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CHAPTER: MULTILEVEL MODELS

We have so far considered dependencies within data, when given a single set of

random effects units were viewed as independent — in these situations we have

a single layer of clustering.

In many situations there are multiple levels of clustering, and in this case

hierarchical or multilevel models can be specified to acknowledge that units

within the same clusters tend to produce more similar responses.

A crucial distinction is between nested and cross-classified observations. In the

simplest case we have an array of observations which we denote by Yij in which

the labelling of the repeat observations within each i (indexed by j) is

essentially arbitrary, so that j = 1 at i = 1 has no meaningful connection with

j = 1 at i = 2. We say that the second suffix is nested within the first. For

example, in a study of school performance, children are nested within schools

within a school district.

By contrast, Yij can be thought of as a row by column A × B array in which

the column labelling retains the same meaning for each row i — we say that

rows are crossed with columns. For example, we may have machines and

workers crossed with machines.
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Example: Television School and Family Smoking Prevention and Cessation

Project (TVSFP)

Reference: Flay et al. (1995), reanalyzed by Fitzmaurice, Laird and Ware

(2004).

The TVSFP was a study designed to determine the efficacy of a school-based

smoking prevention curriculum in conjunction with a television-based

prevention program, in terms of preventing smoking onset and increasing

smoking cessation.

The study used a 2 × 2 factorial design, with four intervention conditions

determined by the cross-classification of a school-based social-resistance

curriculum (CC: coded 1 = yes, 0 = no) with a television-based prevention

program (TV: coded 1 = yes. 0 = no). Randomization to one of the four

intervention conditions was at the school level, while much of the intervention

was delivered at the classroom level. The original study involved 6695 students

in 47 schools in Southern California. This dataset consists of a subset of 1600

seventh-grade students from 135 classes in 28 schools in Los Angeles. The

response variable, a tobacco and health knowledge scale (THKS), was

administered before and after randomization of schools to one of the four

intervention conditions. The scale assessed a student’s knowledge of tobacco

and health — high numbers are better.
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TVdat <- read.table("TV.dat",col.names=c("schoolID","classID","CC","TV","Pre.THKS","Y"))

> TVdat[1:5,]

schoolID classID CC TV Pre.THKS Y

1 403 403101 1 0 2 3

2 403 403101 1 0 4 4

3 403 403101 1 0 4 3

4 403 403101 1 0 3 4

5 403 403101 1 0 3 4

> TVdat[1595:1600,]

schoolID classID CC TV Pre.THKS Y

1595 515 515113 0 0 2 0

1596 515 515113 0 0 2 1

1597 515 515113 0 0 1 1

1598 515 515113 0 0 2 1

1599 515 515113 0 0 3 2

1600 515 515113 0 0 3 3

> dim(TVdat)

[1] 1600 6
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Models for the TVSFP Data

We consider a linear model for the post-intervention THKS score, with the

pre-intervention THKS score as a covariate. We include main effects for CC and

TV, along with the interaction.

Here we have three level data: individuals (level 1), classrooms (level 2) and

schools (level 3).

School and classroom effects were incorporated via the introduction of random

effects at levels 3 and 2 respectively. We let Yijk be the post-intervention score

for the k-th student within the j-th classroom in school i; i = 1, ..., 28,

j = 1, ..., 135, k = 1, ..., 1600.

Hence we have the model:

Yijk = β0 + β1Pre.THKSijk + β2CCi + β3TVi + β4CCi × TVi + bi + bij + ǫijk

where bi ∼iid N(0, σ2

3
), bij ∼iid N(0, σ2

2
) and ǫijk ∼iid N(0, σ2

1
) with bi, bij , ǫijk

independent.
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Marginal Moments

Marginal mean:

E[Yijk] = β0 + β1Pre.THKSijk + β2CCi + β3TVi + β4CC× TVi

Marginal correlation between scores on classmates is:

corr(Yijk, Yijk′) =
σ2

2
+ σ2

3

σ2

1
+ σ2

2
+ σ2

3

Marginal correlation between scores on childen from different class rooms in the

same school is:

corr(Yijk, Yij′k′) =
σ2

3

σ2

1
+ σ2

2
+ σ2

3

We now fit this model — note the use of the / symbol.
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> TVmod1 <- lme(Y~Pre.THKS+CC+TV+CC:TV,data=TVdat,random=~1|schoolID/classID)

> summary(TVmod1)

Linear mixed-effects model fit by REML

Random effects:

Formula: ~1 | schoolID

(Intercept)

StdDev: 0.1965707

Formula: ~1 | classID %in% schoolID

(Intercept) Residual

StdDev: 0.2542862 1.265818

Fixed effects: Y ~ Pre.THKS + CC + TV + CC:TV

Value Std.Error DF t-value p-value

(Intercept) 1.7019852 0.12543005 1464 13.569198 0.0000

Pre.THKS 0.3053628 0.02589132 1464 11.794021 0.0000

CC 0.6413260 0.16094730 24 3.984696 0.0005

TV 0.1820802 0.15724055 24 1.157972 0.2583

CC:TV -0.3309400 0.22458558 24 -1.473559 0.1536

Number of Observations: 1600

Number of Groups:

schoolID classID %in% schoolID

28 135
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Let’s drop the interaction.

