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Inference for Variance Components by REML

Restricted maximum likelihood (REML) is a method that has been proposed as

an alternative to ML, there are a number of justifications; we later provide a

Bayesian justification, and here provide another based on marginal likelihood.

Marginal Likelihood

Let S1, S2, A be a minimal sufficient statistic where A is ancillary, and for

which

p(y | λ, φ) ∝ p(s1, s2, a | λ, φ)

= p(a)p(s1 | a, λ)p(s2 | s1, a, λ, φ)

where λ are parameters of interest and φ are the remaining (nuisance)

parameters.
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Inference for λ may be based on the marginal likelihood

Lm(λ) = p(s1 | a, λ).

This is desirable if inference is simplified or if it avoids problems encountered

with standard likelihood methods. For example dim(φ) may increase with n.

The marginal likelihood has similar properties to a regular likelihood.

These advantages may outway the loss of efficiency in ignoring the

p(s2 | s1, a, λ, φ) term. If there is no ancillary statistic then the marginal

likelihood is

Lm(λ) = p(s1 | λ).
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Example: Normal linear model

Assume Y | β, σ2 ∼ind Nn(xβ, σ2I) where dim(β) = k + 1. Suppose the

parameter of interest is λ = σ2, with remaining parameters φ = β. Minimal

sufficient statistics are: s1 = s2 = RSS/(n − k − 1), and s2 = bβ. We have

p(y | σ2, β) = p(s1, s2 | σ2, β) = p(s1 | σ2)p(s2 | β, σ2).

Hence the marginal likelihood is

Lm(σ2) = p(s2 | σ2).

We know
(n − k − 1)s2

σ2
∼ χ2

n−k−1 = Ga

„
n − k − 1

2
,
1

2

«
,

and so

p(s2 | σ2) =

„
n − k − 1

2σ2

«(n−k−1)/2
`
s2
´(n−k−1)/2−1

Γ
“

n−k−1
2

” × exp

»
−

(n − k − 1)s2

2σ2

–
,

to give

lm = log Lm = −(n − k − 1) log σ −
(n − k − 1)s2

2σ2
,

and

bσ2 = s2.
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REML for LMEM

To use marginal likelihood we need to find a function of the data, U = f(Y ),

whose distribution does not depend upon β, and then base inference for α on

this distribution.

A natural function to choose is the vector of residuals following an ordinary

least squares fit:

R = Y − xbβo = Y − x(xTx)−1xTY

= (I − x(xTx)−1xT)Y = (I − H)Y ,

where bβo = (xTx)−1xTY is the OLS estimator.

We have

R = (I − H)Y = (I − H)(xβ + zb + ε) = (I − H)(zb + ε),

and so the distribution of R does not depend on β.
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Unfortunately the distribution of R is degenerate as it has rank N − k − 1.

Consider the (N − k − 1) × 1 random variables

U = BTY

where B is an N × (N − k − 1) matrix with BBT = I − H and BTB = I

(such a matrix always exists).

Then

U = BTY = BTBBTY = BT(I − H)Y = BTR,

and BTY is a linear combination of residuals.

Further BTX = 0, so that

U = BTY = BTzb + BTε,

and the distribution of U does not depend upon β, and E[U] = 0.

We now derive the distibution of U. To do this we consider the transformation

from Y → (U, bβG) = (BTY , GTY ), where

bβG = GTY = (xTV −1x)−1xTV −1Y ,

is the generalized least squares estimator.
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We derive the Jacobian of the transformation. To do this we need the following

two facts:

1. det(ATA) = det(AT)det(A) = det(A)2.

2.

˛̨
˛̨
˛̨

T U

V W

˛̨
˛̨
˛̨ =| T || W − V T−1U | .

Then

| J | =

˛̨
˛̨
˛
∂(U, bβG)

∂Y

˛̨
˛̨
˛ =| B G |=

˛̨
˛̨
˛̨

2
4 BT

GT

3
5 [B G]

˛̨
˛̨
˛̨

1/2

=

˛̨
˛̨
˛̨

2
4 BTB BTG

GTB GTG

3
5
˛̨
˛̨
˛̨

1/2

= | BTB |1/2| GTG− GTB(BTB)−1BTG |1/2

= 1× | GTG− GT(I − H)G |1/2

= | xTx |−1/2 6= 0

which implies that (U, bβg) is of full rank (= N). The vector (U, bβG) is a linear

combination of normals and so is normal.
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We have

p(y | α, β) = p(U, bβG | α, β) | J |= p(U | bβG, α, β)p(bβG | α, β) | J |

and

cov(U, bβG) = E[U(bβG − β)T] = 0,

and so U and bβG are uncorrelated, and since normal therefore independent.

Hence

p(y | α, β) = p(U | α)p(bβG | α, β) | J | .

Inference for λ may be based on the marginal likelihood

Lm(λ) = p(s1 | λ).

In the REML context we have s1 = u, s2 = bβG, λ = α, φ = β, and p(U | α)

is a marginal likelihood.

Hence

p(U | α) =
p(y | α, β)

p(bβG | α, β)
| J |−1 .

We have

p(y | α, β) = (2π)−N/2 | V |−1/2 exp


−

1

2
(y − xβ)TV −1(y − xβ)

ff
,
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and

p(bβG | α, β) = (2π)−(k+1)/2 | xTV −1x |1/2

× exp


−

1

2
(bβG − β)TxTV −1x(bβG − β)

ff

This leads to

p(U | α) = (2π)−(N−k−1)/2 | xTx |1/2| V |−1/2

| xTV −1x |1/2

× exp


−

1

2
(y − xbβG)TV −1(y − xbβG)

ff
(23)

which does not depend upon B, hence we can choose any linear combination of

the residuals.

59



2008 Jon Wakefield, Stat/Biostat 571

• To summarize: the “data” U (a linear combination of residuals from an

OLS fit), has a distribution that depends on α only – this defines a

marginal likelihood (the REML likelihood) which may then be maximized

as a function of α.

• The log marginal (restricted) likelihood is, upto a constant,

lm(α) = −
1

2
log | xTV −1x | −

1

2
log | V | −

1

2
(y − xbβG)TV −1(y − xbβG).

The profile log-likelihood based on Y is:

lP (α) = −
1

2
log | V | −

1

2
(y − xbβG)TV −1(y − xbβG),

and so we have the additional term − 1
2

log | xTV x | that accounts for the

degrees of freedom in estimation of β.

• In terms of computation calculating REML estimators can be carried out

with ML code, altered to include the extra term.
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• In general, REML estimators have finite sample bias, but they are

preferable to ML estimators, particularly for small samples.

• So far as estimation of the variance components are concerned, the

asymptotic distribution of the ML/REML estimator is normal, with

variance given by Fisher’s information.

