
Bayes LME

The Bayesian version of the simple growth curve model

results in a posterior that is not analytically tractable. We

describe two MCMC approaches to implementation.

1. We could work with the marginal model with first stage

Y | β, α ∼ NN{xβ, V (α)},

with α = (σ2
ε , σ2

0), and second stage

β ∼ Nk+1(β0,Σ0), σ2
ε ∼ Ga(ae, be), σ2

0 ∼ Ga(a0, b0).

Leads to non-known form for σ2
ε , σ2

0 . Metropolis steps

may be used for these parameters.

Note that we can recover the posterior for b via (1).

2. Conditional model – conditional independencies may be

exploited. Gibbs sampling iterates through:

• β | y, b, σ2
ε , σ2

0 ∝ Nk+1(·, ·)
• bi | y, β, σ2

ε , σ2
0 ∝ N(·, ·)

• σ−2
ε | y, β, b, σ2

0 ∝ Ga(·, ·)
• σ−2

0 | y, β, b, σ2
ε ∝ Ga(·, ·)

Note: often convergence is improved by parameterizing

in terms of the “centered” set

β01 = β0 + b1, ..., β0m = β0 + bm

with β0i | β0, σ
2
0 ∼ N(β0, σ

2
0).
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WinBUGS Model

Priors:

β0, β1 ∝ 1, σ2
ε ∝ σ−2

ε , σ0 ∼ U(0, 100).

Note: improper priors on β0, β1, σ
2
ε , but can’t be improper

on σ2
0 also as it leads to an improper posterior. So, for

example, the prior

π(σ2
ε , σ2

0) ∝
1

σ2
ε σ2

0

should never be used.

model

{

for( i in 1 : N ) {

for( j in 1 : T ) {

Y[i , j] ~ dnorm(mu[i , j],eps.tau)

mu[i , j] <- beta0[i] + beta1.mu * x[j]

}

beta0[i] ~ dnorm(beta0.mu,beta0.tau)

}

eps.tau <- exp(logtau)

logtau ~ dflat()

sigma <- 1 / sqrt(eps.tau)

beta0.mu ~ dflat()

beta1.mu ~ dflat()

beta0.sigma ~ dunif(0,100)

beta0.tau <-1/(beta0.sigma*beta0.sigma)

}
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WinBUGS Data and Initial Estimates

list(x = c(8,10,12,14), N = 11, T = 4,

Y = structure(

.Data = c(21,20,21.5,23,

21,21.5,24,25.5,

20.5,24,24.5,26,

23.5,24.5,25,26.5,

21.5,23,22.5,23.5,

20,21,21,22.5,

21.5,22.5,23,25,

23,23,23.5,24,

20,21,22,21.5,

16.5,19,19,19.5,

24.5,25,28,28),

.Dim = c(11,4)))

list(beta0 = c(18,18,18,18,18,18,18,18,18,18,18),

beta0.mu = 18, beta1.mu = .5,

logtau = 0, beta0.sigma = 1)
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Results from iterations 1000–10000

node mean sd MC error 2.5% median 97.5%

beta0.mu 17.31 0.9844 0.04166 15.37 17.32 19.29

beta1.mu 0.485 0.0548 0.003584 0.3752 0.4851 0.593

beta0.sigma 2.409 0.6861 0.0106 1.465 2.277 4.111

sigma 0.800 0.1046 0.001876 0.6284 0.789 1.035

GEE (working independence):

β̂0 = 17.37 (0.78), β̂1 = 0.480 (0.067).

REML:

β̂0 = 17.37 (0.86), β̂1 = 0.479 (0.053)

σ̂0 = 2.07, σ̂ε = 0.780.

ML:

β̂0 = 17.37 (0.85), β̂1 = 0.480 (0.053)

σ̂0 = 1.97, σ̂ε = 0.768.

Pretty consistent inference!
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Linear Mixed Effects Models

For more details see: Hand and Crowder (Chapter 5),

DHLZ (Sections 4.4, 4.5), Davison (Section 9.4.2), and

Verbeke and Molenberghs.