> TVmod2 <- lme(Y~Pre.THKS+CC+TV,data=TVdat,random=~1|schoolID/classID)

> summary(TVmod2)

andom effects:

Formula: ~1 | schoolID

(Intercept)

StdDev: 0.1981275

Formula: ~1 | classID %in% schoolID

(Intercept) Residual

StdDev: 0.261783 1.265338

Value Std.Error DF t-value p-value

(Intercept) 1.7849270 0.11294585 1464 15.803387 0.0000

Pre.THKS 0.3052393 0.02589749 1464 11.786441 0.0000

CC 0.4714724 0.11330446 25 4.161110 0.0003

TV 0.0195612 0.11330016 25 0.172649 0.8643
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Now let’s drop TV from the model.

> TVmod3 <- lme(Y~Pre.THKS+CC,data=TVdat,random=~1|schoolID/classID)

> summary(TVmod3)

Random effects:

Formula: ~1 | schoolID

(Intercept)

StdDev: 0.1891069

Formula: ~1 | classID %in% schoolID

(Intercept) Residual

StdDev: 0.2616994 1.265362

Fixed effects: Y ~ Pre.THKS + CC

Value Std.Error DF t-value p-value

(Intercept) 1.7934267 0.09495984 1464 18.886160 0e+00

Pre.THKS 0.3055676 0.02588490 1464 11.804859 0e+00

CC 0.4723229 0.11088966 26 4.259395 2e-04

> TVmod4 <- lm(Y~Pre.THKS+CC+TV+CC:TV,data=TVdat)

> summary(TVmod4)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.66126 0.08436 19.693 < 2e-16 ***

Pre.THKS 0.32518 0.02585 12.578 < 2e-16 ***

CC 0.64055 0.09210 6.955 5.14e-12 ***

TV 0.19871 0.08996 2.209 0.0273 *

CC:TV -0.32162 0.13025 -2.469 0.0136 *
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The estimated marginal correlation between scores on classmates is:

corr(Yijk, Yijk′) =
bσ2

2
+ bσ2

3

bσ2

1
+ bσ2

2
+ bσ2

3

=
0.2622 + 0.1892

1.2652 + 0.2622 + 0.1892
= 0.061

Estimated marginal correlation between scores on childen from different classes

in the same school is:

corr(Yijk, Yij′k′) =
bσ2

3

bσ2

1
+ bσ2

2
+ bσ2

3

=
0.1892

1.2652 + 0.2622 + 0.1892
= 0.021

These are small — but it makes a huge difference to conclusions to ignore them

as we see from model TVmod4 in which the interaction and both main effects are

significant.
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Example: Childhood outcomes in Guatemala

In the final you will analyze data from a study in which the binary outcome was

a full set of immunizations, given at least some immunization. The aim was to

see how this outcome varies with individual, family and community variables.

In this study there were 2159 children aged 1–4, with multiple pregancies per

mother (1595 mothers), and across 161 communities. We might expect that

outcomes from the same mother to be correlated, and outcomes within the

same community to be correlated.

Covariates can be measured at various levels:

Individual

• Child aged ≥ 2 years.

• Mother aged ≥ 25.

• Birth order 2–3.

• Birth order 4–6.

• Birth order ≥ 7.
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Family

• Indigenous, no Spanish.

• Indigenous, Spanish.

• Mother’s education primary.

• Mother’s education secondary or better.

• Husband’s education primary.

• Husband’s education secondary or better.

• Husband’s education missing.

• Mother ever worked.

Community

• Rural.

• Proportion indigenous, 1981.
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Let pijk be the probability of a full set of immunizations, given at least some

on the k-th child in the j-th family in the i-th community.

We may then consider models of the form

log

„
pijk

1 − pijk

«
= β0 + β

1
xijk + β

2
xij + β

3
xi + bij + bi

where xijk, xij and xi represent vectors of covariates at the individual, family

and community levels, respectively, with corresponding fixed effects β1, β2 and

β3; bij ∼iid N(0, σ2

2
) and bi ∼iid N(0, σ2

3
) are random effects representing

unmeasured variables at the family and community levels, with bij and bi

independent.
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Split Plot Designs

In a split plot design there are two factors, one that is easy to change (call this

factor B), and one that is more difficult (call this factor A).

