
Again consider the model

y = xβ + zb + ε,

with E[b] = 0.

Consider an estimator b̃; b is a random variable and so

rather than use minimum variance as a criteria (variance is

about a fixed point), we use minimum MSE as a criteria.

Specifically

MSE(b̃) = E[(b̃ − b)TA(b̃ − b)],

for non-singular A leads to b̃ = E[b | y], irrespective of A

(see Exercises 4).

Properties of b̃:

EY {b̃} = Ey{E[b̃ | y]} = 0.

The predictor b̃ = E[b | y] is a random variable, since it a

function of y, and so we need to know something about

p(b | y) in order to derive its form.
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If we assume

 bi

yi


 ∼ Nq+1+ni




 0

xiβ


 ,


 D DzT

i

ziD V i




 ,

to give

b̃i = E[bi|yi] = DzT

i V −1
i (yi − xiβ),

var(bi|yi) = D − DzT

i V −1
i ziD.

Rather than assume normality we could consider estimators

that are linear in y. In Exercises 4 we show that this again

leads to

b̃i = DzT

i V −1
i (yi − xiβ).

Hence the best linear predictor is identical to the best

predictor under normality.

For general distributions, E[bi|yi] not necessarily linear in y.
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Example: One-way ANOVA:

Yij = β0 + bi + εij ,

bi ∼ N(0, σ2
0), εij ∼ N(0, σ2

ε ). Can also write as

Y i = 1nβ0 + 1nbi + εi.

We show that

b̃i =
nσ2

0

σ2
ε + nσ2

0

(yi − β0).

In practice we have an estimate β̂0, and the predictor is a

weighted combination of the distance yi − β̂0 and zero.

Hence for finite n the predictor is biased towards zero.

As n → ∞, b̃i → yi − β̂0, so that

β̂0 + b̃i → yi → E[Yi].
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We now examine the second moment properties of our

estimator via

var(b̃i − bi) = var(b̃i) + var(bi) − 2cov(b̃i, bi).

We have

cov(b̃i, bi) = EY [cov(b̃i, bi | y)]+covY (E[b̃i | y], E[bi | y]) = var(b̃i),

so that

var(b̃i − bi) = var(bi) − var(b̃i) = D − var(b̃i)

In lectures we show that

var(b̃) = DzTV −1{V − x(xTV −1x)−1x}V −1zD

= DzT{V −1 − V −1x(xTV −1x)−1xV −1}zD.
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We now examine fitted values:

Ŷ i = xiβ̂ + zib̂i

= xiβ̂ + zi{DzT

i V −1
i (yi − xiβ̂)}

= (Ini
− ziDzT

i V −1
i )xiβ̂ + ziDzT

i V −1
i Y i,

a weighted combination of the population profile, and the

unit’s data.

Note that if D = 0 we obtain Ŷ i = xiβ̂.

We can also write

Ŷ i = σ2
ε V −1

i xiβ̂ + (Ini
− σ2

ε V −1
i )Y i.
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In the Bayesian approach the posterior distribution for b | y

may be reported, or one may concentrate on summaries

such as posterior quantiles.

The uncertainty in estimation of β, α is acknowledged if

one approximates the required integrals by analytical,

numerical or simulation techniques.

For example, an MCMC approach would sample from the

conditional:

p(bi | y, β, α) ∝ p(yi | β, α, bi) × p(bi | D),

which leads to

bi | y, β, α ∼ Nq+1{(zT

i σ−2
ε zi + D−1)−1zT

i σ−2
ε (yi − xiβ),

(zT

i σ−2
ε zi + D−1)−1}.

The identity

(T +UV −1W )−1 = T−1−T−1U(V −1+WT−1U)−1WT−1

gives

(zT

i σ−2
ε zi + D−1)−1 = D − DzT

i (Iσ−2 + ziDzT

i )−1ziD

= D − DzT

i V −1
i ziD

yields

bi | y, β, α ∼ Nq+1{(zT

i ziσ
−2
ε + D−1)−1zT

i σ−2
ε (yi − xiβ),

D − DzT

i V −1
i ziD}.
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This shows how the variance is changed from the prior un-
certainty of D to posterior uncertainty.

