
Assessment of Assumptions

Each of the approaches to modeling that we have described

depend upon assumptions concerning the structure of the

data; to ensure that inference is appropriate we need to

attempt to check that these assumptions are valid.

We first recap the assumptions:

GEE

Model:

Y i = xiβ + ei,

with working covariance model var(ei) = W i(α),

i = 1, ..., m.

G1 Marginal model E[Y i] = xiβ is appropriate.

G2 m is sufficiently large for asymptotic inference to be

appropriate.

G3 m is sufficiently large for robust estimation of standard

errors.

G4 The working covariance W i(α) is not far from the

“true” covariance structure; if this is the case then the

analysis will be very inefficient (standard errors will be

much bigger than they need to be).
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LMEM

Model:

Y i = xiβ + zibi + ǫi,

with bi ∼ N(0, D), ǫi ∼ N(0, Ei), bi and ǫi independent,

i = 1, ..., m.

L1 Mean model for fixed effects xiβ is appropriate.

L2 Mean model for random effects zibi is appropriate.

L3 Variance model for ǫi is correct.

L4 Variance model for bi is correct.

L5 Normality of ǫi.

L6 Normality of bi.

L7 m is sufficiently large for asymptotic inference to be

appropriate.

Bayesian Hierarchical Model

Model for LMEM, plus priors for β and α.

Each of L1–L6 (asymptotic inference is not required if, for

example, MCMC is used, though “appropriate” priors are

needed).
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Residual Analysis

Residuals may be defined with respect to different levels of

the model.

A vector of unstandardized population-level residuals is

given by

ei = Y i − xiβ.

A vector of unstandardized unit-level residuals is given by

ǫi = Y i − xiβ − zibi.

The vector of unstandardized random effects, bi, is also a

form of residual.

Estimated versions of these residuals are given by

êi = Y i − xiβ̂,

ǫ̂i = Y i − xiβ̂ − zib̂i,

and b̂i.

Recall from consideration of the ordinary linear model that

estimated residuals have dependencies induced by the

estimation procedure; in the dependent data context the

situation is much worse as the “true” residuals have

dependencies due to the dependent nature of the data.

Hence standardization is essential.
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Standardized Population Residuals

If V i(α) is the true error structure then

var(ei) = V i, and var(êi) ≈ V i(α̂).

This dependence means that it is not possible to check

whether the covariance model (both form of the correlation

structure and mean-variance model) is correctly specified.

Plotting êij versus xij may also be misleading due to the

dependence within the residuals.

As an alternative, let V̂ i = LiL
T

i denote the Cholesky

decomposition of V̂ i = V i(α̂), the estimated

variance-covariance matrix.

We can use this decomposition to form

ê
⋆
i = L−1

i êi = L−1
i (Y i − xiβ̂).

Note that: var(e⋆
i ) = I.

We now discuss a tool for examining the correlation in a set

of residuals.
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The Variogram

For unequally-spaced data the ACF is not so convenient,

unless we round the observations.

An alternative is provided by the semi-variogram which is

defined, for a process Zt and d ≥ 0.

γ(d) =
1

2
E
[
{Zt − Zt−d}2

]
.

For a second-order stationary process, E[Zt] = µ for all t

and cov(Zt, Zt−d) only depends on the distance d (which

implies constant variance).

A smooth process is L2-continuous, i.e.

E{(Zt − Zt−d)
2} → 0

as d → 0.

For a second-order stationary smooth process

γ(d) =
1

2

{
E[Z2

t ] + E[Z2
t−d] − 2E[ZtZt−d]

}

= σ2
z{1 − ρ(d)},

where var(Z) = σ2.

The semi-variogram is also well-defined for an intrinsically

stationary process for which E[Zt] = µ and for which

E[(Zt − Zt−d)
2] = 2γ(d).
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As d increases then for observatons far apart in time

γ(d) → var(Zt) = σ2
z ,

which (recall) is assumed constant.

Consider measurement error, ǫt with E[ǫt] = 0, var(ǫt) = σ2
ǫ ,

and

Yt = Zt + ǫt,

then:

γ(d) =
1

2
E
[
{Yt − Yt−d}2

]
= σ2

z{1 − ρ(d)} + σ2
ǫ ,

and we have a “nugget” effect σ2
ǫ .