An example is in agriculture where factor A represents irrigation levels which

can only be applied to large plots of land, and B repesents different crop

varieties.

Levels of A are randomly assigned to whole plots while levels of B are

randomly assigned to split plots (subplots) within each plot.
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Example: Oats

Yates (1935) introduced split-plot data in a 3 × 4 full factorial design with 3

varieties of oats and four concentrations on nitrogen.

The experimental units were arranged into 6 blocks, each with 3 whole-plots

subdivided 4 subplots. The varieties of oats were assigned randomly to the

whole-plots and the concentrations of nitogen to the subplots. Hence there are

6 × 3 × 4 observations in total.

Pinheiro and Bates (2000) analyze these data — they are available as data

Oats. The subplot yield is in bushels/acre, nitro is the concentration in

cwt/acre (0.0, 0.2, 0.4, 0.6), Block is a factor labeled I, II, III, IV, V, VI, and

Variety is one of Golden Rain, Marvellous, Victory.

In terms of dependencies we would expect yields within the same block to be

correlated, and also yields within the same subplot to be correlated. Subplots

are nested within blocks.
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> library(nlme)

> data(Oats)

Grouped Data: yield ~ nitro | Block

Block Variety nitro yield

1 I Victory 0.0 111

2 I Victory 0.2 130

3 I Victory 0.4 157

4 I Victory 0.6 174

5 I Golden Rain 0.0 117

6 I Golden Rain 0.2 114

7 I Golden Rain 0.4 161

8 I Golden Rain 0.6 141

9 I Marvellous 0.0 105

....

62 VI Victory 0.2 74

63 VI Victory 0.4 118

64 VI Victory 0.6 113

65 VI Golden Rain 0.0 89

66 VI Golden Rain 0.2 82

67 VI Golden Rain 0.4 86

68 VI Golden Rain 0.6 104

69 VI Marvellous 0.0 97

70 VI Marvellous 0.2 99

71 VI Marvellous 0.4 119

72 VI Marvellous 0.6 121
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Visualizing the Split-Plot Data

Figure 62 was produced using the command:

plot(Oats,display="Block",inner=~Variety)

We see that the yields clearly increase on average for all 3 varieties, and the

trend seems to be similar for all 3.

Other than that no one variety is obviously better, though there are clear

differences between blocks, with block I roducing higher yields.
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Figure 62: Oat yields by block and variety.
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Models for the Split-Plot Data

We have three levels of gouping here corresponding to block, plot and subplot

— we may be tempted to associate a random effect with each but there is only

one yield per subplot and so we would saturate the model with random effects.

We can use random intercepts for blocks and whole plots nested within blocks.

Let Yijk be the yield on nitrogen level xijk with variety j (j = 1/2/3

corresponding to Golden Rain/Marvellous/Victory) within block i, i = 1, ..., 6

and V1ijk be an indicator for variety Marvellous and V2ijk be an indicator for

variety Victory.
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Consider the model

Yijk = β0 + β1xijk + β2V1ijk + β3V2ijk + bi + bij + ǫijk

with

bi ∼iid N(0, σ2

0)

bij ∼iid N(0, σ2

1)

ǫijk ∼iid N(0, σ2

ǫ )

with bi, bij , ǫijk independent, for i = 1, ..., 6 blocks, j = 1, 2, 3 varieties and

k = 1, ..., 4;

• β0 is the mean for Golden Rain (at the lowest level of nitorgen),

• β1 is the effect of level of nitrogen,

• β2 is the change in yield in moving from Golden Rain to Marvellous,

• β3 is the change in yield in moving from Golden Rain to Victory.
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> mod0 <- lme(yield~nitro+Variety,data=Oats,random=~1|Block/Variety)

> summary(mod0)

Linear mixed-effects model fit by REML

Data: Oats

AIC BIC logLik

592.8918 608.4283 -289.4459

Random effects:

Formula: ~1 | Block

(Intercept)

StdDev: 14.64483

Formula: ~1 | Variety %in% Block

(Intercept) Residual

StdDev: 10.43758 12.86697

Fixed effects: yield ~ nitro + Variety

Value Std.Error DF t-value p-value

(Intercept) 82.40000 8.058511 53 10.225214 0.0000

nitro 73.66667 6.781487 53 10.862908 0.0000

VarietyMarvellous 5.29167 7.078907 10 0.747526 0.4720

VarietyVictory -6.87500 7.078907 10 -0.971195 0.3544

We drop varieties from the model.
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> mod0M <- lme(yield~nitro+Variety,data=Oats,random=~1|Block/Variety,method="ML")

> mod1M <- lme(yield~nitro,data=Oats,random=~1|Block/Variety,method="ML")

> anova(mod0M,mod1M)