• Suppose we fit two (nested) models using REML. Different sets of

observations are used in each and so we cannot use a likelihood ratio on

regression parameters to test whether the smaller model is a valid

statistical simplification of the larger model.

• Likelihood ratio tests for variance components are valid.
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Implementation of MLE and REML

MLE and REML require iteration between bβ|bα and bα|bβ.

Originally the EM algorithm was used, e.g., Laird and Ware (1982,

Biometrics). We illustrate for MLE and, for example, suppose Ei = Iniσ
2.

The “missing data” here are the random effects bi and the errors εi.

The M-step: Given bi and εi, obtain estimates bα = (bσ2, bD):

bσ2 =

Pm
i=1 εT

i εiP
m
i=1 ni

=
t1

N

bD =
1

m

mX

i=1

bib
T
i =

t2

m
,

where t1 and t2 are the sufficient statistics.

The E step: Estimate the sufficient statistics given the current values bα, via their

expected values:

bt1 = E

"
mX

i=1

ε
T
i εi|yi,

bβ(bα), bα
#

bt2 = E

"
mX

i=1

b
T
i bi|yi,

bβ(bα), bα
#

.
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Closed form fixed and random effect estimates are available once we know α.

Slow convergence has been reported so that now the Newton-Raphson method

is more frequently used.

Let θ be a p × 1 parameter vector containing the variance components, l(·) the

log-likelihood, G the p × 1 score vector, and I?(·) the p × p observed

information matrix. Then a second order Taylor series expansion of l(·) about

θ(t), the estimate at iteration t gives:

g(t)(θ) = l(θ) + G(t)T(θ − θ(t)) +
1

2
(θ − θ(t))TI?(t)(θ − θ(t)),

differentiating and setting equal to zero:

∂g(t)

∂θ
= G(t) + I?(t)(θ − θ(t)) = 0,

gives the next estimate

θ(t+1) = θ(t) − {I?(t)}−1G(t).

The use of the expected information gives Fisher’s scoring method.

See Lindstrom and Bates (1988, JASA) for details.

Lack of convergence of the algorithm/negative estimates, may sometimes

indicate that a poor model is being fitted.
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Dental Example

The simplest possible mixed effects model is given by

Yij = β0 + bi + β1tj + εij ,

where εij are iid with E[εij ] = 0 and var(εij) = σ2
ε and bi represent random

effects with bi ∼iid N(0, σ2
0), and represent perturbations for girl i from the

population intercept β0.

Girl-specific intercepts β0i = β0 + bi.

We could write b0i, but use bi for simplicity.

After conditioning on the random effect we have independent observations on

each girl, we have assumed that allowing the intercepts to vary has removed all

within-girl correlation.
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The marginal distribution is normal with mean

E[Y |β0, β1, σ2
ε , σ2

0 ] = µ,

where

µ = (µ1, ..., µm)T

is 4m × 1 vector and

µi = (β0 + β1t1, β0 + β1t2, β0 + β1t3, β0 + β1t4)T.

The variance is given by

var(Y |β0, β1, σ2
ε , σ2

0) = V ,

where V is the 4m × 4m block diagonal matrix with

V i = var(Y i) = σ2[Jniρ + Ini(1 − ρ)],

with σ2 = σ2
ε + σ2

0 and ρ =
σ2
0

σ2 =
σ2
0

σ2
ε +σ2

0
. Hence the random intercepts model

induces a marginal form with constant variances and constant orrelations on

measurements on the same child, regardless of the time between observations.
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We analyze the dental data using LMEMs. To do this we use the nlme package

which is described in Pinheiro and Bates (2000) – very flexible, but the syntax

is not always obvious...

The groupedData function is useful for plotting and modeling (attaches a model

function as an attribute to a dataset).

> library(nlme)

> data(Orthodont) # Dental data is one of the data sets in the package.

> Orthgirl <- Orthodont[Orthodont$Sex=="Female",]

> trelldat <- groupedData( distance ~ age | Subject, data=Orthgirl )

> plot(trelldat)

Figure 4 shows the data plotted using a “trellis” plot – note that data are not

plotted in the original order.
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Figure 4: Length versus age (in years) for 11 girls.
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We now carry out parameter estimation, first naively, and then using LMEM

via REML.

> summary(lm(distance~age,data=Orthgirl))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.3727 1.6378 10.608 1.87e-13 ***

age 0.4795 0.1459 3.287 0.00205 **

> summary(lme( distance ~ age, data = Orthgirl, random = ~1 | Subject ))

Linear mixed-effects model fit by REML

Random effects:

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 2.06847 0.7800331

Fixed effects: distance ~ age

Value Std.Error DF t-value p-value

(Intercept) 17.372727 0.8587419 32 20.230440 0

age 0.479545 0.0525898 32 9.118598 0
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Notice the standard error for β1 is smaller for the REML analysis – slopes are

being estimated from within-girl comparisons.

The REML estimates of the variance components are bσε = 0.78, bσ0 = 2.07 so

that bρ = 0.875 which ties in with the empirical correlations (19). The marginal

standard deviation is given by (bσ2
ε + bσ2

0)1/2 = 2.21, in agreement with the

diagonal elements of (19).
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Now for comparison we fit the LMEM with ML:

> summary(lme( distance ~ age, data = Orthgirl, random = ~1 | Subject, method = "ML" ))

Linear mixed-effects model fit by maximum likelihood

Random effects:

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 1.969870 0.7681235

Fixed effects: distance ~ age

Value Std.Error DF t-value p-value

(Intercept) 17.372727 0.8506287 32 20.423397 0

age 0.479545 0.0530056 32 9.047078 0

Note that the MLEs of the variance components are smaller than the REML

counterparts. Slight differences in the standard errors of the fixed effects (but

not a big difference here).
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Bayesian Justification for REML

Another justification is to assign a flat improper prior to the regression

coefficients and then integrate these from the model.

Example: Normal Linear Model

Consider the linear regression for independent data: Y |β, σ2 ∼ N(xβ, Inσ2),

with dim(β) = k + 1.

Consider

p(y|σ2) =

Z
p(y|β, σ2)π(β)dβ,

and assume π(β) ∝ 1.
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Hence

p(y|σ2) =

Z
(2πσ2)−n/2 exp

»
−

1

2σ2
(y − xβ)T(y − xβ)

–
dβ

= (2πσ2)−n/2

Z
exp

»
−

1

2σ2
(y − xbβ + xbβ − xβ)T

× (y − xbβ + xbβ + xβ)
i

dβ

= (2πσ2)−(n−k−1)/2 exp

»
−

RSS

2σ2

–
|xTx|−1/2

where the residual sum of squares

RSS = (y − xbβ)T(y − xbβ).

Maximization of l(σ2) = log p(y|σ2) yields the unbiased estimator

bσ2 =
RSS

n − k − 1
.
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Example: LMEM

Again obtain the distribution of the data as a function of α only, by integrating

β from the model, and assuming an improper flat prior for β.

