
As discussed in Chapter 2 there are two main methods for

modeling such data.:

• In the conditional method, the data are modeled

conditional upon a vector of unit-specific random

effects; the distribution of both the data and the

random effects are explicitly assumed. In this case a

likelihood function is available and either likelihood or

Bayesian methods can be used for inference. Such an

approach is known as mixed effects modeling, and in

this chapter we consider Linear Mixed Effects Models

(LMEMs).

• In the marginal method, inference is based on

specification of an estimating function. This approach

is known as Generalized Estimating Equations (GEE).

Historically “profile analysis” was carried out. In this

approach, which is applied to balanced data, replication

across units is exploited to estimate all n variances var(Yij),

j = 1, ..., n, and n(n − 1)/2 covariances, cov(Yij , Yik),

j, k = 1, ..., n, j 6= k. Replication across units implies they

are “homogeneous” in some sense, and not for example

mixtures of experimental groups/covariate stratum.

21 2005 Jon Wakefield, Stat/Biostat 571

Motivation for LMEMs

Consider a longitudinal example (e.g. dental growth).

There are two extreme fixed effects approaches:

• Assume a single curve and a standard analysis that

would be carried out for independent data.

Problem: Must acknowledge dependence within units.

• Assume m fixed curves and analyze each separately.

Problems:

– No “borrowing of strength”, that is, each

individual’s fit is based only on their own data, and

not on those of other individuals. We would hope

that if there is similarity between the curves, that

the totality of data will aid in the estimation of each

individual curve. In some instances this may be

vital, for example, if ni = 1 for a particular

individual, then their own data alone will not allow

estimation of parameters.

– Unable to make formal inference for population.

If we have abundant data for a specific individual for

whom we wish to make inference then these problems

not relevant.
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The second model is appealing in allowing each individual
their own curve, a mixed effects model assumes that at least
some parameters of the curves are drawn from a random effects
distribution.

Known as a Conditional Approach.
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Motivation for GEEs

In general the specification of a random effects model is not

trivial, and it may be difficult to check that a form that is

close to the “truth” has been fitted.

In non-linear models the interpretation of fixed effects also

depends on the particular random effects distribution that

has been fitted.

An alternative approach that reduces the need for the

correct specification of the variance-covariance model (at

least for non-small samples), and provides an unambiguous

interpretation of fixed effects, is provided by Generalized

Estimating Equations.

Known as a Marginal Approach.

We illustrate some of the issues with likelihood, Bayesian

and GEE inference via an example.
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Growth Curve Example

Notation

Let Yij denote the growth at occasion tj for girl i,

i = 1, ..., m = 11, j = 1, ..., 4, with t1 = 8, t2 = 10, t3 = 12,

t4 = 14, so that n = 4 for all i.

Consider the marginal residuals

em
ij =

Yij − β̂m
0 − β̂m

1 tj
σ̂m

,

i = 1, ..., 11; j = 1, ..., 4. Let



σ1

ρ12 σ2

ρ13 ρ23 σ3

ρ14 ρ24 ρ34 σ4




represent the standard deviation/correlation matrix of the

residuals, where

σj =
√

var(em
ij ),

j = 1, ..., 4, and

ρjk =
cov(em

ij , e
m
ik)√

var(em
ij )var(em

ik)
,

j, k = 1, ..., 4; j 6= k,.
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We empirically estimate these as:




2.12
0.83 1.90
0.86 0.90 2.36
0.84 0.88 0.95 2.44




where σ̂j is the empirical standard deviation of the residuals at
time tj , and ρ̂jk is the empirical correlation between residuals
at times tj and tj .

Standard deviations appear relatively constant across time.
Correlations approximately constant.
Figure 5(a) shows the raw growth data, and the solid line

in (b) is the marginal fit, with (c) showing the residuals from
this fit – there is clear dependence across residuals for each
individual.
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Figure 5: Dental plots for girls only: (a) Individual observed
data, (b) Individual (conditional) fitted curves (dashed) and
overall (marginal) fitted curve (solid), (c) Conditional residu-
als, (d) Marginal residuals.
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Conditional correlations/s.d.’s of the conditional residuals

ec
ij =

Yij − β̂c
i0 − β̂c

i1tj
σ̂c

i

,

i = 1, ..., 11; j = 1, ..., 4, are given by:



0.59

−0.90 0.92

−0.13 −0.31 0.81

0.66 −0.26 −0.84 0.53




Weird patten of correlations due to dependence within

residuals; we only have two independent pieces of

information for each fit.

If we considered boys and girls together and ignored gender

we would have induced dependence also.
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Conditional Model

We have

Yij = E[Yij |β0, β1, bi] + εij ,

where the εij are iid with E[εij ] = 0 and var(εij) = σ2
ε , and

E[Yij |β0, β1, bi] = β0 + bi + β1tj ,

where b1, ..., bm represent random effects that are assigned a

distribution.