A mixed effects model is characterized by a combination of

fixed effects, β, a (k + 1) × 1 vector, and random effects, bi,

a (q + 1) × 1 vector.

Notation: Let yi = (yi1, ..., yini
)T, denote the vector of

observations on unit i, xi = (xi1, ..., xini
)T, the design

matrix for the fixed effect with xij = (1, xij1, ..., xijk)T, and

zi = (zi1, ..., zini
)T, and design matrix for the random

effects with zij = (1, zij1, ..., zijq)
T.
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We then have the following (two stage) Linear Mixed

Effects Model:

Stage 1: Response model, conditional on random effects:

yi = xiβ + zibi + εi, (6)

where εi is an ni × 1 zero mean vector of error terms.

Stage 2: Model for random terms:

E[εi] = 0, var(ei) = Ei(α),

E[bi] = 0, var(bi) = D(α),

cov(bi, ei) = 0.

From these two stages we have the marginal model:

E[yi] = µi = xiβ,

var(yi) = V i = ziDzT

i + Ei,

cov(yi, yi′) = 0, i 6= i′.
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Maximum Likelihood Estimation

To implement MLE we need to specify a distribution for the

data, and this follows by specifying distributions for ei and

bi.

Conventional to assume

εi ∼ind N(0, σ2
ε Ini

), bi ∼iid N(0, D),

where

D =




σ2
00 σ2

01 ... σ2
0q

σ2
10 σ2

11 ... σ2
1q

... ... ... ...

σ2
q0 σ2

q1 ... σ2
qq




.

Growth curve example:

cov(bi0, bi1) = σ2
01,

covariance between the intercepts and slopes.
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We let α denote all variance-covariance parameters, and

write V = V (α).

Log-likelihood follows from integrating the random effects

from the two-stage model:

L(β, α) =
m∏

i=1

∫

bi

p(yi|β, bi, α) × p(bi|α) dbi,

to give

y|β, α ∼
m∏

i=1

N{xiβ, V i(α)},

and so

l(β, α) = log L(β, α) = −
N

2
log 2π −

1

2

mX

i=1

log |V i(α)|

−
1

2

mX

i=1

(Y i − xiβ)′V (α)−1
i (Y i − xiβ). (7)

MLE of β:

β̂ =

(
m∑

i=1

xT

i V i(α̂)−1xi

)−1( m∑

i=1

xT

i V i(α̂)−1yi

)
.

MLE of α follows from maximization of (7).

Note: if D = 0 then β̂ is the least squares estimator.
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Implementation of MLE and REML

MLE and REML require iteration between β̂|α̂ and α̂|β̂.

Originally the EM algorithm was used (e.g. Laird and Ware

(1982, Biometrics).

The fixed and random effect estimates are available in

closed form once we know α.

Slow convergence has been reported so that now the

Newton-Raphson method is more frequently used.

Let θ be a p × 1 parameter vector, l(·) the log-likelihood, G the

p × 1 score vector, and I?(·) the p × p observed information

matrix. Then a second order Taylor series expansion of l about

θ(t), the estimate at iteration t gives:

g
(t)(θ) = l(θ) + G

(t)T(θ − θ
(t)) +

1

2
(θ − θ

(t))TI
?(t)(θ − θ

(t)),

differentiating and setting equal to zero:

∂g(t)

∂θ
= G

(t) + I
?(t)(θ − θ

(t)) = 0,

gives the next estimate

θ
(t+1) = θ

(t) − {I?(t)}−1
G

(t)
.

The use of the expected information gives Fisher’s scoring

method.

See Lindstrom and Bates (1988, JASA) for details.

Lack of convergence of the algorithm/negative estimates,

may sometimes indicate that a poor model is being fitted.
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The EM Algorithm

We illustrate for MLE and, for example, suppose

Ei = Ini
σ2. The “missing data” here are the random

effects bi and the errors εi.