Model df AIC BIC logLik Test L.Ratio p-value

mod0M 1 7 615.1077 631.0444 -300.5539

mod1M 2 5 614.2290 625.6123 -302.1145 1 vs 2 3.121277 0.21

> mod1 <- lme(yield~nitro,data=Oats,random=~1|Block/Variety)

> summary(mod1)

Data: Oats

AIC BIC logLik

603.0418 614.2842 -296.5209

Random effects:

Formula: ~1 | Block

(Intercept)

StdDev: 14.50604

Formula: ~1 | Variety %in% Block

(Intercept) Residual

StdDev: 11.0047 12.86695

Fixed effects: yield ~ nitro

Value Std.Error DF t-value p-value

(Intercept) 81.87222 6.945302 53 11.78814 0

nitro 73.66667 6.781478 53 10.86292 0

> plot(augPred(mod1),layout=c(6,3))
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Figure 63: Fitted curves from mod1.
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Oats: Random Effect Predictions

> ranef(mod1,level=1:2)

Level: Variety %in% Block Level: Block

(Intercept) (Intercept)

VI/Golden Rain -5.6498642 VI -6.141400

VI/Marvellous 8.3242076 V -10.382943

VI/Victory -6.2088270 III -6.406496

V/Golden Rain 1.4240290 IV -4.617096

V/Marvellous -6.2151303 II 2.606781

V/Victory -1.1844644 I 24.941154

III/Golden Rain -8.0607855

III/Marvellous 15.6019761

III/Victory -11.2282418

IV/Golden Rain 6.4428844

IV/Marvellous -3.2458053

IV/Victory -5.8542987

II/Golden Rain 4.9717858

II/Marvellous 10.9340564

II/Victory -14.4055938

I/Golden Rain 3.2320159

I/Marvellous 0.6235225

I/Victory 10.4985332
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CONCLUSIONS

We have looked at regression modeling for dependent data and have examined

three approaches to inference:

1. Likelihood.

2. Bayesian.

3. Generalized Estimating Equations.

Issues:

• Assumptions for valid inference.

• Efficiency.

• Computation.

• Parameter interpretation.

• Flexibility in dealing with different types of or missing data.
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Likelihood Approach

We have examined Mixed Effects Models in which random effects are

introduced to induce dependencies.

Non-Linear Mixed-Effects Models:

yi = fi(β, bi, xij) + ǫi,

for mean function fi(·).

Generalized Linear Mixed Effects Models: Yij |β, bi, α ∼ p(·) where p(·) is a

member of the exponential family and, ff µij = E[Yij |β, bi, α], then we have a

link function g(·), with

g(µij) = xijβ + zijbi,

with bi ∼iid N(0, D).
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For linear models we need an appropriate marginal mean-variance model, for

GLMM and NLMEMs it is more tricky...

In GLMMs and NLMEMs we require integration over the random effects — not

always trivial, and can be an issue — for binary data models this is still a big

problem. Asymptotics needed for inference.

Regular likelihood ratio tests are available for regression fixed effects — for

variance components the null distribution is of non-standard form. Mixtures of

χ2’s theoretical distributins are available for some null/alternatives, otherwise

simulate data under the null to determine significance.

For variance components, asymptotic interval estimates may not be accurate.

The choice of random effects is guided in part by data availability — if we have

small clusters then fewer random effects are supported.

Bayesian Approach

Takes the likelihood and adds priors to α.

MCMC needed for inference — no dependence on asymptotics.
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Generalized Estimating Equations

Take as estimator bβ that which satisfies

G(β, bα) =

mX

i=1

DT
i W−1

i (Y i − µi) = 0,

where Di = ∂µi

∂β
, W i = W i(β, α) is the working covariance model, µi = µi(β)

and bα is a consistent estimator of α

We obtain an appropriate standard error so long as we have independence

between “units” — m is the number of independent units.
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Parameter Interpretation

In the mixed effects models the regression coefficients have a conditional

interpretation, i.e. conditional on the random effects.

In GEE the regression coefficients have a marginal interpretation, i.e. averaged

across individuals within populations with specific values of covariates.
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Model Checking

For LMEMs and NLMEMs model checking can be carried out reasonably well

so long as their are some individuals with larger ni — individual fits may then

be carried out, with bβi’s being examined.

Fo GLMMs with binary data it is very difficult to diagnose problems with the

model — multiple observations within clusters are more conducive to diagnosis

of problems.

An important assumption is of a constant random effects distribution across

covariate groups.
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Final Comment

Dependent data are complex and difficult to analyze, but don’t be afraid to

apply different techniques.

Each of likelihood, Bayes and GEE have strengths and weaknesses, but can

often be used in a complementary fashion.

Care is required in interpretation of parameters, however.

The End!
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