We have

p(y|α) =

Z

β
p(y|β, α) × π(β) dβ,

leading to

l(α) = log p(y|α) = −
1

2

mX

i=1

log |V i(α)|

−
1

2

mX

i=1

log |xT
i V i(α)xi| −

1

2

mX

i=1

(yi − xi
bβ)TV −1(α)(yi − xi

bβ),

which differs from the “usual” likelihood by the term

−
1

2

mX

i=1

log |xT
i V −1

i (α)xi|.

This expression as the same as that which results from the maximization of the

distribution of the residuals.

Estimates of β change since they are a function of bα.
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Inference for Random Effects

Examples:

• Pharmacokinetics: individualization of a profile.

• Dairy herds: genetic merit of a particular bull – data are in the form of the

milk yields of his daughters.

• Psychology: inference for the IQ of an individual from a set of test scores.

• Industrial applications: operating characteristics of a particular machine.

From a frequentist perspective, inference for random effects is often viewed as

prediction rather than estimation, since b are random variables.

The usual frequentist optimality criteria for a fixed effect θ, are based upon

unbiasedness:

E[bθ] − θ = 0,

where θ is a fixed constant, and upon the variance of the estimator

var(bθ).

These need to be adjusted when inference is required for a random effect b.
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We wish to find a predictor eb = f(Y ) of b.

An unbiased predictor eb is such that

Ey,b[eb− b] = E[eb− b] = 0,

to give

E[eb] = E[b]

so that the expectation of the predictor is equal to the expectation of the

random variable that it is predicting.

The variance of a random variable is defined with respect to a fixed number,

the mean. In the context of prediction of a random variability, a more relevant

summary of the variability is

var(eb− b) = var(eb) + var(b) − 2cov(eb, b).
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There are many different criteria that may be used to find a predictor.

Since we are predicting a random variable it is natural to use minimum mean

squared error (MSE) as a criteria, rather than minimum variance.

The MSE of eb is given by

MSE(eb) = Ey,b[(eb− b)TA(eb− b)],

for non-singular A.

This leads to eb = E[b | y], irrespective of A (see Exercises 2). Hence the best

prediction is that which estimates the random variable by its conditional mean.

We now examine properties of eb.

Unbiasedness

We have

Ey [eb] = Ey{Eb|y [b | y]} = Eb[b]

where we first step follows on substitution of eb and the second from iterated

expectation. (Note: Eu[U ] = Eu,v [U ] = Ev{Eu|v [U |V ]}.)
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Variability

Recall an appropriate measure of variability:

var(ebi − bi) = var(ebi) + var(bi) − 2cov(ebi, bi).

We have

coveb,b
(ebi, bi) = Ey [cov(ebi, bi | y)] + covy(E[ebi | y], E[bi | y])

= Ey [cov(ebi, bi | y)] + covy(ebi,ebi) (24)

= var(ebi)

The first term in (24) is the covariance between a constant E[eb | y] (since y is

conditioned upon), and eb, and so is zero (because the covariance between a

constant and any quantity is zero). In the second term we have used

E[ebi | y] = E[E[bi | y] | y] = ebi.

Hence

var(ebi − bi) = var(bi) − var(ebi).
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Application to the LMEM

The predictor, eb = E[b | y], is a random variable, since it a function of y, and

so we need to know something about p(b | y) in order to derive its form.

Definitions: Suppose U is an n × 1 vector of random variables, and V is an

m × 1 vector of random variables. Then cov(U, V ) = C is an n × m matrix

with (i, j)-th element cov(Ui, Vj), i = 1, ..., n; j = 1, ..., m. Also

cov(V , U) = CT. Now suppose V = AU where A is an m × n matrix. Then

cov(U, AU) = WAT where W = cov(U), and cov(AU, U) = AW .

Consider the LMEM

y = xβ + zb + ε,

and assume b and ε are independent and bi ∼ N(0, D), ε ∼ N(0, σ2
ε I) then,

using the above results:
2
4 bi

yi

3
5 ∼ Nq+1+ni

0
@
2
4 0

xiβ

3
5 ,

2
4 D DzT

i

ziD V i

3
5
1
A .

since

cov(bi, yi) = cov(bi, xiβ + zibi + εi) = cov(bi, zibi) = DzT
i ,

and similarly cov(yi, bi) = ziD.
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Using properties of the multivariate normal distribution, the predictor takes

the form:
ebi = E[bi|yi] = DzT

i V −1
i (yi − xiβ) (25)

This is known as the best linear unbiased predictor (BLUP), where unbiased

refers to it satisfying E[ebi] = E[bi].

The random effect predictor is a shrinkage estimator since it pulls the data

towards zero, as we see in examples later.

The form (25) is not of practical use since it depends on the unknown β and α;

instead we use
ebi = E[bi|yi] = bDzT

i
bV −1

i (yi − xi
bβ). (26)

Substitution of bβ is not such a problem (since it is an unbiased estimator, and

appears in (25) in a linear fashion), but bα is more problematic.
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The uncertainty in the prediction is given by

var(ebi − bi) = var(bi) − var(ebi) = D − var(ebi)

We have
ebi = DzT

i V −1
i (Y i − xi

bβ) = Ki(Y i − xi
bβ),

and

var(Y i − xi
bβ) = var(Y i) + xivar(bβ)xT

i − 2cov(Y i, xi
bβ).

Since

bβ = (xTV −1x)−1
mX

i=1

xT
i V −1

i Y i,

we have

cov(Y i, xi
bβ) = xi(x

TV −1x)−1xT
i V −1

i var(Y i) = xivar(bβ)xT
i ,

and so

var(ebi) = Ki[var(Y i) − xivar(bβ)xT
i ]KT

i = Ki[V i − xivar(bβ)xT
i ]KT

i

to give

var(ebi − bi) = D − DzT
i V −1

i ziD + DzT
i V −1

i xi(x
TV −1x)−1xT

i V −1
i ziD.

The variability of the prediction does not acknowledge the uncertainty in bα.
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We now examine fitted values:

bY i = xi
bβ + zi

bbi

= xi
bβ + zi{DzT

i V −1
i (Y i − xi

bβ)}

= (Ini − ziDzT
i V −1

i )xi
bβ + ziDzT

i V −1
i Y i,

a weighted combination of the population profile, and the unit’s data.

Note that if D = 0 we obtain bY i = xi
bβ.

We can also write

bY i = σ2
ε V −1

i xi
bβ + (Ini − σ2

ε V −1
i )Y i

so that as σ2
ε → 0, bY i → Y i.
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Example: One-way ANOVA

For the simple balanced ANOVA model previously considered

ebi =
nσ2

0

σ2
ε + nσ2

0

(yi − β0).

