
Generalized Estimating Equations

Suppose we assume

E[Y i | β] = xiβ,

and consider the ni ×ni working variance-covariance matrix:

var(Y i | β, α) = W i.

To motivate GEE we begin by assuming that W i is known.

In this case the GLS estimator minimizes

m∑

i=1

(Y i − xiβ)TW−1
i (Y i − xiβ),

and is given by the solution to the estimating function

m∑

i=1

xT

i W i(Y i − xiβ),

which is

β̂ =

(
m∑

i=1

xT

i W−1
i xi

)−1 m∑

i=1

xT

i W−1
i Y i.

We now examine the properties of this estimator.
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We have

E[β̂] =

(
m∑

i=1

xT

i W−1
i xi

)−1 m∑

i=1

xT

i W−1
i E[Y i] = β,

so long as the mean is correctly specified.

If the information about β grows with increasing m, then β̂

is consistent.

The variance, var(β̂), is given by

 
mX

i=1

x
T

i W
−1
i xi

!
−1 mX

i=1

x
T

i W
−1
i var(Y i)W

−1
i xi

! 
mX

i=1

x
T

i W
−1
i xi

!
−1

.

Notice that if the assumed variance-covariance matrix is

correct, i.e. var(Y i) = W i, then

var(β̂) =

(
m∑

i=1

xT

i W−1
i xi

)−1

,

and a Gauss-Markov Theorem shows that, in this case, the

estimator is efficient amongst linear estimators (see

Exercises).

If m is large then a multivariate central limit theorem shows

that β̂ is asymptotically normal.
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We now suppose that var(Y i) = W i(α, β) is of known

form, where α are parameters in the variance-covariance

model, which we begin by assuming are known.

The regression parameters are contained in W i to allow,

mean-variance relationships, for example,

var(Yij | α, β) = α1µ
2
ij

cov(Yij , Yik | α, β) = α1α
|tij−tik|
2 µijµik

where µij = xijβ, α1 is the variance (which is assumed

constant across time and across individuals), and α2 is the

correlation (which is assumed to be the same for all

individuals), and α = (α1, α2).

For known α we would minimize
m∑

i=1

(Y i − xiβ)TW−1
i (α, β)(Y i − xiβ),

with solution given by the root of the estimating function

m∑

i=1

xT

i W i(α, β)(Y i − xiβ).

In general finding the roots of this equation is not available

in closed form.

However, if W i(α, β) = W i(α) we have

β̂ =

(
m∑

i=1

xT

i W i(α)−1xi

)−1 m∑

i=1

xT

i W−1
i (α)Y i.
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Finally, suppose that α is unknown but we have a

procedure by which a consistent estimator α̂ is produced.

We then solve the estimator function

G(β) =
m∑

i=1

xT

i W i(α̂, β)(Y i − xiβ).

In general iteration is needed to simultaneously estimate β

and α. Let α̂
(0) be an initial estimate. Then set t = 0 and

iterate between

1. Solve G(β̂, α̂(t)) = 0 to give β̂
(t+1)

,

2. Estimate α̂
(t+1) with µ̂i = µi

(
β̂

(t+1)
)

. Set t → t + 1

and return to 1.

We have

var(β̂)
1/2

(β̂ − β) ∼ Nk+1 (0, I) ,

where

cvar(bβ) =

 
mX

i=1

x
T

i W
−1
i (bα, bβ)xi

!
−1

×

 
mX

i=1

x
T

i W
−1
i (bα, bβ)var(Y i)W

−1
i (bα, bβ)xi

!

×

 
mX

i=1

x
T

i W
−1
i (bα, bβ)xi

!
−1

.

We have assumed that cov(Y i, Y i′) = 0 for i 6= i′.
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The final element of GEE is sandwich estimation of var(β̂).

In particular cov(Y i) is estimated by

(Y i − xiβ̂)T(Y i − xiβ̂),

Empirical would be a better word than robust for the

estimator of the variance – not robust to sample size, could

be highly unstable.

We can write the (k + 1) × 1 estimating function as

xTW−1(Y − xβ) (2)
m∑

i=1

xT

i W−1
i (Y i − xiβ) (3)

m∑

i=1

ni∑

j=1

[xi1 · · · xini
]




W 11
i · · · W 1ni

i

· · · · · · · · ·
Wni1

i · · · W nini

i







Yi1 − xi1β

· · ·
Yini

− xini
β


 (4)

where W ij
i denotes entry (i, j) of the inverse W i.

We emphasize (4) since this form emphasizes that the basic

unit of replication is indexed by i.

For example, the asymptotics depend on m → ∞.
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Example: Suppose for simplicity that we have a balanced

design, with ni = n for all i, and

var(Yij) = E[(Yij − xijβ)2] = E[ε2ij ] = α1

cov(Yij , Yik) = E[(Yij − xijβ)(Yik − xikβ)] = E[εijεik] = α1α2jk,

for i = 1, ..., m; j, k = 1, ..., n; j 6= k. Hence we have

n + n(n − 1)/2 elements of α.

