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Textbooks:

Main Texts

Diggle, P.J., Heagerty, P., Liang, K.-Y. and Zeger, S.L.

(2002). Analysis of Longitudinal Data, Second Edition.

Oxford University Press: this text is closest to the material

covered in the course.

Fitzmaurice, G.M., Laird, N.M. and Ware, J.H. (2004).

Applied Longitudinal Analysis, Wiley.

Gelfand, A., Carlin, J.B., Stern, H.S. and Rubin, D.B.

(1995). Bayesian Data Analysis, CRC Press.

Hand, D. and Crowder, M.J. (1996). Practical Longitudinal

Data Analysis, CRC Press.

Pinheiro, J. and Bates, D.G. (2000). Mixed-Effects Models

in S and S-PLUS, Springer-Verlag,

Verbeke, G. and Molenberghs, G. (2000). Linear Mixed

Models for Longitudinal Data. Springer-Verlag.

Background Texts

Davison, A.C. (2003). Statistical Models. Cambridge

University Press.

Demidenko, E. (2004). Mixed Models: Theory and

Applications, Wiley.

McCullagh, P. and Nelder, J.A. (1989) Generalized Linear

Models, Second Edition, CRC Press.
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COURSE OUTLINE

Chapter 1 Revisited

Motivating Datasets; Benefits and Challenges of Dependent

Data; Marginal versus Conditional Modeling.

Chapter 8: Linear Models

Linear Mixed Effects Models; Frequentist and Bayesian

Inference; Equivalence of Marginal and Conditional

Modeling.

Chapter 9: General Regression Models

Generalized Linear Mixed Models; Frequentist and Bayesian

Inference; Non-equivalence of Marginal and Conditional

Modeling.

Chapter 10: Binary Data Models

Modeling the covariance structure. Mixed Effects approach.

Chapter 11: Model Selection/Formulation

Types of analysis: descriptive, confirmatory, predictive.

Causality and confounding.
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CHAPTER 1: OVERVIEW

Recall: in a regression analysis we model a response, Y , as

a function of covariates, x.

In 570 we considered situations in which responses are

conditionally independent, that is

p(Y1, ..., Yn|β, x) = p(Y1|β, x1) × p(Y2|Y1, β, x2) × ...

× p(Yn|Y1, ..., Yn−1, β, xn)

= p(Y1|β, x1) × p(Y2|β, x2) × ...

× p(Yn|β, xn)

so that observations are independent given parameters β

and covariates x1, ..., xn.

In general, Y1, ..., Yn are never independent. For example,

suppose

E[Yi|µ, σ2] = µ, var(Yi|µ, σ2) = σ2,

i = 1, 2 and cov(Y1, Y2|µ, σ2) = 0. Then if we are told y1,

this will change the way we think about y2 so that

p(Y2|Y1) 6= p(Y2),

and the observations are not independent, however

p(Y2|Y1, µ, σ2) = p(Y2|µ, σ2),

so that we have conditional independence.
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Motivating Examples

We distinguish between dependence induced by missing

covariates, and that due to contagion (for example, in an

infectious disease context) – we will not consider the latter.

One theme of the course will be modeling dependence in the

residuals, that is, after we have controlled for covariates.

The obvious situations in which we would expect

dependence is in data collected over time or space.

Example 1: Dental growth data

Table 1 records dental measurements of the distance in

millimeters from the center of the pituitary gland to the

pteryo-maxillary fissure in 11 girls and 16 boys at the ages

of 8, 10, 12 and 14 years.

Here we have an example of repeated measures or

longitudinal data.

Figure 1 plots these data and we see that dental growth for

each child increases in an approximately linear fashion.