The M-step: Given bi and εi, obtain estimates α̂ = (σ̂2, D̂):

σ̂2 =

∑m
i=1 εT

i εi∑m
i=1 ni

=
t1
N

D̂ =
1

m

m∑

i=1

bib
T

i =
t2

m
,

where t1 and t2 are the sufficient statistics.

The E step: Estimate the sufficient statistics given the

current values α̂, via their expected values:

t̂1 = E

[
m∑

i=1

εT

i εi|yi, β̂(α̂), α̂

]

t̂2 = E

[
m∑

i=1

bT

i bi|yi, β̂(α̂), α̂

]
.
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Estimation of Random Effects

See Verbeke and Molenbergs (Chapter 7) and Robinson

(1991, “That BLUP is a good thing: the estimation of

random effects”, Statistical Science.

Preparation: Suppose U is an n × 1 vector of random

variables, and V is an m × 1 vector of random variables.

Then cov(U , V ) = C is an n × m matrix with (i, j)-th

element cov(Ui, Vj), i = 1, ..., n; j = 1, ..., m. Also

cov(V , U) = CT.

Now suppose V = AU where A is an m × n matrix. Then

cov(U , AU) = WAT where W = cov(U), and

cov(AU , U) = AW .
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Empirical Bayes

Since bi are random effects, it is natural (though not

essential) to use Bayesian methods for estimation.

We suppose first that β, α are known. Then we have seen

that the estimator that minimizes the mean squared error is

b̂i = E[bi|yi, β, α].

With εi ∼ind N(0, Ei) and bi ∼ind N(0, D) and

cov(εi, bi) = 0, we have

 bi

yi


 ∼ Nq+1+ni




 0

xiβ


 ,


 D DzT

i

ziD V i




 ,

since

cov(bi, yi) = cov(bi, xiβ + zibi + εi) = cov(bi, zibi) = DzT

i ,

and similarly cov(yi, bi) = ziD.
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Hence from properties of a multivariate normal distribution

bi|yi is normal with

E[bi|yi] = DzT

i V −1
i (yi − xiβ),

var(bi|yi) = D − DzT

i V −1
i ziD.

A matrix identity that is often used in the context of

estimation of bi is

V
−1
i = (E−1

i + ziDz
T

i )−1

= E
−1
i − E

−1
i zi(z

T

i E
−1
i zi + D

−1)−1
z

T

i E
−1
i .

see Searle, Casella and McCulloch (1991, p. 453).

From this identity we may derive

(zT

i E−1
i zi + D−1)−1zT

i E−1
i = DzT

i (E−1
i + ziDzT

i )−1,

so that another expression for the estimate of bi is

E[bi|yi] = (zT

i E−1
i zi + D−1)−1zT

i E−1
i (yi − xiβ).

In practice, β and α are replaced by estimates, to give

E[bi|yi] = D(α̂)zT

i V i(α̂)−1(yi − xiβ̂).

No easy way of accounting for extra uncertainty in

estimation of β, α – so interval estimates for b̂i will be too

short.

Random effects estimates may be used to assess model

assumptions such as normality, and constant variance – but

don’t forget that these are estimates (not observed).
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Fixed or Random Effects?

The most natural way of thinking about random effects is

as parameters that are associated with units which may be

thought of as drawn from some hypothetical infinite

population.

Hence it may be natural to think of parameters associated

with tomato plants, workers in a factory, clinics in a city, as

random effects which are drawn from some common

distribution.

However, if we are interested in (say) the effects of four

treatment arms, then it may or may not be reasonable to

think of them as being drawn from a population of

treatment effects. If, for example, one of them is a control

then we may feel that the effect of this arm is not “similar”

to the other treatments – this notion is formalized through

the Bayesian notion of exchangeability which we discuss

later.
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Advantages of Random Effects

In the way we have developed the random effects

formulation as a way of modeling dependencies – the

inclusion of random effects induced dependencies on

responses on the same unit. We could have allowed for the

dependencies by allowing each unit to have its own set of

fixed effects, however.

There are a number of reasons why we may want to

consider a random effects formulation:

• We are interested in making inference about the

population from which the individual effects were drawn.