The Variogram in Longitudinal Data Analysis

Define the semi-variogram of the population residuals,

eij = Yij − xijβ, as

γi(dijk) =
1

2
E
[
{eij − eik}2

]
,

for dijk =| tij − tik |≥ 0.

Note: differences on the same individual.

The sample semi-variogram uses the empirical halved

differences between pairs of population residuals

vijk =
1

2
(eij − eik)2,

along with the spacings uijk = tij − tik.
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With highly-irregular sampling times the variogram can be

estimated from the pairs (uijk, vijk), i = 1, ..., m,

j < k = 1, ..., ni, with the resultant plot being smoothed.

The marginal distribution of each vijk is χ2
1, and this large

variability can make the variogram difficult to interpret.

The total variance is estimated as the average of
1
2 (eij − elk)2, for i 6= l, since

1

2
E
[
(eij − elk)2

]
=

1

2

{
E[e2

ij ] + E[e2
lk]
}

= σ2,

assuming that observations on different individuals are

independent (and the variance is constant over time, and

for different individuals).

Consider the interpretation of the variogram for the model

Yij = xijβ + bi + δij + ǫij ,

where bi ∼ind N(0, σ2
0) (note, univariate), ǫij ∼ind N(0, σ2

ǫ ),

and δij represent error terms with serial dependence.

A simple and commonly-used form for serial dependence is

the AR(1) model given by

cov(δij , δik) = σ2
δρ|tij−tik|.

Under this model

var(Yij |β) = σ2 = σ2
0 + σ2

δ + σ2
ǫ .
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Consider the theoretical variogram for the residuals

eij = Yij − xijβ = bi + δij + ǫij ,

i = 1, ..., m; j = 1, ...ni, with the AR(1) model.

For differences in residuals on the same individual

eij − eik = bi + δij + ǫij − bi − δik − ǫik = δij + ǫij − δik − ǫik,

and so

γi(dijk) =
1

2
E
[
(eij − eik)2

]
= σ2

δ (1 − ρdijk) + σ2
ǫ . (12)

As dijk → 0, γi(dijk) → σ2
ǫ and bi is the mean of eij and so

its variance does not appear in (12).

The variogram is limited in its use for population residuals

for the LMEM .

Consider, the mixed effects model with random intercepts

and independent random slopes:

bi0 ∼ N(0, υ2
00), bi1 ∼ N(0, υ2

11)

leads to non-constant marginal variance

var(Yij |β) = υ2
00 + 2υ2

11t
2
ij ,

so that we would not want to look at a variogram of

population residuals because we do not have second-order

stationarity.
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Figure 10: Theoretical variogram for a model with a random

intercept, serial correlation, and measurement error.
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lda.variogram <- function( id, y, x ){

# INPUT: id = (nobs x 1) id vector

# y = (nobs x 1) response (residual) vector

# x = (nobs x 1) covariate (time) vector

# RETURN: delta.y = vec( 0.5*(y_ij - y_ik)^2 )

# delta.x = vec( abs( x_ij - x_ik ) )

uid <- unique( id )

m <- length( uid )

delta.y <- NULL

delta.x <- NULL

did <- NULL

for( i in 1:m ){

yi <- y[ id==uid[i] ]

xi <- x[ id==uid[i] ]

n <- length(yi)

expand.j <- rep( c(1:n), n )

expand.k <- rep( c(1:n), rep(n,n) )

keep <- expand.j > expand.k

if( sum(keep)>0 ){

expand.j <- expand.j[keep]

expand.k <- expand.k[keep]

delta.yi <- 0.5*( yi[expand.j] - yi[expand.k] )^2

delta.xi <- abs( xi[expand.j] - xi[expand.k] )

didi <- rep( uid[i], length(delta.yi) )

delta.y <- c( delta.y, delta.yi )

delta.x <- c( delta.x, delta.xi )

did <- c( did, didi ) } }

out <- list( id = did, delta.y = delta.y, delta.x = delta.x )

out}
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We illustrate the use of the lda.variogram function using

the follicle data.