One common aim of such studies is to identify the

within-individual and between-individual sources of

variability.
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Individual Years

8 10 12 14

Girls

1 21 20 21.5 23

2 21 21.5 24 25.5

3 20.5 24 24.5 26

4 23.5 24.5 25 26.5

5 21.5 23 22.5 23.5

6 20 21 21 22.5

7 21.5 22.5 23 25

8 23 23 23.5 24

9 20 21 22 21.5

10 16.5 19 19 19.5

11 24.5 25 28 28

Boys

1 26 25 29 31

2 21.5 22.5 23 26.5

3 23 22.5 24 27.5

4 25.5 27.5 26.5 27

5 20 23.5 22.5 26

6 24.5 25.5 27 28.5

7 22 22 24.5 26.5

8 24 21.5 24.5 25.5

9 23 20.5 31 26

10 27.5 28 31 31.5

11 23 23 23.5 25

12 21.5 23.5 24 28

13 17 24.5 26 29.5

14 22.5 25.5 25.5 26

15 23 24.5 26 30

16 22 21.5 23.5 25

Table 1: Dental growth data for girls and boys.
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Figure 1: Dental growth data for girls and boys.
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Inference

We may be interested in characterizing:

1. the average growth curve, or

2. the growth for a particular child.

Two types of analysis that will be distinguished are

marginal and conditional. The former is designed for

questions of type 1, and the latter for type 2.

Even if the question of interest is of type 1, we still have to

acknowledge the dependence of responses on the same

individual – we do not have 11× 4 independent observations

on girls and 16 × 4 independent observations on boys but

rather 11 and 16 sets of observations on girls and boys.

For either question of interest ignoring the dependence leads

to incorrect standard errors and confidence interval

coverage.

A marginal approach to modeling specifies the moments of

the data only, while in a conditional approach the responses

of specific individuals are modeled.
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Models

First question is: why not just analyze the data from each

child separately? Possible but we wouldn’t be able to make

formal statements about:

• The average growth rate of teeth for a girl in the age

range 8–14 years.

• The between-girl variability in growth rates.

The totality of data on girls may also aid in the estimation

of the growth rate for a particular girl – becomes more

critical as the number of observations per child decreases.

For example, in an extreme case, suppose a particular girl

has only one measurement?

At the other extreme we could fit a single curve to the data

from all of the girl’s data together. The problem with this is

that we do not have independent observations, and what if

we are interested in inference for a particular child?
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Example 2: Spatial Studies

Dependent data may result from studies with a significant

spatial component.

Split Plot Data

Example: Three varieties of oats, four nitrogen

concentrations.

Agricultural land was grouped into six blocks, each with

three plots, and with each plot further sub-divided into four

sub-plots. Within each subplot a combination of oats and

nitrogen was planted. Hence we have 6 × 3 × 4 = 72

observations.

We would expect observations within the same sub-plot to

be correlated.
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Disease Mapping Data

We have a set of counts of disease, and population sizes for

a set of m areas that partition a study area. We expect

rates of disease in two areas to display greater correlation if

those areas are geographically close.

Aims:

• Simple description – a visual summary of geographical

risk.

• Provide estimates of risk by area to inform public

health resource allocation.

• Give clues to etiology via informal examination of maps

with exposure maps, components of spatial versus

non-spatial residual variability may also provide clues

to source of variability (e.g. environmental exposures

usually have spatial structure). The formal examination

is carried out via spatial regression.

• Provide a context within which specific studies may be

placed.
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Example: Lung and Brain cancer in the North-West of

England

This study will be used as an illustration of smoothing

techniques using a variety of hierarchical models.

Two tumors were chosen to contrast mapping techniques for

relatively non-rare (lung), and relatively rare (brain)

cancers.

The absence of information on smoking means that for lung

cancer in particular the analysis should be viewed as

illustrative only (since a large fraction of the residual

variability would disappear if smoking information were

included).

Study details:

• Study period is 1981–1991.

• Incidence data by postcode, but the analysis is carried

out at the ward level of which there are 144 in the study

region. For brain cancer the median number of cases per

ward over the 11 year period is 6 with a range of 0 to

17. For lung the median number is 20 with range 0–60.

• Expected counts were based on ward-level populations

from the 1991 census, by 5-year age bands and sex.
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Figure 2: SIRs for (a) lung cancer, and (b) brain cancer.