We then assume the bi are iid with E[bi] = 0 and

var(bi) = σ2
0 . We also assume that the εij and bi are

independent.

The intercepts (or equivalently baseline length) are assumed

to be girl-specific, and given by β0i = β0 + bi, but the

growth rate, β1, is the same for all girls.

Note that after conditioning on the random effect we have

independent observations on each girl – we have assumed

that allowing the intercepts to vary has removed all

within-girl correlation.
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From the conditional model we can derive the marginal

model by integrating over the random effect:

p(y|β0, β1, σ
2
ε , σ2

0) =

∫

b
p(y|b, β0, β1, σ

2
ε , σ2

0)×p(b|β0, β1, σ
2
ε , σ2

0) db

Exploiting conditional independencies we have:

p(y|β0, β1, σ
2
ε , σ2

0) =
m∏

i=1

∫

bi

p(yi|bi, β0, β1, σ
2
ε ) × p(bi|σ2

0) dbi.

To specify a likelihood we require distributional

assumptions on the random variables εij , bi.

It is convenient to assume:

εij ∼iid N(0, σ2
ε )

bi ∼iid N(0, σ2
0),

since in this case the marginal distribution of the data,

which is simply a function of the fixed effects β0, β1, σ
2
ε , σ2

0 ,

is normal (since a convolution of normals is normal); hence

all we need are the moments.

First moment:

E[Y |β0, β1, σ
2
ε , σ2

0 ] = µ,

where

µ = (µ1, ..., µm)T

is 4m × 1 vector and

µi = (β0 + β1t1, β0 + β1t2, β0 + β1t3, β0 + β1t4)
T.
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Second moment:

var(Y |β0, β1, σ
2
ε , σ2

0) = V ,

where V is the 4m × 4m matrix,

V = σ
2

2
66666666666666666666666666666666666666664

1 ρ ρ ρ 0 0 0 0 . . . . 0 0 0 0

ρ 1 ρ ρ 0 0 0 0 . . . . 0 0 0 0

ρ ρ 1 ρ 0 0 0 0 . . . . 0 0 0 0

ρ ρ ρ 1 0 0 0 0 . . . . 0 0 0 0

0 0 0 0 1 ρ ρ ρ . . . . 0 0 0 0

0 0 0 0 ρ 1 ρ ρ . . . . 0 0 0 0

0 0 0 0 ρ ρ 1 ρ . . . . 0 0 0 0

0 0 0 0 ρ ρ ρ 1 . . . . 0 0 0 0

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

0 0 0 0 0 0 0 0 . . . . 1 ρ ρ ρ

0 0 0 0 0 0 0 0 . . . . ρ 1 ρ ρ

0 0 0 0 0 0 0 0 . . . . ρ ρ 1 ρ

0 0 0 0 0 0 0 0 . . . . ρ ρ ρ 1

3
77777777777777777777777777777777777777775

with σ2 = σ2
ε + σ2

0 and

ρ =
σ2

0

σ2
=

σ2
0

σ2
ε + σ2

0

.
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Likelihood

We write

V = σ2




R1 0 ... 0

0 R2 ... 0

... ... ... ...

0 0 ... Rm




where σ2 = σ2
ε + σ2

0 and Ri is an ni × ni correlation matrix

with 1’s on the diagonal, and off-diagonal elements

ρ = σ2
0/(σ2

ε + σ2
0).

We saw that the data followed a normal distribution which

gives the likelihood function

L(β, σ2
ε , σ2

0) = p(y|β, V ) =
m∏

i=1

p(yi|µi, V i),

with

yi|µi, V i ∼ind N(µi, V i),

and µi the ni × 1 mean vector, i = 1, ..., m.
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This may now be maximized to obtain the MLEs of

θ = (β, σ2
ε , σ2

0).

The explicit form of the likelihood is

l(θ) = log L(θ)

= −
N

2
log 2π −

1

2

mX

i=1

log |V i| −
1

2

mX

i=1

(Y i − xiβ)TV
−1
i (Y i − xiβ).

The score equation for β is given by

∂l

∂β
= −

m∑

i=1

xT

i V −1
i Y i +

m∑

i=1

xT

i V −1
i xiβ,

which yields

β̂ =

m∑

i=1

(xT

i V −1
i xi)

−1xT

i V −1
i Y i.
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To derive the score equations for the variance components

σ2
ε , σ2

0 we first list some identities, see Searle, Casella and

McCulloch (1992), Variance Components, Wiley,

Appendices M(e) and M(f), p. 456–457.

∂

∂σ2
δ

log |V i| = tr

(
V −1

i

∂V i

∂σ2
δ

)
,

∂

∂σ2
δ

V −1
i = −V −1

i

∂V i

∂σ2
δ

V −1
i ,

where δ = ε or 0.

