simulated data in which the true slope was

-0.01; the slope estimates are -0.0099, -0.0095 and -0.0087 for the full data, set

equal to D and ignored schemes, respectively.
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Figure 61: All data (left), assigned to lower limit (middle), ignored (right).

Horizontal line is the lower limit of detection.
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Suppose that the last c measurements are censored, the remaining n − c being

uncensored. Then

p(y | θ) =

n−cY

i=1

p(yi | β, σ2)
nY

i=c+1

Pr(Yi < D | β, σ2)

=

n−cY

i=1

φ

„
yi − η(β, ti)

σ

« nY

i=c+1

Φ

„
D − η(β, ti)

σ

«

where

φ(z) = (2π)−1/2 exp(−z2/2)

and

Φ(z0) = Pr(Z < z0) =

Z z0

−∞
φ(z) dz

where Z is an N(0, 1) random variable.

To perform likelihood or Bayesian inference we need to numerically evaluate the

distribution function of a normal distribution for each likelihood calculation.
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Data Augmentation Scheme

Letting Y O = {Yi, i = 1, ..., n − c} and Y M = {Yi, i = n − c + 1, ..., n}, we

iterate between

1. yi | β, σ ∼ TruncNorm(η(β, ti), σ
2), on (−∞, D), i = n − c + 1, ..., n.

2. β | y1, ..., yn, σ2 ∝ Qn
i=1 p(yi | β, σ2)π(β). Usual (uncensored) posterior.

3. σ2 | y1, ..., yn, β ∝ Qn
i=1 p(yi | β, σ2)π(σ2). Usual (uncensored) posterior.

We give an example in a different context — survival analysis with censored

data.

443

2008 Jon Wakefield, Stat/Biostat 571

Related Example: Survival Analysis with Censored Data

From the WinBUGS manual: Mice: Weibull regression

Dellaportas and Smith (1993) analyse data from Grieve (1987) on

photocarcinogenicity in four groups, each containing 20 mice, who have

recorded a survival time and whether they died or were censored at that time.

A portion of the data, giving survival times in weeks, are shown below.

A * indicates censoring.

Mouse Irradia Vehicle Test Positive

control control substan control

________________________________________________________

1 12 32 22 27

.......

18 *40 30 24 12

19 31 37 37 17

20 36 27 29 26
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The survival distribution is assumed to be Weibull. That is

p(ti, zi) = r exp(βzi)t
r−1
i exp{− exp(βzitir)}

where ti is the failure time of an individual with covariate vector zi and β is a

vector of unknown regression coefficients. The baseline hazard is given by

λ0(ti) = rtr−1
i .

Setting µi = exp(βzi) gives the parameterization

ti ∼ Weibull(r, µi)

For censored observations, the survival distribution is a truncated Weibull, with

lower bound corresponding to the censoring time. The regression coefficients β

are assumed a priori to follow independent Normal distributions with zero

mean and “vague” precision 0.0001. The shape parameter r for the survival

distribution was given a Gamma(1, 0.0001) prior, which is slowly decreasing on

the positive real line.

Median survival for individuals with covariate vector zi is given by

mi = (log 2 exp(−βzi))
1/r.
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WinBUGS code

model

{

for(i in 1 : M) {

for(j in 1 : N) {

t[i, j] ~ dweib(r, mu[i])I(t.cen[i, j],)

}

mu[i] <- exp(beta[i])

beta[i] ~ dnorm(0.0, 0.001)

median[i] <- pow(log(2) * exp(-beta[i]), 1/r)

}

r ~ dexp(0.001)

veh.control <- beta[2] - beta[1]

test.sub <- beta[3] - beta[1]

pos.control <- beta[4] - beta[1]

}
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list(t = structure(.Data = c(12, 1, 21, 25, 11, 26, 27, 30, 13, 12,