13 2005 Jon Wakefield, Stat/Biostat 571

Figure 3: Smoothed SIRs for lung cancer under (a) a condi-

tional spatial model, and (b) a marginal spatial model.

Notice that the smoothed area-level relative risk estimates

are not dramatically different from the raw versions in

Figure 2(a) – the large number of cases here mean that the

raw SIRs are relatively stable.
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Figure 4: Smoothed SIRs for brain cancer under (a) a con-

ditional spatial model, an d (b) a marginal spatial model.

In this case we see a much greater smoothing of the

estimates as compared to the raw relative risks in Figure

2(b).
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Design Implications of a Longitudinal Study

To examine a the implications of carrying out a longitudinal

study, as compared to a cross-sectional study, we consider a

very simple situation in which we wish to compare two

treatments, coded as -1 and +1, and we have a linear model.

Cross-Sectional Study:

A single measurement is taken on each of m = 4 individuals

where

Yi1 = β0 + β1xi1 + εi1,

i = 1, ..., m = 4, εi1 iid with var(εi1) = σ2 and

x11 = −1, x21 = −1, x31 = 1, x41 = 1.

Note: E[Y1|x = 1] − E[Y1|x = −1] = 2β1.

In lectures will show that

β̂c
0 =

∑4
i=1 Yi1

4
, β̂c

1 =
Y31 + Y41 − (Y11 + Y21)

4
,

and

var(β̂c
0) = var(β̂c

1) =
σ2

4
.
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Longitudinal Study:

We assume the model

Yij = β0 + β1xij + αi + δij ,

with αi and δij independent and with var(αi) = σ2
α,

var(δij) = σ2
δ . We therefore have marginally:

var(Yij |β0, β1) = σ2
α + σ2

δ = σ2,

and

cov(Yi1, Yi2) = σ2
α.

We let ρ = σ2
α/σ2, represent the correlation on observations

on the same individual.

We consider two situations, both with two observations on

two individuals:

Constant treatment for each individual:

x11 = x12 = −1, x21 = x22 = 1.

Changing treatment for each individual:

x11 = x22 = 1, x12 = x21 = −1.
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Using Generalized Least Squares we have

β̂
l
= (xTR−1x)−1xTR−1Y ,

and

var(β̂
l
) = (xTR−1x)−1σ2,

where

R =




1 ρ 0 0

ρ 1 0 0

0 0 1 ρ

0 0 ρ 1




.

In lectures we will show that

var(β̂l
1) =

σ2(1 − ρ2)

4 − 2ρ(x11x12 + x21x22)
.

18 2005 Jon Wakefield, Stat/Biostat 571



The efficiency e is given by

e =
var(β̂l

1)

var(β̂c
1)

=
(1 − ρ2)

1 − ρ(x11x12 + x21x22)/2
.

Usually we have ρ > 0.

For the constant treatment longitudinal study

e = 1 + ρ,

so that the cross-sectional study is preferable since we have

lost information due to the correlation.

For the changing treatment longitudinal study

e = 1 − ρ,

so that the longitudinal study is more efficient, because

each individual is acting as their own control, that is, we

are making within-individual comparisons.

If ρ = 0 the designs have the same efficiency.
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CHAPTER 8: LINEAR MODELS

Introduction

We consider the situation in which we have a vector of

responses, Y i = (Yi1, ..., Yini
), for the i−th unit,

i = 1, ..., m, with the mean for Y i being linear in a

(k + 1) × 1 vector of covariates xi.

We assume that the responses on different units are

independent, but that there is dependence between

observations on the same unit.

In a balanced data set all units have the same number of

observations, and are observed at a common set of

occasions, so that ni = n. In an unbalanced data set this is

not the case.
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