• We wish to make inference about a particular unit and

wish to make use of information from the other units

(which recall are viewed as similar) – this is particularly

true when the data on a unit of interest is sparse.

72 2005 Jon Wakefield, Stat/Biostat 571

Random effects models provide an economical way of

modeling dependencies. For example, consider the simple

one-way ANOVA model:

Stage 1: Yij ∼ind N(µ + bi, σ
2
ε ), i = 1, ..., m, j = 1, ..., n.

Stage 2: bi ∼iid N(0, σ2
0), i = 1, ..., m.

Does this model have m + 3 parameters, or 3?

A fixed effects model with an effect for each unit would

have m + 2 parameters (can think of this as the above with

σ2
α = ∞).

By assuming a common distribution we have “tied” the m

random effect parameters together.
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More Flexible Covariance Structures

We discuss covariance models in the context of longitudinal

data (though aspects of the discussion are relevant to other

types of clustered data).

Whether we take a GEE or LME approach (with inference

from the likelihood or from the posterior) we require flexible

yet parsimonious covariance models.

In GEE we require a working covariance model

cov(Y i) = W i,

i = 1, ..., m.

With LME we have so far assumed the model

yi = xiβ + zibi + εi, (8)

with bi ∼ind N(0, D) and εi ∼ind N(0, Ei), with

Ei = Ini
σ2.

With zibi = 1ni
bi we obtained an exchangeable correlation

structure.
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An obvious extension for longitudinal data is to assume

yi = xiβ + zibi + δi + εi,

with:

• Random effects bi ∼ind N(0, D).

• Serial correlation δi ∼ind N(0, Riσ
2
δ ), with Ri an

ni × ni correlation matrix with elements

Rijj′ = corr(Yij , Yij′ |bi),

j, j′ = 1, ..., ni.

• Measurement error εi ∼ind N(0, Ini
σ2

ε ).

In general it is difficult to identify all three sources of

variability – but the above provides a useful conceptual

model.
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Examination of Covariance Structure

Consider a stochastic process Y (t) and let

γ(t, s) = cov{Y (t), Y (s)} = E[{Y (t) − µ(t)}{Y (s) − µ(s)}],

denote the autocovariance function of Y (t). The term serial

dependence says that there is dependence between Y (t) and

Y (s) for at least some pairs (s, t) with s 6= t.

We write

Y (t) = µ(t) + r(t),

where µ(t) is the trend and r(t) is a residual process.

Such a process is second-order stationary if E[r(t)] is equal

to a constant (which we take to be zero, any intercept being

absorbed into µ(t)), for all t, and γ(t, s) depends only on

|t − s|.
Example: The simplest example of a stationary random

sequence is white noise which consists of a sequence of

mutually independent random variables, each with mean 0

and finite variance σ2.

There is a fundamental difficulty with trying to decompose

Y (t) into the trend and the stochastic component in a

single series because the two are unidentifiable without

further assumptions.

Is it serial dependence in the residuals, or a high-order

polynomial trend for example?

76 2005 Jon Wakefield, Stat/Biostat 571

The Autocorrelation Function

For a second-order stationary random process, the

autocovariance function is

γ(u) = cov{Y (t), Y (t + u)},

so that γ(0) is the variance of Y (t) for all t.

The autocorrelation function is defined as

ρ(u) =
γ(u)

γ(0)
.

For equally-spaced data we could fit a model and then

examine the autocrrelation function (ACF) of the residuals,

rt =
yt − ŷt

v̂ar(Yt)1/2
.

Consider a stochastic process r(t), and realizatons rt,

t = 1, ..., n. The emprical autocorrelation is defined as

ρ̂(u) = ĉorr{r(t), r(t + u)} =

∑n−u
t=1 rtrt+u/(n − u)∑n

t=1 r2
t /n

,

u = 0, 1, ....

A correlogram plot is ρ̂(u) versus u. If the residuals are a

white noise process, we have the asymptotic result

√
n rt →d N(0, 1),

to give confidence bands ±2/
√

n.
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