Hence we have

∂l

∂σ2
0

= −1

2

m∑

i=1

tr

(
V −1

i

∂V i

∂σ2
0

)

+
1

2

m∑

i=1

(Y i − xiβ)TV −1
i

∂V i

∂σ2
0

V −1
i (Y i − xiβ),

and similarly for ∂l
∂σ2

ε
.

The MLEs for σ2
ε , σ2

0 are only available in closed form in

rare cases and so numerical methods are turned to, for

example the function lme in R.

31 2005 Jon Wakefield, Stat/Biostat 571



Prediction of Random Effects

In the frequentist approach, since random effects have a

distinct status from fixed effects, their estimation is often

viewed as a prediction problem.

One development is as follows: to predict b = (b1, ..., bm)T

using an estimator b̃(y) = (b̃1(y), ..., b̃m(y))T we may wish

to minimize the mean-squared prediction error:

Ey,b

[
{b̃(y) − b}T{b̃(y) − b}

]
=

∫

y

∫

b
{b̃(y) − b}T{b̃(y) − b}p(b | y)p(y) db dy

and to minimize wrt to b̃ we only need to minimize the

inner integral.

Minimizing with respect to b̃(y) we obtain

b̂(y) = E[b|y],

which has various names including the Best Linear

Unbiased Predictor (BLUP).
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We assume for the moment that θ is known. Then since

cov(bi, yi) = cov(bi, xiβ + 1ni
bi) = 1ni

σ2
α,

where 1ni
is the ni × 1 vector of 1’s, we have


 bi

yi


 ∼ N




 0

xiβ


 ,


 σ2

0 1T

ni
σ2

0

1ni
σ2

0 V i




 .

We have

bi|yi ∼ N{1T

ni
σ2

0V i(yi − xiβ), [1 − 1T

ni
σ2

0V −1
i 1ni

]σ2
0}.

Hence the BLUP is

b̂i = E[bi|yi] = 1T

ni
σ2

0V i(yi − xiβ).

In practice an estimator for θ = (β, σ2
0 , σ

2
ε ) is plugged in, to

give

b̂i = E[bi|yi, θ̂] = 1T

ni
σ̂2

0V̂
−1

i (yi − xiβ̂)

but the variance of the BLUP does not reflect the

uncertainty in θ̂.

Since the estimator is of the form E[b|y, θ̂] it is known as an

empirical Bayes estimator.

Note also that b̂i is a weighted combination of the residuals

of the i−th individual’s data.
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Bayesian Approach

Recall θ = (β, σ2
ε , σ2

0).

The posterior for θ, b is given by

p(θ, b|y) =
p(y|θ, b)p(θ, b)

p(y)

=
p(y|θ, b)p(b|θ)p(θ)

p(y)

Alternatively we may work with the marginal likelihood:

p(θ|y) =
p(y|θ)p(θ)

p(y)
.

For the random effects we have

p(b|y) =

∫
p(b, θ|y)dθ

=

∫
p(b|y, θ)p(θ|y)dθ (1)

and

E[b|y] =

∫ {∫
bp(b|y, θ) db

}
p(θ|y)dθ = Eθ|y{E[b|y, θ]}

showing that we should be averaging over θ, rather than

conditioning on θ̂, as is done in empirical Bayes. If the

posterior for θ|y is peaked about θ̂ then conditioning will

be a good approximation.
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Marginal Model

As an alternative approach we could just specify (say) the

first two moments of the data, for example, the forms

assumed on the previous page, but without the assumptions

on the data, or the use of random effects.

We begin with the following assumptions:

(a) E[Y |β, V ] = xβ and

(b) var(Y |β, V ) = V ,

where Y = (Y 1, ..., Y m), Y i = (Yi1, ..., Yini
),

x = (x1, ..., xm) is N × (k + 1) with xi = (xi1, ..., xini
)T,

xij = (1, xij1 ... xijk), N =
∑

i ni and β is (k + 1) × 1.
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Estimating Function:

Consider the estimating function

G(β) = xTW−1(Y − xβ),

where W is an N × N weight matrix.

It follows immediately that

E[G(β)] = 0

and defining

G(β̂W ) = 0

yields the generalized least squares estimator

β̂W = (xTW−1x)−1xTW−1Y ,

so that

E[β̂W ] = β

regardless of W (so long as W is non-singular).

We also have

cov(β̂W ) = (xTW−1x)−1xTW−1V W−1x(xTW−1x)−1.

36 2005 Jon Wakefield, Stat/Biostat 571

Special Cases:

If W = V then

cov(β̂V ) = (xTV −1x)−1.

An extension of the Gauss-Markov Theorem shows that β̂V

is the most efficient linear estimator.

Note that β̂V is identical to the MLE derived earlier under

the assumption that Y ∼ N(xβ, V ).

If W = I (known as working independence) then

cov(β̂I) = (xTx)−1xTV x(xTx)−1.

In both cases we need to know V – later we will see how

this may be empirically estimated, using the fact that we

have replication across i.

Note: clearly wrong to say that

cov(β̂I) = (xTx)−1σ2.
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