Letting

eij = Yij − xijβ̂,

method-of-moments estimators are given by

α̂1 =
1

mn

m∑

i=1

n∑

j=1

e2
ij ,

and

α̂1α̂2jk =
1

m

m∑

i=1

eijeik.
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Generalized Estimating Equation (GEE) Summary

We have:

• Regression parameters (of primary interest) β and,

• Variance-covariance parameters α.

We have considered the GEE

G(β, α) =
m∑

i=1

DT

i W−1
i (Y i − µi) = 0,

where

• µi = µi(β) = xiβ.

• Di = Di(β) = ∂µi

∂β
= xT

i ,

• W i = W i(α, β) is the “working” covariance model,

Three important ideas:

1. Separate estimation of β and α.

2. Sandwich estimation of var(β̂).

3. Replication across units in order to estimate covariances

– so we have assumed that observations on different

units are independent.
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Notes:

• We have seen the first and second ideas in independent

data situations – e.g. estimation of the α parameter in

the quadratic negative binomial model.

• We may use method of moments estimators for α (or

set up another estimating equation, see later).

• In a dependent data situation we could just follow 1,

and go with model-based standard errors:

var(β̂) =

(
m∑

i=1

DT

i W−1
i Di

)−1

. (5)

The sandwich estimator of var(β̂) is given by

 
mX

i=1

D
T

i W
−1
i Di

!
−1( mX

i=1

D
T

i W
−1
i cov(Y i)W

−1
i Di

) 
mX

i=1

D
T

i W
−1
i Di

!
−1

Substitution of cov(Y i) = W i = V i (where V i is the

“true” covariance model) in the above gives (5).

To implement the GEE we need to, in general, iterate

between estimation of β|α̂ and α|β̂.

If we have an independence working model (W i = I) then

no iteration necessary (since no α in the GEE) – in this

case we’d want to use sandwich estimation, however.
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Dental Example

We analyze the dental data using LMEs and GEE.

First we plot the data using a “trellis” plot.

> library(nlme)

> data(Orthodont)

> Orthgirl <- Orthodont[Orthodont$Sex=="Female",]

> trelldat <- groupedData( distance ~ age | Subject, data=Orthgirl )

> plot(trelldat)
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Figure 6: Length versus age (in years) for 11 girls.

46 2005 Jon Wakefield, Stat/Biostat 571

Generalized Estiamting Equations

Look at various estimators of β for girls only. Note here

that we might doubt the asymptotics for GEE since we only

have replication across m = 11 units (girls).

Start with ordinary least squares – unbiased estimator for

β, but standard errors are wrong because independence is

assumed.

> summary(lm(distance~age,data=Orthgirl))

Call:

lm(formula = distance ~ age, data = Orthgirl)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.3727 1.6378 10.608 1.87e-13 ***

age 0.4795 0.1459 3.287 0.00205 **

Residual standard error: 2.164 on 42 degrees of freedom

Multiple R-Squared: 0.2046, Adjusted R-squared: 0.1856

F-statistic: 10.8 on 1 and 42 DF, p-value: 0.002053
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Now implement GEE with working independence – the

following is an R implementation (in Splus we would use

gee()).

install.packages("geepack",lib="/home/faculty/jonno/teaching/571/2005/notes/examples/geepack")

.libPaths("/home/faculty/jonno/teaching/571/2005/notes/examples/geepack")

library(geepack)

> summary(geese(distance~age,id=Subject,data=Orthgirl,

corstr="independence"))

Call:

geese(formula = distance ~ age, id = Subject, data = Orthgirl,

corstr = "independence")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.3727273 0.7819784 493.56737 0.000000e+00

age 0.4795455 0.0666386 51.78547 6.190604e-13

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 4.470403 1.373115 10.59936 0.001131270

Correlation Model:

Correlation Structure: independence

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4
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Next we examine an exchangeable correlation structure in

which all pairs of observations on the same unit have a

common correlation:

> summary(geese(distance~age,id=Subject,data=Orthgirl,

corstr="exchangeable"))

Call:

geese(formula = distance ~ age, id = Subject, data = Orthgirl,

corstr = "exchangeable")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.3727273 0.7819784 493.56737 0.000000e+00

age 0.4795455 0.0666386 51.78547 6.190604e-13

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 4.470403 1.373115 10.59936 0.001131270

Correlation Model:

Correlation Structure: exchangeable

Correlation Link: identity

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.8680178 0.1139327 58.04444 2.564615e-14

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4
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Notes:

• Independence estimates are always identical to OLS

because we have assumed working independence, which

means that the estimating equation is the same as the

normal equations.

• Standard errors are smaller because regressor (time) is

changing within an individual.

• Here we obtain the same estimates for exchangeable as

working independence but only because balanced and

complete (i.e. no missing) data.
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Finally we look at AR(1) errors – this time we see slight

differences in estimates and standard errors.