21, 20, 23, 25, 23, 29, 35, NA, 31, 36, 32, 27, 23, 12, 18, NA, NA,

38, 29, 30, NA, 32, NA, NA, NA, NA, 25, 30, 37, 27, 22, 26, NA, 28,

19, 15, 12, 35, 35, 10, 22, 18, NA, 12, NA, NA, 31, 24, 37, 29, 27,

18, 22, 13, 18, 29, 28, NA, 16, 22, 26, 19, NA, NA, 17, 28, 26, 12,

17, 26), .Dim = c(4, 20)), t.cen = structure(.Data = c( 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0, 40, 40,

0, 0, 0, 40, 0, 40, 40, 40, 40, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0,

0, 0, 0, 0, 24, 0, 40, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0,

0, 0, 29, 10, 0, 0, 0, 0, 0, 0), .Dim = c(4, 20)), M = 4, N = 20)

We note a number of tricks in setting up this model.

First, individuals who are censored are given a missing value in the vector of

failure times t, whilst individuals who fail are given a zero in the censoring time

vector t.cen.

447

2008 Jon Wakefield, Stat/Biostat 571

The truncated Weibull is modelled using I(t.cen[i],) to set a lower bound.

Second, we set a parameter beta[j] for each treatment group j. The contrasts

beta[j] with group 1 (the irradiated control) are calculated at the end.

Alternatively, we could have included a grand mean term in the relative risk

model and constrained beta[1] to be zero.

node mean sd MC error 2.5% median 97.5% start sample

median[1] 23.9 1.967 0.05889 20.3 23.89 28.09 1001 10000

median[2] 35.2 3.359 0.04757 29.46 34.93 42.64 1001 10000

median[3] 26.9 2.383 0.0582 22.62 26.79 31.91 1001 10000

median[4] 21.4 1.799 0.03362 18.2 21.32 25.36 1001 10000

pos.control 0.3409 .3457 0.00723 -0.327 0.3429 1.009 1001 10000

r 3.03 0.3182 0.02749 2.388 3.045 3.64 1001 10000

test.sub -0.351 0.3459 0.004433 -1.035 -0.3541 0.3303 1001 10000

veh.control -1.16 0.3679 0.005974 -1.893 -1.156 -0.444 1001 10000
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GEE Approaches

Suppose that if the full data had been observed there would have been ni

observations on each individual, i = 1, ..., m.

We write the usual estimating equation as

G(β) =
mX

i=1

DT
i W−1

i Ri(Y i − µi)

where Ri is the diagonal matrix with elements Rij , j = 1, ..., ni.

For the estimator, bβ to be consistent we require G to be unbiased. The random

variables are now Y , R and so we have

EY,R[G(β)] = ER{EY |R[G(β)]}

=
mX

i=1

ERi
{EYi|Ri

[DT
i W−1

i Ri(Y i − µi)]}

=
mX

i=1

ERi
{DT

i W−1
i RiEYi|Ri

[Y i − µi]}

=

mX

i=1

ERi
{DT

i W−1
i Ri

`
EYi|Ri

[Y i] − µi

´
}
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Hence, to obtain an unbiased estimating equation we require

E[Y i | Ri, xi] = E[Y i | xi] = µi

so that we are fine under MCAR but not under MAR, since the distribution of

Y i | xi, Ri is different from that of Y i | xi under MAR.

To rectify the situation we need to modify the usual estimating equation.
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Let

πij = E[Rij | xi, Hi,j−1]

where Hi,j−1 = (Yi1, ..., Yi,j−1) contains the “history” of responses.

Consider the estimating equation:

mX

i=1

DT
i W−1

i P i(Y i − µi)

where P i is a diagonal matrix which contains terms Rij/πij , for j = 1, ..., ni.

We have

EY

(
mX

i=1

ER|Y

h
DT

i W−1
i P i(Y i − µi)

i)
= EY

(
mX

i=1

DT
i W−1

i ER|Y [P i](Y i − µi)

)
= 0

since E[P i] = I if πij is correctly specified.

In both GEE and likelihood we are basically accounting for the biased sampling

scheme of MAR; likelihood does this by assuming a model, while GEE adjusts

by modeling the probabilities of seeing the data.
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