In practice we have an estimate bβ0, and the predictor is a weighted

combination of the distance yi −
bβ0 and zero. Hence for finite n the predictor is

biased towards zero (recall our definition of unbiasedness is in terms of b).

As n → ∞, ebi → yi −
bβ0, so that

bβ0 +ebi → yi → E[Yi].
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The form of (25) can be justified in a number of ways, other than MSE.

Rather than assume normality we could consider estimators that are linear in

y. In Exercises 2 we show that this again leads to

ebi = DzT
i V −1

i (yi − xiβ).

Hence the best linear predictor is identical to the best predictor under

normality.

For general distributions, E[bi|yi] is not necessarily linear in y. Once we plug

α into the BLUP we don’t even have a linear predictor.

The BLUP is an empirical Bayes estimator. We should be considering E[b | y],

with

p(b | y) =

Z Z
p(b, β, α | y) dβdα =

Z Z
p(b | β, α, y)p(β, α | y) dβdα,

but instead the BLUP is the mean of the distribution

p(b | bβ, bα, y),

so that rather than integrating over β, α, estimates have been conditioned

upon.
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Example: Dental Growth

We again fit a LMEM with random intercepts only.

> remlelm <- lme(distance~I(age-11),data = Orthgirl,random = ~1 | Subject)

> summary(remlelm)

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 2.06847 0.7800331

Value Std.Error DF t-value p-value

(Intercept) 22.647727 0.6346568 32 35.6850 0

I(age - 11) 0.479545 0.0525898 32 9.1186 0

> b0hat <- b1hat <- NULL

> for (i in 1:11){

x <- Orthgirl$age[seq((i-1)*4+1,(i-1)*4+4)]-11

y <- Orthgirl$distance[seq((i-1)*4+1,(i-1)*4+4)]

mod <- lm(y~x)

b0hat[i] <- mod$coef[1]

b1hat[i] <- mod$coef[2]

}

> index <- c(10,9,6,1,5,7,2,8,3,4,11)

> LSb0hat <- b0hat[index]; LSb1hat <- b1hat[index]
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Shrinkage of Intercepts

> cbind(LSb0hat,LSb1hat,rcoef)

LSb0hat LSb1hat (Intercept) I(age - 11)

F10 18.500 0.450 18.64240 0.4795455

F09 21.125 0.275 21.17728 0.4795455

F06 21.125 0.375 21.17728 0.4795455

F01 21.375 0.375 21.41869 0.4795455

F05 22.625 0.275 22.62578 0.4795455

F07 23.000 0.550 22.98791 0.4795455

F02 23.000 0.800 22.98791 0.4795455

F08 23.375 0.175 23.35003 0.4795455

F03 23.750 0.850 23.71216 0.4795455

F04 24.875 0.475 24.79853 0.4795455

F11 26.375 0.675 26.24704 0.4795455

Note ordering difference in coefficients from lme, and the slight shrinkage here

towards the overall mean of 22.65; not much shrinkage here since bσ0 is large

relative to bσε (see Figure 5).
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Left: LS estimates, Right: Smoothed estimates
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Figure 5: Least squares estimates and smoothed estimates, bβ0 +ebi.
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Dental Example: Boys and Girls Joint Analyses

Table 2 describes LMEMs applied to the dental data and Table 3 results.

Model Description

1 Separate fits, random intercepts

2 Separate fits, random intercepts and slopes, uncorrelated

3 Separate fits, random intercepts and slopes, correlated

4 Combined fit, separate intercepts, common slope, random intercepts

5 Combined fit, separate intercepts and slopes, random intercepts

6 Combined fit, separate intercepts and slopes, random intercepts and slopes, uncorrelated

7 Combined fit, separate intercepts and slopes, random intercepts and slopes, correlated

Table 2: Various LMEMs.

Boys Girls

Model bβ0
bβ1 bσ0 bσ1 bρ01 bσε

bβ0
bβ1 bσ0 bσ1 bρ01 bσε

1 25.0 0.78 1.63 – – 1.68 22.7 0.48 2.07 – – 0.78

2 25.0 0.78 1.64 0.19 – 1.61 22.6 0.48 2.08 0.16 – 0.67

3 25.0 0.78 1.64 0.19 -0.01 1.61 22.6 0.48 2.08 0.16 0.53 0.67

4 25.0 0.66 1.81 – – 1.43 22.6 0.66 1.81 – – 1.43

5 25.0 0.78 1.82 – – 1.39 22.6 0.48 1.82 – – 1.39

6 25.0 0.78 1.83 0.18 – 1.31 22.6 0.48 1.83 0.18 – 1.31

7 25.0 0.78 1.83 0.18 0.21 1.31 22.6 0.48 1.83 0.18 0.21 1.31

Table 3: Various LMEM analyses.

87



2008 Jon Wakefield, Stat/Biostat 571

R code for models

# Set parameterization (to corner point)

> options(contrasts=c("contr.treatment","contr.poly"))

# Separate fits - intercept only, model 1

> remlF <- lme( distance ~ I(age-11), data = Orthgirl, random = ~1 )

> remlM <- lme( distance ~ I(age-11), data = Orthboy, random = ~1 )

# Separate fits - intercept and age, diagonal, model 2

> remlF2d <- lme( distance ~ I(age-11), data = Orthgirl,random = pdDiag(~I(age-11)))

> remlM2d <- lme( distance ~ I(age-11), data = Orthboy,random = pdDiag(~I(age-11)))

# Separate fits - intercept and age, non-diagonal, model 3

> remlF2 <- lme( distance ~ I(age-11), data = Orthgirl, random = ~I(age-11))

> remlM2 <- lme( distance ~ I(age-11), data = Orthboy, random = ~I(age-11))

# Combined fit - common slope, intercept only, model 4

> remlMF <- lme( distance ~ I(age-11)+Sex, data = Orthodont, random = ~1 )

# Combined fit - seperate intercepts and slopes, intercept only - model 5

> remlMFi <- lme( distance ~ I(age-11)+Sex+I(age-11):Sex, data = Orthodont,

random = ~1 )

# Combined fit -sep intercepts and slopes, uncor random intercepts and slopes - model 6

> remlMF2 <- lme( distance ~ I(age-11)+Sex+I(age-11):Sex, data = Orthodont,

random=pdDiag(~I(age-11)) )

# Combined fit - sep intercepts and slopes, cor random intercepts and slopes - model 7

> remlMF3 <- lme( distance ~ I(age-11)+Sex+I(age-11):Sex, data = Orthodont,

random=~I(age-11) )
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Example of Output (model 4)

> summary(remlMF)

Random effects:

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 1.807425 1.431592

Fixed effects: distance ~ I(age - 11) + Sex

Value Std.Error DF t-value p-value

(Intercept) 24.968750 0.4860008 80 51.37595 0.0000

I(age - 11) 0.660185 0.0616059 80 10.71626 0.0000

SexFemale -2.321023 0.7614168 25 -3.04829 0.0054

Correlation:

(Intr) I(-11)

I(age - 11) 0.000

SexFemale -0.638 0.000

Number of Observations: 108

Number of Groups: 27

Figure 6 gives normal QQ plots of the LS estimates of intercepts and slopes, for

boys and girls.