The uncertainty over β, α is acknowledged over the Gibbs
iterates. Note: could derive immediately from joint distribu-
tion of yi, bi | β, α.
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Restricted Maximum Likelihood Estimation (REML)

We assume the model

Y = xβ + zb + ε,

with bT = (b1, ..., bm), bi ∼ N(0, D), ε ∼ N(0, σ2
ε I) and b

and ε are independent;

• Y is N × 1,

• x is N × (k + 1),

• β is (k + 1) × 1,

• z is N × (q + 1),

• b is (q + 1) × 1

• ε is N × 1.

Maximum likelihood for variance components give

estimators that do not acknowledge the estimation of β.

REML is a method that has been proposed to rectify this

problem – there are a number of justifications; we have

already seen a Bayesian justification, we now provide

another based on marginal likelihood.

The overall rationale is: Find a function of the data,

U = f(Y ), whose distribution does not depend upon β,

and then base inference for α on this distribution.
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A natural function to choose is the vector of residuals

following an ordinary least squares fit:

R = Y − xβ̂o = Y − x(xTx)−1xTY

= (I − x(xTx)−1xT)Y = (I − H)Y ,

where β̂o = (xTx)−1xTY is the OLS estimator.

We have

(I − H)Y = (I − H)(zb + ε),

and so the distribution of R does not depend on β.

Unfortunately the distribution of R is degenerate as it has

rank N − k − 1.

Hence we take N − k − 1 linearly independent residuals:

U = BTY

where B is any N × (N − k − 1) matrix with

BBT = I − H and BTB = I so that

U = BTY = BTBBTY = BT(I − H)Y = BTR,

and BTY is a linear combination of residuals.

Further BTX = 0, so that

U = BTY = BTzb + BTε,

and so the distribution of U does not depend upon β, and

E[U ] = 0.
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We now derive the distibution of U . To do this we consider

the transformation from Y → (U , β̂G) = (BTY , GTY ),

where

β̂G = GTY = (xTV −1x)−1xTV −1Y ,

is the generalized least squares estimator. We first derive

the Jacobian of the transformation. To do this we need the

following two facts:

1. det(ATA) = det(AT)det(A) = det(A)2.

2.

∣∣∣∣∣∣
T U

V W

∣∣∣∣∣∣
=| T || W − V T−1U | .

Then

| J | =

∣∣∣∣∣
∂(U , β̂G)

∂Y

∣∣∣∣∣ =| B G |=

∣∣∣∣∣∣


 BT

GT


 [B G]

∣∣∣∣∣∣

1/2

=

∣∣∣∣∣∣


 BTB BTG

GTB GTG



∣∣∣∣∣∣

1/2

= | BTB |1/2| GTG − GTB(BTB)−1BTG |1/2

= 1× | GTG − GT(I − H)G |1/2

= | xTx |−1/2

= 6= 0

which implies that (U , β̂g) is of full rank (= N). The vector

(U , β̂G) is a linear combination of normals and so is normal.
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We have

p(y | α, β) = p(U , β̂G | α, β) | J |= p(U | β̂G, β)p(β̂G | α, β) | J |

and
E[U ] = 0,

and
cov(U , β̂G) = E[U(β̂G − β)T] = 0,

and so U and β̂G are uncorrelated, and since normal therefore
independent.

Hence

p(y | α, β) = p(U | α)p(β̂G | α, β) | J | .

Recall the definition of marginal likelihood. Let S1, S2, be
minimal sufficient statistics for which

p(y | λ, φ) ∝ p(s1, s2 | λ, φ)

= p(s1 | λ)p(s2 | s1, λ, φ)

where λ is a parameter of interest and φ are the remaining
(nuisance) parameters.

Inference for λ may be based on the marginal likelihood

Lm(λ) = p(s1 | λ).

In the REML context we have s1 = u, s2 = β̂G, λ = α,
φ = β, and p(U | α) is a marginal likelihood.
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Hence

p(U | α) =
p(y | α, β)

p(β̂G | α, β)
| J |−1 .

We have

p(y | α, β) = (2π)−N/2 | V |−1/2 exp

{
−1

2
(y − xβ)TV −1(y − xβ)

}
,

and

p(β̂G | α, β) = (2π)−(k+1)/2 | xTV −1x |1/2

× exp

{
−1

2
(β̂G − β)TxTV −1x(β̂G − β)

}

This leads to

p(U | α) = (2π)−(N−k−1)/2 | xTx |1/2| V |−1/2

| xTV −1x |1/2

× exp

{
−1

2
(y − xβ̂G)TV −1(y − xβ̂G)

}
(11)

which does not depend upon B, hence we can choose any

linear combination of the residuals.
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Notes on REML

• To summarize: the “data” U (a linear combination of

residuals from an OLS fit), has a distribution that

depends on α only – this defines a likelihood (the

REML likelihood) which may then be maximized as a

function of α.