> summary(gee(gdistance~gage,id=gSubject,corstr="ar1"))

Call:

geese(formula = distance ~ age, id = Subject, data = Orthgirl,

corstr = "ar1")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.3049830 0.85201953 412.51833 0.000000e+00

age 0.4848065 0.06881228 49.63692 1.849965e-12

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 4.470639 1.341802 11.101 0.0008628115

Correlation Model:

Correlation Structure: ar1

Correlation Link: identity

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.9298023 0.07164198 168.4403 0

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4
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Now delete last two observations from girl 11 to illustrate

that identical answers before were consequence of balance

and completeness of data.

> Orthgirl2<-Orthgirl[1:42,]

> summary(lm(distance~age,data=Orthgirl2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.0713 1.5102 11.966 8.56e-15 ***

age 0.3963 0.1357 2.921 0.00571 **

Residual standard error: 1.964 on 40 degrees of freedom

> summary(geese(distance~age,id=Subject,data=Orthgirl2,

corstr="independence"))

Coefficients:

estimate san.se wald p

(Intercept) 18.0713312 0.82603439 478.61250 0.000000e+00

age 0.3962971 0.06934195 32.66253 1.096304e-08

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 3.674926 1.317669 7.778294 0.005287771

Correlation Model:

Correlation Structure: independence

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4
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> summary(geese(distance~age,id=Subject,data=Orthgirl2,

corstr="exchangeable"))

Call:

geese(formula = distance ~ age, id = Subject, data = Orthgirl2,

corstr = "exchangeable")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.6050097 0.79007168 496.52320 0.000000e+00

age 0.4510122 0.06641218 46.11913 1.112765e-11

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 3.706854 1.320019 7.88589 0.004982194

Correlation Model:

Correlation Structure: exchangeable

Correlation Link: identity

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.7968515 0.09367467 72.36198 0

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4
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REML

Recall that in the linear model for independent data the

MLE for σ2 has finite sample bias since there is no degrees

of freedom adjustment for estimation of β.

This is also true in the dependent data case. One remedy to

this is known as Restricted Maximum Likelihood (REML).

Last quarter we saw a justification for this in terms of

marginal likelihood, we now provide another.

Suppose we place a flat prior on β, i.e. π(β) ∝ 1, and then

integrate out β to obtain the “likelihood”:

p(y|σ2
ε , σ2

0) =

∫

β
p(y|β, σ2

ε , σ2
0)π(β) dβ.

which may be maximized with respect to σ2
ε , σ2

0 .
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Simple Example of REML

Consider the linear regression for independent data:

Y |β, σ2 ∼ N(xβ, Inσ2), with dim(β) = k + 1.

Consider

p(y|σ2) =

∫
p(y|β, σ2)π(β)dβ,

and assume π(β) ∝ 1 so that

p(y|σ2) =

∫
(2πσ2)−n/2 exp

[
− 1

2σ2
(y − xβ)T(y − xβ)

]
dβ

= (2πσ2)−n/2

∫
exp

[
− 1

2σ2
(y − xβ̂ + xβ̂ − xβ)T

× (y − xβ̂ + xβ̂ + xβ)
]
dβ

= (2πσ2)−(n−k−1)/2 exp

[
−RSS

2σ2

]
|xTx|−1/2

where the residual sum of squares

RSS = (y − xβ̂)T(y − xβ̂).

Maximization of l(σ2) = p(y|σ2) yields the unbiased

estimator

σ̂2 =
RSS

n − k − 1
.
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LME Example of REML

Again obtain the distribution of the data as a function of α

only, by integrating β from the model, and assuming an

improper flat prior for β.

We have

p(y|α) =

∫

β
p(y|β, α) × π(β) dβ,

leading to

l(α) = log p(y|α) = −
1

2

mX

i=1

log |V i(α)|

−
1

2

mX

i=1

log |xT

i V i(α)xi|

−
1

2

mX

i=1

(y
i
− xi

bβ)TV
−1(α)(y

i
− xi

bβ),

which differs from the “usual” likelihood by the term

−1

2

m∑

i=1

log |xT

i V i(α)xi|.

This expression as the same as that which results from the

maximization of the distribution of the residuals.

In nearly all cases MLE of α are not available in closed

form – hence use (for example) lme() in R.

Estimates of β change since they are a function of α̂.
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Linear Mixed Effects Models

We fit using MLE and REML.

> remlelm <- lme( distance ~ age, data = Orthgirl,

random = ~1 | Subject )

> summary(remlelm)

Linear mixed-effects model fit by REML

Random effects:

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 2.06847 0.7800331

Fixed effects: distance ~ age

Value Std.Error DF t-value p-value

(Intercept) 17.372727 0.8587419 32 20.230440 0

age 0.479545 0.0525898 32 9.118598 0

> mlelm <- lme( distance ~ age, data = Orthgirl,

random = ~1 | Subject, method = "ML" )

> summary(mlelm)

Linear mixed-effects model fit by maximum likelihood

Random effects:

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 1.969870 0.7681235

Fixed effects: distance ~ age

Value Std.Error DF t-value p-value

(Intercept) 17.372727 0.8506287 32 20.423397 0

age 0.479545 0.0530056 32 9.047078 0
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