Figure 7 gives a scatter plot of the LS estimates of intercepts and slopes, for

boys and girls.
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Figure 6: QQ plot of the LS estimates.
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Bayesian Inference for the LMEM

Consider the model

yi = xiβ + zibi + εi

with bi ∼iid N(0, D), εi ∼ind N(0, Iniσ
2
ε ), with bi and εi independent.

The form of the posterior follows from exploiting conditional independencies:

p(β, α, b | y) ∝ p(y | β, α, b)π(β, α, b) =
mY

i=1

p(yi | β, α, bi)π(b | α)π(β)π(α)

=

mY

i=1

{p(yi | β, α, bi)π(bi | α)}π(β)π(α) (27)

Alternatively, we can derive the posterior for β, α directly:

p(β, α | y) ∝ p(y | β, α)π(β, α) =
mY

i=1

p(yi | β, α)π(β, α)

=
mY

i=1

Z
p(yi, bi | β, α) dbiπ(β, α)

where the integrand is giving by the term in curly brackets in (27).

The prior on bi is justified by the context, formally via exchangeability.
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Exchangeability

Definition: A finite set Y1, ..., Yn of random variables is said to be

exchangeable if every permutation (Y1, ..., Yn) has the same joint distribution as

every other permutation. An infinite collection is exchangeable if every finite

subcollection is exchangeable.

Every collection of independent and identically distributed random variables is

exchangeable.

Theorem: De Finetti’s representation Theorem for 0/1 random variables.

If Y1, Y2, ... is an infinitely exchangeable sequence of 0/1 random variables,

there exists a distribution π(·) such that the joint mass function Pr(y1, ..., yn)

has the form

Pr(y1, ..., yn) =

Z 1

0

nY

i=1

θyi (1 − θ)1−yiπ(θ) dθ,

where Z θ

0
π(u) du = lim

n→∞
Pr

„
Zn

n
≤ θ

«
,

with Zn = Y1 + ... + Yn, and θ = limn→∞ Zn/n.
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Proof: See Bernardo and Smith (1994) for more details.

Let zn = y1 + ... + yn be the number of 1’s (which we label “successes”) in the

first n observations. Then, due to exchangeability,

Pr(y1 + ... + yn = zn) =

0
@ n

zn

1
APr(Yπ(1), ..., Yπ(n)),

for all permutations π of {1, ..., n} such that yπ(1) + ... + yπ(n) = zn. Then we

can embed the event y1 + ...+yn = zn within a sequence, y1, ..., yN , N ≥ n, and

Pr

 
nX

i=1

yi = zn

!
=

N−(n−zn)X

ZN=zn

Pr(y1 + ... + yn = zn, y1 + ... + yN = zN )

=

N−(n−zn)X

zN =zn

Pr(y1 + ... + yn = zn | y1 + ... + yN = zN )

× Pr(y1 + ... + yN = zN ).

To obtain the conditional probability we observe that it is as if we have a

population of N people of which zN are successes, and N − zN failures, from

which we draw n people, the probability of zn successes is then hypergeometric.
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Hence

Pr(y1 + ... + yn = zn) =

N−(n−zn)X

zN =zn

0
@ zN

zn

1
A
0
@ N − zN

n − zn

1
A

0
@ N

n

1
A

Pr(zN )

Here Pr(zN ) is the “prior” belief in the number of successes out of N .

Let N → ∞ and by the strong law of law numbers θ = limN→∞ zN /N .

The hypergeometric tends to a binomial with parameters n and θ, and the

prior Pr(zN ) is translated into a prior for θ, π(θ). Hence we have

Pr(y1 + ... + yn = zn) →

0
@ n

zn

1
A
Z

θzn (1 − θ)n−znπ(θ) dθ,

as N → ∞.
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Implications

The interpretation of this theorem is of great significance:

• We may view the Yi to be independent, Bernoulli random variables,

conditional on a random variable θ.

• θ is itself assigned a probability distribution π().

• π may be interpreted as “beliefs about the limiting relative frequency of

1’s”.

In conventional language, we have the likelihood function

p(Y1, ..., Yn|θ) =
nY

i=1

p(Yi|θ) =
nY

i=1

θYi (1 − θ)1−Yi ,

where the parameter θ is assigned a prior distribution π(θ).
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Corollary: If Y1, Y2, ... is an infinitely exchangeable sequence of 0/1 random

variables, then we have the conditional probability function

p(ym+1, ..., yn | y1, ..., ym) =

Z 1

0

nY

i=m+1

θYi(1 − θ)1−Yiπ(θ | y1, ..., ym) dθ,

for 1 ≤ m < n where

π(θ | y1, ..., ym) =

Qm
i=1 θyi (1 − θ)1−yiπ(θ)

R 1
0

Qm
i=1 θyi(1 − θ)1−yi π(θ) dθ

and Z θ

0
π(u) du = lim

n→∞
Pr
“ zn

n
≤ θ
”

.

Proof

Write

Pr(ym+1, ..., yn | y1, ..., ym) =
Pr(y1, ..., yn)

Pr(y1, ..., ym)
,

and then use the previous result on numerator and denominator.

Interpretation: the prior distribution π(θ) for θ has been revised, via Bayes’

Theorem, into the posterior distribution π(θ|y1, ..., ym).
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Further results

General Representation Theorem:

If Y1, Y2, ... is an infinitely exchangeable sequence of random variables with

probability measure P , there exists a distribution function Q such that the

joint mass function p(Y1, ..., Yn) has the form

p(Y1, ..., Yn) =

Z nY

i=1

p(Yi|θ)π(θ)dθ,

with p(·|θ) denoting the density function corresponding to the ‘unknown

parameter’ θ.

Further assumptions on Y1, Y2, ... are required to identify p(·|θ).
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Relevance of Exchangeability

If we believe a priori that θ1, ..., θm are exchangeable (and are considered

within a hypothetical infinite sequence of such random variables), then it can be

shown using representation theorems that the prior can be written in the form

p(θ1, ..., θm) =

Z mY

i=1

p(θi|φ)π(φ) dφ,

that is, they are conditionally independent, given hyperparameters φ, with the

hyperparameters having a hyperprior distribution.

Hence we have a two-stage (hierarchical) prior:

Stage A: θi|φ ∼iid p(·|φ), i = 1, ..., m.

Stage B: φ ∼iid π(·).

Parametric choices for p(·|φ) and π(·) are usually made for computational

convenience.