• The log restricted likelihood is, upto a constant,

lR(α) = −1

2
log | xTV x |

− 1

2
log | V | −1

2
(y − xβ̂G)TV −1(y − xβ̂G).

The profile log-likelihood based on Y is:

lP (α) = −1

2
log | V | −1

2
(y − xβ̂G)TV −1(y − xβ̂G),

and so we have the additional term − 1
2 log | xTV x |

that accounts for the degrees of freedom in estimation

of β.
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• In terms of computation calculating REML estimators

can be carried out with ML code, altered to include the

extra term.

• In general, REML estimators have finite sample bias,

but they are preferable to ML estimators, particularly

for small samples.

• So far as estimation of the variance components are

concerned, the asymptotic distribution of the

ML/REML estimator is normal, with variance given by

Fisher’s information.

• Suppose we fit two (nested) models using REML.

Different sets of observations are used in each and so we

cannot use a likelihood ratio to test whether the smaller

model is a valid statistical simplification of the larger

model.

• Likelihood ratio tests for variance components are valid.
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Hypothesis tests for variance components

Testing whether random effect variances are zero requires

care since the null hypothesis lies on the boundary, and so

the usual regularity conditions are not satisfied.

As an example, consider the test of H0 : D = 0 versus

HA : D = σ2
0 , where σ2

0 is a non-negative scalar. In this case

the asymptotic null distribution is a 50:50 mixture of χ2
0

and χ2
1 distributions, where the former is the distribution

that gives probability mass 1 to the value 0.

If the usual χ2
1 distribution is used then the null would be

accepted too often, leading to variance component structure

that is too simple.

The intuition on the null distribution is that, under the null,

half of the time the correlation will be estimated as ρ̂ = 0.
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Exchangeability

Definition: A finite set Y1, ..., Yn of random variables is

said to be exchangeable if every permutation (Y1, ..., Yn) has

the same joint distribution as every other permutation. An

infinite collection is exchangeable if every finite

subcollection is exchangeable.

Every collection of independent and identically distributed

random variables is exchangeable.

Theorem: De Finetti’s representation Theorem for 0/1

random variables.

If Y1, Y2, ... is an infinitely exchangeable sequence of 0/1

random variables, there exists a distribution π(·) such that

the joint mass function Pr(y1, ..., yn) has the form

Pr(y1, ..., yn) =

∫ 1

0

n∏

i=1

θyi(1 − θ)1−yiπ(θ) dθ,

where ∫ θ

0

π(u) du = lim
n→∞

Pr

(
Zn

n
≤ θ

)
,

with Zn = Y1 + ... + Yn, and θ = limn→∞ Zn/n.
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Proof: See Bernardo and Smith (1994) for more details.

Let zn = y1 + ... + yn be the number of 1’s (which we label

“successes”) in the first n observations. Then, due to

exchangeability,

Pr(y1 + ... + yn = zn) =


 n

zn


Pr(Yπ(1), ..., Yπ(n)),

for all permutations π of {1, ..., n} such that

yπ(1) + ... + yπ(n) = zn. Then we can embed the event

y1 + ... + yn = zn within a longer sequence and

Pr

 
nX

i=1

yi = zn

!
=

N−(n−zn)X

ZN =zn

Pr(y1 + ... + yn = zn, Y1 + ... + YN = zN )

=

N−(n−zn)X

ZN =zn

Pr(y1 + ... + yn = zn | Y1 + ... + YN = zN )

× Pr(Y1 + ... + YN = zN ).