> mod0 <- lme( follicles ~ x1+x2,data=Ovary,random= ~1 )

# Obtain population residuals.

> res <- residuals(mod0,type="response")

# Obtain empirical variogram of these residuals.

> vario <- lda.variogram( Ovary$Mare, res, Ovary$Time)

> plot(vario$delta.x,vario$delta.y)

# Use a spline to reveal any trend in the variogram

# -- preferable to the use of a {\tt lowess()} smoother

# since the latter is not good with highly skewed data.

> lines(smooth.spline(vario$delta.x,vario$delta.y,df=10))

> var.est <- var(res)

> abline(h=var.est,lty=2)

# Now for GEE

> modgee <- geese(follicles ~ x1+x2,data=Ovary,id=Mare,

corstr="independence")

> resgee <- Ovary$follicles-12.215-x1*(-3.339)-x2*(-0.869)

> vario <- lda.variogram( Ovary$Mare, resgee, Ovary$Time)

> plot(vario$delta.x,vario$delta.y,ylab="Empirical variogram",

xlab="Time difference")

> lines(smooth.spline(vario$delta.x,vario$delta.y,df=10))

> var.est <- var(res)

> abline(h=var.est,lty=2)

We see what appears to be an increasing trend in the

empirical semi-variogram plot in Figure 11 – suggests that

the errors are correlated (or increasing variance?).
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Figure 11: Empirical variogram of population residuals from

(a) GEE, and (b) linear mixed effects model.
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Variograms for Simulated Data

We now simulate data from various longitudinal models.

Each plot shows the raw data with individual fitted straight

lines (top left), and then the variogram from the population

residuals (top right), the subject-specific residuals (bottom

left).

Consider the population residual process on subject i:

ei(t) = bi + δi(t) + ǫi(t)

ei(t − u) = bi + δi(t − u) + ǫi(t − u)

where

• bi ∼ N(0, σ2
0),

• ǫi(s) ∼ind N(0, σ2
ǫ ), and

• δi are normal with cov{δi(t), δi(t − u)} = σ2
δρu,

expressing serial correlation on observations on the

same individual.
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We have

γ(u) = E[{ei(t)−ei(t−u)}2] =





σ2
ǫ + σ2

δ{1 − ρ(u)} for u 6= 0

σ2
ǫ for u = 0

and var{ei(t)} = σ2
ǫ + σ2

0 + σ2
δ .

If we define subject specific residuals as:

ǫ⋆
i (t) = δi(t) + ǫi(t)

ǫ⋆
i (t − u) = δi(t − u) + ǫi(t − u)

then var{ǫ⋆
i (t)} = σ2

ǫ + σ2
δ .

Model for simulation:

Yij = 2 + 1 × tj + bi + δij + eij ,

• For i = 1, ..., m = 20 individuals, with

• j = 1, ..., ni = 10 observations on each,

• bi ∼ N(0, σ2
0),

• ǫij ∼ N(0, σ2
ǫ ),

• δij ∼ N(0, σ2
δ ), cov(δij, δik) = σ2

δρ|tj−tk|.
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Figure 12: Measurement error only.
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Figure 13: Measurement error and random effect for inter-

cept.
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Figure 14: Measurement error and weak serial correlation.