Contrast with the sampling theory approach in which the random effects are

assumed to be a random sample from a hypothetical infinite population.
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Bayesian Computation

We have seen that to summarize posterior distributions integration is required

and, in all but the simplest (conjugate) models, these integrals are not

analytically tractable.

Integration is also required to integrate out the random effects in nonlinear

mixed effects models, to obtain the likelihood, and later we will review a

number of analytical and numerical approaches, for now we concentrate on

Markov chain Monte Carlo (MCMC).

The first key idea is the duality between densities and samples from that

density: given a density we can always generate samples, and given samples we

can reconstruct the density.

Simulation-based techniques have revolutionized Bayesian statistics, by

allowing the fitting of very complex models.
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Example: Binomial Likelihood with Weird Functions of Interest

Suppose we have

Yj | pj ∼ Binomial(nj , pj)

j = 1, 2, with independent priors

pj ∼ U(0, 1)

The posteriors are available analytically as

pj | yj ∼ Beta(yj + 1, nj − yj + 1)

but suppose we are interested in inference for the odds ratio

φ =
p1

1 − p1
/

p2

1 − p2

and for the relative risk

θ =
p1

p2
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The following is R code to simulate from

p1 | y1, y2 and p2 | y1, y2

and

φ | y1, y2 and θ | y1, y2

when

n1 = 35, n2 = 45, y1 = 30, y2 = 10

> n1 <- 35; n2 <- 45; y1 <- 30; y2 <- 10

> nsamp <- 1000

> p1 <- rbeta(nsamp,y1+1,n1-y1+1); p2 <- rbeta(nsamp,y2+1,n2-y2+1)

> odds <- (p1/(1-p1))/(p2/(1-p2)); rr <- p1/p2

> par(mfrow=c(2,2))

> hist(p1,xlim=c(0,1))

> hist(p2,xlim=c(0,1))

> hist(odds)

> hist(rr)

> sum(odds[odds>10])/sum(odds) # Posterior prob that odds ratio is > than 10

[1] 0.945683
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Figure 8: Posterior distributions for p1, p2, the odds ratio p1
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and for

the relative risk θ = p1
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The Composition Method

A useful technical for simulating from joint posterior distributions is the

following.

Write the joint posterior distribution for θ1, θ2 as

p(θ1, θ2 | y) = p(θ1 | y)p(θ2 | θ1, y)

Then a simulating algorithm to produce independent samples from p(θ1, θ2 | y)

is, for s = 1, ..., S:

1. Simulate θ
(s)
1 ∼ind p(θ1 | y).

2. Simulate θ
(s)
2 ∼ind p(θ2 | θ

(s)
1 , y).
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Markov chain Monte Carlo

MCMC is a very general technique that has revolutionized practical Bayesian

statistics.

In the usual derivation of Markov chains over a discrete sample space we are

given a transition matrix and the aim is to find the stationary distribution (if it

exists). Probabilities of movement depend on the current state only, hence the

name.

In the context of sampling from a distribution π(·), the aim is to construct a

Markov chain whose stationary distribution is π.

Samples θ(s), s = 1, ..., S, produced by a Markov chain “look” more and more

like dependent samples from π as S → ∞. The dependency does not cause a

problem in terms of estimation since

1

S

SX

s=1

f(θ(s)) → E{f(θ)},

as S → ∞ (provided the expectation exists).

The only difficulty with the dependency is establishing an appropriates Monte

Carlo error on the resultant estimator. We discuss two (related) Markov chains

– the Gibbs sampler, and the Metropolis-Hastings algorithm.
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Markov chains over a discrete parameter space

Consider a random variable that may take on K values, and consider a Markov

chain defined by a K × K transition matrix P .

Then the stationary distribution π is defined by

π = πP ,

where π is a 1 × K row vector.

Roughly speaking, if P is irreducible and aperiodic (i.e. ergodic) then the

stationary distribution is unique.
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Gibbs Sampling

Consider a two-parameter problem in which the (intractable) posterior is:

π(θ1, θ2|y) ∝ l(θ1, θ2) × π(θ1, θ2).

We have

π(θ1, θ2|y) = p(θ1|y) × p(θ2|θ2, y),

but p(θ1|y) will typically be unavailable.

Gibbs sampling proceeds by iterating between the steps:

θ
(s)
1 ∼ p(θ1|θ

(s−1)
2 , y),

and

θ
(s)
2 ∼ p(θ2|θ

(s)
1 , y),

to produce the sequence

(θ
(0)
1 , θ

(0)
2 ), (θ

(1)
1 , θ

(1)
2 ), ..., (θ

(s)
1 , θ

(s)
2 ), ...

which may be viewed as a draw from π(θ1, θ2|y)
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Gibbs Sampling over a discrete parameter space

Let θ = (θ1, θ2) and suppose that the parameters θ1 and θ2 can each take one

of the two values, 0 and 1. The posterior distribution is given in Table 4.

p(θ1, θ2|y) θ2 = 0 θ2 = 1

θ1 = 0 π00 π01

θ1 = 1 π10 π11

Table 4: Joint posterior distribution.

In this case the Gibbs sampler defines a 4 × 4 transition matrix P . The

elements of this matrix are given by

Pr{(i, j), (k, l)} = Pr{θ(s) = (k, l)|θ(s−1) = (i, j)}

= Pr(θ
(s)
1 = k|θ

(s)
2 = j) Pr(θ

(s)
2 = l|θ

(s)
1 = k)

=
πkj

π+j
×

πkl

πk+

It is straigtforward to show that P is such that π = πP .
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Example: Normal likelihood, unknown mean and variance

Likelihood:

Yi|β, σ2 ∼ N(xiβ, σ2), i = 1, ..., n.

Prior:

β ∼ N(µ, V ), σ−2 ∼ Ga(a, b).

Posterior

π(β, σ2|y) ∝ l(β, σ2)π(β)π(σ2),

is intractable unless p(β) is improper uniform and the prior for σ2 is inverse

gamma.
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Gibbs sampling iterates between β|y, σ2 and σ−2|y, β where

p(β|y, σ2) ∝ l(β, σ2)π(β)

∼ N(µ∗, V ∗),

p(σ−2|y, β) ∝ l(β, σ2)π(σ−2)

∼ Ga

„
a +

n

2
, b +

(y − xβ)T(y − xβ)

2

«
.

where

µ∗ = (xTxσ−2 + µTV −1)−1(xTxβ̂σ−2 + µV −1),

and

V ∗ = (xTxσ−2 + V −1)−1.
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Metropolis Algorithm – discrete parameter space

Suppse we have a discrete sample space Ω and we wish to construct a Markov

chain whose stationary distribution is π(·).

Let Q be an irreducible transition matrix on Ω, satisfying the symmetry

condition

Q(x, y) = Q(y, x), x, y ∈ Ω.