To obtain the conditional probability we observe that it is

as if we have a population of N people of which zN are

successes, and N − zN failures, from which we draw n

people, the probability of zn successes is then
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hypergeometric. Hence

Pr(y1 + ... + yn = zn) =

N−(n−zn)X

zN =zn

0
@ zN

zn

1
A
0
@ N − zN

n − zn

1
A

0
@ N

n

1
A

Pr(zN )

Here Pr(zN ) is the “prior” belief in the number of successes

out of N . We now let N → ∞ such that zN/N = θ. Then

the hypergeometric tends to a binomial with parameters n

and θ, and the prior Pr(zN ) is translated into a prior for θ,

π(θ). Hence we have

Pr(y1 + ... + yn = zn) →


 n

zn



∫

θzn(1 − θ)n−znπ(θ) dθ,

as N → ∞.
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Implications

The interpretation of this theorem is of great significance:

• We may view the Yi to be independent, Bernoulli

random variables, conditional on a random variable θ.

• θ is itself assigned a probability distribution π().

• By the strong law of large numbers, limn→∞ Zn/n, so

that π may be interpreted as ‘beliefs about the limiting

relative frequency of 1’s’.

In conventional language, we have the likelihood function

p(Y1, ..., Yn|θ) =
n∏

i=1

p(Yi|θ) =
n∏

i=1

θYi(1 − θ)1−Yi ,

where the parameter θ is assigned a prior distribution π(θ).
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Corollary: If Y1, Y2, ... is an infinitely exchangeable

sequence of 0/1 random variables, then we have the

conditional probability function

p(ym+1, ..., yn | y1, ..., ym) =

∫ 1

0

n∏

i=m+1

θYi(1−θ)1−Yiπ(θ | y1, ..., ym) dθ,

for 1 ≤ m < n where

π(θ | y1, ..., ym) =

∏m
i=1 θyi(1 − θ)1−yiπ(θ)

∫ 1

0

∏m
i=1 θyi(1 − θ)1−yiπ(θ) dθ

and ∫ θ

0

π(u) du = lim
n→∞

Pr
(zn

n
≤ θ
)

.

Proof

Write

Pr(ym+1, ..., yn | y1, ..., ym) =
Pr(y1, ..., yn)

Pr(y1, ..., ym)
,

and then use the previous result on numerator and

denominator.

Interpretation: the prior distribution π(θ) for θ has been

revised, via Bayes’ Theorem, into the posterior distribution

π(θ|y1, ..., ym).

115 2005 Jon Wakefield, Stat/Biostat 571



Further results

General Representation Theorem:

If Y1, Y2, ... is an infinitely exchangeable sequence of random

variables with probability measure P , there exists a

distribution function Q such that the joint mass function

p(Y1, ..., Yn) has the form

p(Y1, ..., Yn) =

∫ n∏

i=1

p(Yi|θ)π(θ)dθ,

with p(·|θ) denoting the density function corresponding to

the ‘unknown parameter’ θ.

Further assumptions on Y1, Y2, ... are required to identify

p(·|θ).
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Relevance of Exchangeability

If we believe a priori that θ1, ..., θm are exchangeable (and

are considered within a hypothetical infinite sequence of

such random variables), then it can be shown using

representation theorems that the prior can be written in the

form

p(θ1, ..., θm) =

∫ m∏

i=1

p(θi|φ)π(φ) dφ,

that is, they are conditionally independent, given

hyperparameters φ, with the hyperparameters having a

hyperprior distribution.

Hence we have a two-stage (hierarchical) prior:

Stage A: θi|φ ∼iid p(·|φ), i = 1, ..., m.

Stage B: φ ∼ind π(·).
Parametric choices for p(·|φ) and π(·) are usually made for

computational convenience.

Contrast with the sampling theory approach in which the

random effects are assumed to be a random sample from a

hypothetical infinite population.
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Predictive distributions in the context of

hierarchical models

Predictive distributions may be obtained for random

variables at any level of the hierarchy.

For example in the hierarchy:

Stage 1: Yi|θi,, i = 1, ..., m,

Stage 2: θi|φ, i = 1, ..., m,

Stage 3: φ,

we can obtain a predictive distribution for the parameters

of a new unit, θ∗, assumed to be from the same population

(at stage 2) via

p(θ∗|y) =

∫
p(θ∗|φ)π(φ|y)dφ,

and for an observation, y∗, for this new unit via:

p(y∗|y) =

∫
p(y∗|θ∗)π(θ∗|y)dθ∗.

Simulation from these predictive distributions is

straightforward given samples from the posterior. For

example:

p(θ?|y) ≈ 1

S

S∑

s=1

p(θ?|φ(s)),

where φ(s) ∼ π(φ|y).
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