135 2005 Jon Wakefield, Stat/Biostat 571

0.2 0.4 0.6 0.8 1.0

1
2

3
4

time

y

sige= 0.3 sig0= 1e−04 sigd= 0.8 rho= 0.8

1

1

1 1

1
1

1
1

1
1

2

2

2 2

2 2 2

2

2

2

3
3

3
3

3
3 3

3

3
3

4

4

4

4
4

4

4 4
4 4

5

5 5

5

5 5

5

5

5 5

6 6

6
6

6

6

6
6

6

6

7
7

7
7

7

7

7
7

7

7

8

8

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9 9
9

9

10
10

10
10

10

10

10

10
10 10

11

11

11

11

11

11

11
11 11

11

12

12

12

12

12
12

12
12

12

12

13
13

13

13
13

13

13
13

13 13

14

14

14

14

14

14
14 14

14

1415

15

15 15

15 15

15

15

15 1516

16

16

16

16

16

16

16

16

16

17

17
17

17

17

17 17

17

17

17

18
18

18

18

18
18

18

18 18

18

19 19

19

19 19

19

19

19 19

19

20

20

20
20

20
20

20
20

20

20

0.2 0.4 0.6 0.8

0
1

2
3

4
5

6

vario0$delta.x

va
rio

0$
de

lta
.y

0.2 0.4 0.6 0.8

0
1

2
3

4
5

6

vario1$delta.x

va
rio

1$
de

lta
.y

var(res)
sige2
sige2+sigd2
sige2+sigd2+sig02

Figure 15: Measurement error and strong serial correlation.
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Figure 16: Measurement error and strong serial correlation

and random effects.
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Figure 17: Measurement error and serial correlation and

strong random effects.

138 2005 Jon Wakefield, Stat/Biostat 571



The use of bi in residual analysis

Predictions of the random effects b̂i may be used to assess

assumptions associated with the random effects

distribution, in particular:

• Are the random effects normally distributed?

• If we have assumed independence between random

effects, does this appear reasonable?

• Is the variance of the random effects independent of

covariates xi?

It should be born in mind that interpretation of random

effects predictions is more difficult since they are not direct

functions of the data.

Recall that b̂i are shrinkage estimators, and the amount of

shrinkage is determined by the specific form assumed for

the estimator (following from normality of random effects,

or linearity of estimator, for example).

Hence assumptions about bi may not be reflected in b̂i.

We may fit curves for particular individuals with ni large,

and then check the assumptions from these.
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Example: Growth Curves

We now carry out a more comprehensive analysis of the

dental growth data.

Suppose

• The primary aim is to answer the question of

differences in average growth between boys and girls.

• A secondary aim is exploration/description of sources of

variability in the data.

Figures 18–20 show various diagnostics that are based on

individual fits to each boy and girl.

Figures 18 and 19 are useful for assessing the random effects

distribution.

Figure 20 is useful for assessing the measurement error

distribution.
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More diagnostics

Statistics:

IQR for β̂0 for boys: 23.72–26.00, for girls: 21.25–23.56.

IQR for β̂1 for boys: 0.54–0.96, for girls: 0.33–0.61.

sd(β̂0) = 1.83 for boys and sd(β̂0) = 2.10 for girls.

sd(β̂1) = 0.41 for boys and sd(β̂1) = 0.22 for girls.

Correlation β̂0, β̂1 is -0.00 for boys and 0.38 for girls.

Std dev of residuals for boys is 1.15, and for girls is 0.48.

Observations:

• Boy 10 is a slope outlier.

• Not clear that the random effects distriubtions are the

same for boys and girls.

• Not clear we need random effects for slopes.

• Not clear measurement error is same for boys and girls.
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We fit separate LMEM to each of the boys and girls data

using REML.

Boys:

> modb <- lme( distance ~ I(age-11), data = Orthboy ,

+ random= ~I(age-11) | Subject )

> summary(modb)

Linear mixed-effects model fit by REML

Random effects:

Formula: ~I(age - 11) | Subject

StdDev Corr

(Intercept) 1.642412 (Intr)

I(age - 11) 0.188629 -0.011

Residual 1.609114

Fixed effects: distance ~ I(age - 11)

Value Std.Error DF t-value p-value

(Intercept) 24.968750 0.4572219 47 54.60970 0

I(age - 11) 0.784375 0.1015638 47 7.72298 0

Correlation:

(Intr)

I(age - 11) -0.005
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Girls:

> modg <- lme( distance ~ I(age-11), data = Orthgirl ,

+ random= ~I(age-11) | Subject )

> summary(modg)

Linear mixed-effects model fit by REML

Random effects:

Formula: ~I(age - 11) | Subject

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 2.0775608 (Intr)

I(age - 11) 0.1612351 0.527

Residual 0.6678487

Fixed effects: distance ~ I(age - 11)

Value Std.Error DF t-value p-value

(Intercept) 22.647727 0.6344478 32 35.69675 0

I(age - 11) 0.479545 0.0662625 32 7.23706 0

Correlation:

(Intr)

I(age - 11) 0.381
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CHAPTER 11: MODEL SELECTION/FORMULATION

Very context specific; we consider three distinct scenarios:

1. Confirmatory analyses in which an a priori hypothesis

concerning a particular response/covariate relationship

is of interest, and other variables have been measured

and we wish to know which to adjust for.