We may then define a Markov chain {θ(s), s = 0, 1, 2, ...} via the following steps.

• Suppose we are currently at state x.

• Generate a proposal from Q(x, y).

• Accept θ(s+1) = y with probability

min

„
1,

π(y)

π(x)

«
,

otherwise stay at x.

This results in the transition matrix

P (x, y) = Q(x, y) × min

„
1,

π(y)

π(x)

«
.
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Metropolis Algorithm – continuous parameter space

Suppose the stationary distribution is π(θ) and consider the symmetric

probability density function

g(θa|θb) = g(θb|θa).

Suppose θ(0) denotes the initial point. The Metropolis algorithm then consists

of, at iteration s

• Sample θ∗|θ(s−1) ∼ g(·|θ(s−1)).

• Calculate r = π(θ∗)/π(θ(s−1)).

• Set

θ(s) =

8
<
:

θ∗ with probability min(r, 1),

θ(s−1) otherwise.

At iteration s the transition density P (θ(s)|θ(s−1)) is a mixture of g(·|θ(s−1))

and the point θ(s−1).

Important point: the calculation of r does not depend on the normalizing

constant of the target density π.
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Metropolis-Hastings Algorithm

Generalizes the Metropolis algorithm to allow a non-symmetric proposal

density.

Suppose θ(0) denotes the initial point. The Metropolis-Hastings algorithm then

consists of, at iteration s:

• Sample θ∗|θ(s−1) ∼ g(·|θ(s−1)).

• Calculate

r =
π(θ∗)/g(θ∗|θ(s−1))

π(θ(s−1))/g(θ(s−1)|θ∗)
.

• Set

θ(s) =

8
<
:

θ∗ with probability min(r, 1),

θ(s−1) otherwise.
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Issues:

• Convergence of the Markov chain?

• Parameterization.

Convergence

• Early iterations θ(1), θ(2), ..., θ(m) reflect the (arbitrary) starting value θ(0).

• These iterations are called the burn-in.

• Chain will gradually ‘forget’ its initial state and converge to the unique

stationary distribution which is independent of θ(0).

• Burn-in samples should be ignored when summarizing the samples for

posterior inference via Monte Carlo integration, i.e.

E[g(θ)] ≈
1

n − m

nX

s=m+1

g(θ(s))

114

2008 Jon Wakefield, Stat/Biostat 571

Convergence Diagnosis

• Strictly speaking, convergence is only achieved for n = ∞.

• But we only need Markov chain to be ‘approaching’ convergence for Monte

Carlo integration to yield a consistent estimate of the true expectation.

• How do we determine m, the number of ‘burn-in’ iterations?

• Informal examination of time series plots and running of multiple chains is

a must.

• Two issues: have we ‘found’ the posterior? Do we have enough samples to

answer the inferential questions? Some chains may be very slow mixing

(examination of autocorrelation is important).
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Parameterization

The Markov chain will display better mixing properties if the parameters are

approximately independent in the posterior.

In an extreme case, if we have independence then

p(θ1, ..., θk|y) =

kY

i=1

p(θi|y),

and Gibbs sampling via the conditional distributions p(θi|y), i = 1, ..., n, is

equivalent to direct sampling from the posterior.

In general it is better to sample ‘blocks’ of parameters that are approximately

independent.
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Hyperpriors

Consider the LMEM

yi = xiβ + zibi + εi,

with bi ∼ Nq+1(0, D), and εi ∼ Nni(0, σ2
ε Ini), i = 1, ..., m. A Bayesian

analysis requires prior distributions on β, D, σ2
ε ; it is common to assume

independent priors

π(β, D, σ2
ε ) = π(β)π(D)π(σ2

ε ).

For β a multivariate normal distribution and for σ2
ε an inverse gamma

distribution are often specified since they lead to conditional distributions of

convenient form for Gibbs sampling, but other choices are possible.

If D is a diagonal matrix with elements σ2
k, k = 0, 1, ..., q, then a prior that

leads to conjugate conditional distributions in a Gibbs sampling algorithm is

π(σ2
0 , ..., σ2

q ) =

qY

k=0

IGa(ak, bk),

where IGa(ak, bk) denotes the inverse gamma distribution with pre-specified

parameters ak, bk, k = 0, ..., q.
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The Wishart Distribution

A prior for a non-diagonal D is more troublesome; there are (q + 2)(q + 1)/2

elements, with the restriction that the resultant matrix is positive definite.

The inverse Wishart distribution is the conjugate choice, and is the only

distribution for which any great practical experience has been gained.

Suppose Z1, ..., Zr ∼iid Np(0, S), with S a non-singular variance-covariance

matrix, and let

W =
rX

j=1

ZjZT
j . (28)

Then W follows a Wishart distribution, denoted Wp(r, S), and

p(w) = c−1 | w |(r−p−1)/2 exp


−

1

2
tr(wS−1)

ff

where

c = 2rp/2Γp(r/2) | S |r/2, (29)

with

Γp(r/2) = πp(p−1)/4
pY

j=1

Γ((r + 1 − j)/2)

the generalized gamma function, and r ≥ p for a proper density.
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The mean is given by

E[W ] = rS.

The Wishart distribution is a multivariate version of the gamma distribution.

Taking p = 1 yields

p(w) =
(2S)−r/2

Γ(r/2)
wr/2−1 exp(−w/2S),

for w > 0, the gamma distribution Ga(r/2, 1/(2S)). Further, taking S = 1 gives

a χ2
r random variable, which is clear from (28).
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The Inverse Wishart Distribution

If W ∼ Wp(r, S), the distribution of D = W−1 is known as the inverse

Wishart distribution, and is given by

p(d) = c−1 | d |−(r+p+1)/2 exp


−

1

2
tr(d−1S)

ff

where c is again given by (29). The mean is given by

E[D] =
S−1

r − p − 1

and is defined for r > p + 1. If p = 1 we recover the inverse gamma distribution

IGa(r/2, 1/2S) with E[D] = 1/[s(r − 2)] and var(D) = 1/[S2(r − 2)(r − 4)] (so

that small r gives a larger spread).

Thinking ahead to application in the LMEM if W ∼ Wq+1(r, R
−1), then

E[W ] = rR−1,

and

E[D] = R/(r − q − 1 − 1),

so that R, may be scaled to be a prior estimate of D, with r acting as a

strength of belief in the prior.
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Issues with the Wishart Prior

• A problem with the Wishart distribution is that it is deficient in second

moment parameters since there is only a single degrees of freedom

parameter r. So, for example, it is not possible to have differing levels of

certainty in the tightness of the prior distribution for different elements of

D. With diagonal D and independent inverse gamma priors we have a

precision parameter for each variance.

• The form of the conditional distribution suggests that it may be better to

err on the side of picking R too small (if m small, prior always influential).

• Intuition: as if our prior data for the precision consists of observing r

normal random variables with variance-covariance matrices R.