2. Exploratory analyses where the aim is to gain clues as

to structure in the data. For example, which covariates

are causally related to a response, or characterizing

sources of variability.

3. Prediction in which we are not concerned with

causality, but merely with predicting a response given a

set of variables.
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We define the null model as that which contains an

intercept only, the minimal model as the smallest model

which is consistent with prior information.

So for example, in an epidemiological investigation we would

almost always want to include terms for age and gender.

The minimal model may also be a function of the design so

in matched case-control studies we include a term for each

of the matching sets. Similarly in clinical trials in which

treatments are randomized within a priori chosen strata, we

again will include a term for strata.

With respect to the first two aims in particular, an

understanding of causality and confounding is very useful in

formulating models.
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Causality and Confounding

We now discuss the choice of the mean model, via the

concepts of causality and confounding.

Advantages of causal examination of models:

1. Graphical examination of variables can clarify

assumptions/relationships between variables.

2. Understand which variables to control for.

3. In some situations the method of analysis is different

from the conventional models we are used to fitting,

e.g. time-varying exposures, adjustment for lack of

compliance, missing data.

4. Interpretation of coefficients is aided.
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Confounding

Conceptually, confounding is the confusion or mixing of

effects due to variables other than those of primary interest.

In an observational study we cannot simply compare

responses in exposed and unexposed populations because

those populations will differ, in general, in other risk factors.

We say that the comparison of exposed and unexposed is

confounded because the difference in responses results from

a mixture of several effects, including but not limited to the

exposure effect (Rothman and Greenland, 1998).
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Confounding

Rothman and Greenland (1998) give the following criteria

for a confounder:

1. A confounding factor must be a risk factor for the

response.

2. A confounding factor must be associated with the

exposure under study in the source population.

3. A confounding factor must not be affected by the

exposure or the response. In particular it cannot be an

intermediate step in the causal path between the

exposure and the response.

Note that if a variable is assigned its value before the

exposure is assigned, and before the response occurs, then it

cannot be caused by either exposure or response.
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Example: Confounding variable to adjust for

Suppose Y is the rate of lung cancer, X smoking rate, and

Z diet and alcohol variables.

In this case Z is a confounder under the above definition

since it satisfies 1.–3. The causal diagram in Figure 21

below illustrates one plausible mechanism for this situation,

U could represent education level (or poverty) here.

If we obtain data on X, Z, Y then we will see an association

between X and Y , but also between Z and Y , hence we

must control for Z.

U

X

Z

Y

Figure 21: U denotes unmeasured variables.

Suppose E[Y |X, Z] = α + βX + γZ and E[Z|X] = a + bX.

Then E[Y |X] = α⋆ + β⋆X where α⋆ = α + γa and

β⋆ = β + γb showing overestimation of effect if b and γ of

the same sign. Also shows that Z needs to be related to

both X (through b) and Y (through γ) (much more

complex with non-linear response model).
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Example: Confounding variable to adjust for

Consider a cross-sectional study carried out to estimate the

causal effect of smoking (X) on lung cancer (Y ). A number

of other variables would typically be measured in such a

study, for simplicity we consider the additional variable

gender (Z) only. We may hypothesize that Y is related to

both X and Z and that men are more likely to smoke than

women. This information may be summarized in the causal

diagram in Figure 22. In this figure, U denotes an

unobserved variable. For example U may include

information on parental smoking. In this situation we need

to adjust for Z in order to obtain an unbiased effect of

exposure (smoking).

U X

Z

Y

Figure 22: U denotes unmeasured variables.

We now consider further examples to illustrate some of the

situations in which care must be taken in interpretation.
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Example: Variables on the Causal Pathway

We first give an example of a variable that satisfies 1. and

2. but not 3.