• We need to take r ≥ q + 1 for a proper prior, with the flattest prior

corresponding to r = q + 1. A proper prior is required to ensure propriety

of the posterior distribution.

• Figure 9 displays samples from the Wishart distribution W2{20, (20S)−1}

where S =

"
0.4 0

0 1.0

#
. The mean is E[W ] = S−1 =

"
2.5 0

0 1.0

#
.
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Figure 9: Histograms of (a) w11, (b) w12, (c) w22, scatterplots of (d) w11, w12,

(e) w11, w22, w12, w22
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Conditional Conjugacy

We now consider a Gibbs sampling scheme and assume for simplicity that

xi = zi. It is computational more convenient to reparameterize in terms of the

set {β1, ..., βm, τ, β, W} where βi = β + bi, τ = σ−2
ε , W = D−1.

The joint posterior is

p(β1, ..., βm, τ, β, W , b | y) ∝
mY

i=1

{p(yi | βi, τ)p(βi | β, W)}π(β)π(τ)π(W),

with priors:

β ∼ Nq+1(β0, V 0)

τ ∼ Ga(a0, b0)

W ∼ Wq+1(r, R
−1)

and derive the required conditional distributions:

• p(β | τ, W , β1, ..., βm, y)

• p(τ | β, W , β1, ..., βm, y)

• p(W | β, τ, β1, ..., βm, y)

• p(βi | β, τ, W , y), i = 1, ..., m.
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Conditional for β

β | β1, ..., βm, W ∼ Nq+1

(“
mW + V −1

0

”−1
 

W

mX

i=1

βi + V −1
0 β0

!
,
“
mW + V −1

0

”−1
)

Conditional for τ

τ | βi, y ∼ Ga

 
a0 +

Pm
i=1 ni

2
, b0 +

1

2

mX

i=1

(yi − xiβi)
T(yi − xiβi)

!

Conditional for βi

βi | τ, W , y ∼ Nq+1

˘
(τxT

i xi + W)−1(τxT
i yi + Wβ), (τxT

i xi + W)−1
¯

Note the way that the conditional independencies have been exploited so that

in each case we condition on only a subset of the parameters.
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Conditional for W

First note that

(βi − β)TW(βi − β) = tr((βi − β)TW(βi − β)) = tr(W(βi − β)(βi − β)T).

Then

W | y, βi, β ∝
mY

i=1

p(βi | W) × π(W)

∝ | W |(m+r−q−1−1)/2 exp

(
−

1

2

"
mX

i=1

(βi − β)TW(βi − β) + tr(WR)

#)

= | W |(m+r−q−1−1)/2 exp

(
−

1

2
tr

 
W

"
mX

i=1

(βi − β)(βi − β)T + R

#!)

Hence the conditional distribution is

W | β1, ..., βm, β, y ∼ Wq+1

8
<
:r + m,

 
R +

mX

i=1

(βi − β)(βi − β)T

!−1
9
=
; .
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Example: Dental Data for Girls

Three-Stage Hierarchical Model:

First Stage:

yij = β0i + β1i(tj − 11) + εij ,

with εiid ∼ N(0, τ−1), j = 1, ..., 4, i = 1, ..., 11.

Second Stage: Let

βi =

2
4 β0i

β1i

3
5 β =

2
4 β0

β1

3
5 D =

2
4 D00 D01

D10 D11

3
5 ,

and then

βi | β, D ∼ N2(β, D),

i = 1, ..., m.

Third Stage:

π(τ, β, D−1) ∝ Ga(0, 0) × N2

0
@
2
4 0

0

3
5 ,

2
4 106 0

0 106

3
5
1
A× W2(r, R−1).
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Results below are for priors, with prior mean

E[D] =
1

r − q − 2
R =

1

r − 3
R =

2
4 1.0 0

0 0.1

3
5

(since q = 1) and different degrees of freedom r.

We see sensitivity to the prior in inference for D, but not for β.

Note the greater shrinkage to the prior mean for the second and third priors.

r R β0 β1

4 1.0 0 0 0.1 22.6 (21.4,23.8) 0.48 (0.33,0.63)

7 4.0 0 0 0.4 22.6 (21.5,23.7) 0.48 (0.31,0.65)

28 25 0 0 2.5 22.6 (21.8,23.5) 0.48 (0.28,0.67)

Table 5: Posterior medians and 95% intervals for population means, under three

priors.
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r Diag R D00 D01 D11

4 1.0 0.1 3.48 (1.66, 8.75) 0.13 (-0.10,0.54) 0.03 (0.01,0.10)

7 4.0 0.4 2.97 (1.51, 6.63) 0.10 (-0.14,0.46) 0.05 (0.02,0.12)

28 25 2.5 1.78 (1.14, 2.97) 0.04 (-0.10,0.20) 0.08 (0.05,0.14)

Table 6: Posterior medians and 95% intervals for population variances, under

two priors.
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The code below is for the analysis with r = 4, BUGS parametrizes the Wishart

in terms of R−1 and r.

model

{

for( i in 1 : N ) {

for( j in 1 : T ) {

Y[i , j] ~ dnorm(mu[i , j],eps.tau)

mu[i , j] <- beta[i,1] + beta[i,2] * (x[j]-11)

}

beta[i,1:2] ~ dmnorm(beta.mu[1:2],iSigma[1:2,1:2])

}

beta.mu[1:2] ~ dmnorm(mean[1:2], prec[1:2, 1:2])

iSigma[1:2, 1:2] ~ dwish(R[1:2, 1:2], r)

Sigma[1:2, 1:2] <- inverse(iSigma[1:2, 1:2])

eps.tau <- exp(logtau)

logtau ~ dflat()

sigma <- 1 / sqrt(eps.tau)

}
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list(x = c(8,10,12,14), N = 11, T = 4,

Y = structure(

.Data = c(21,20,21.5,23,

21,21.5,24,25.5,

20.5,24,24.5,26,

23.5,24.5,25,26.5,

21.5,23,22.5,23.5,

20,21,21,22.5,

21.5,22.5,23,25,

23,23,23.5,24,

20,21,22,21.5,

16.5,19,19,19.5,

24.5,25,28,28),

.Dim = c(11,4)),mean = c(0, 0),r=4,

R = structure(.Data = c(1, 0, 0, 0.1),

.Dim = c(2, 2)),

prec = structure(.Data = c(1.0E-6, 0,0,1.0E-6),

.Dim = c(2, 2))))

list(beta = structure(.Data = c(18,.5,18,.5,18,.5,18,.5,18,.5,18,.5,18,.5,18,

.5,18,.5,18,.5,18,.5), .Dim=c(11,2)), beta.mu = c(18,.5),

iSigma = structure(.Data = c(1, 0, 0, 0.1), .Dim = c(2, 2)), logtau = 0)
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