In Figure 23, U denotes unobserved variables, X is

smoking, Z is a variable representing tar deposits, and Y is

lung cancer. If we looked at the marginal associations we

would find relationships between X and Y but also between

Z and Y . In this case we should not adjust for Z because

this would dilute the causal effect of X on Y . In this

example Z is not a confounder because it is on the causal

pathway between X and Y (thus invalidating criteria 3.), Z

is known as an intermediary variable.

U X Z Y

Figure 23: Z is on the causal pathway.

Message: don’t control for intermediary variables.
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Example: Variables Affected by the Response

To further illustrate variables that satisfy 1. and 2. but

contradict 3., we consider an example given by Greenland,

Pearl and Robins (1999) in which Y represents endometrial

cancer, X estrogen and Z uterine bleeding. The latter could

be caused by X or Y and so, under this scenario, we have

the causal diagram represented by Figure 24. Again we

should not adjust for Z since the estimated causal effect of

X on Y would be reduced. Note that we would observe

marginal associations between X and Z and Y and Z and

so 1. and 2. are satisfied.

U X

Z

Y

Figure 24: Variable Z afftected by the response.
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Selection of Regressors

Recall our brief discussion of the mean-variance trade-off in

the chapter on linear models.

Trade-off: as we include more covariates, bias is reduced,

but variability may be increased, dependent on how strong

a predictor the covariate is (and its association with other

covariates).

We now describe some of the approaches to subset selection

that have been proposed in the literature:

Forward selection. Begins with the simplest model. At each

stage the ‘best’ unselected variable that satisfies the

selection criterion is added. Best here is defined to be that

variable whose deviance (or Wald or score statistic) is

largest. This variable is added to the regression if its

statistic is greater than a threshold of a specified

significance level. This value, is contentious. Note that a

maximum of p models will be considered in this procedure

(out of 2p).

Backward elimination. Begins with the full model. At each

stage the covariate with the smallest deviance value that is

less than a specified value is removed.

Stepwise regression (Efroymson’s algorithm). Follows

forward selection with backward elimination.
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Difficulties

There are a number of problems with selection methods

(Miller, 1990). In the conventional use of a hypothesis test,

for the correct interpretation of significance levels the

hypotheses must be specified before the data are examined.

Similarly for interval estimates to be valid the model must

be specified a priori.

There now exists great potential for over-fitting in which

models become too dataset-specific as they are refined on

the basis of the examination of diagnostics.

In practice, if refinement is carried out through the fitting

of alternative models (e.g. transformation of covariates,

choice of distribution for the responses), then interval

estimates will often be too narrow since they are produced

by conditioning on the final model, and hence do not reflect

the mechanism by which the model was selected.
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Frequentist model selection difficulties

From a frequentist standpoint estimators and test statistics

should be examined via their long-run behaviour given the

model-fitting process, including refinement. To be more

explicit, let P denote the procedure by which a final model

M is decided upon. Then suppose it is of interest to

examine the bias of a statistic T ,

E[T |P ] = EM |P {E[T |M ]}. (13)

In general it will be incorrect to report E[T | M̂ ] where M̂ is

the final model chosen, since this does not reflect the

procedure by which M̂ was chosen, but rather acts as if the

final model is the “truth”.

We know that

var(T |P ) = EM |P [var(T |M)] + varM |P (E[T |M ]).

but var(T |M̂) is reported (which approximates the first

term only).

Under a frequentist approach inference follows from the

behaviour of an estimator under repeated sampling from the

true model, and if an initial model is clearly wrong on the

basis of a residual plot (say), then it is very unlikely to be

close to the “true” model and hence it is more appropriate

to obtain properties of estimators under the assumed model.
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Bayesian model selection difficulties

From a Bayesian standpoint the same problem of dredging

exists because the posterior distribution should reflect all

sources of uncertainty and a priori all possible models that

may be entertained should be explicitly stated, with prior

distributions being placed upon different likelihoods and the

parameters of these likelihoods.

Model averaging (see later) should then be carried out

across the different possibilities, a process which is fraught

with difficulties not least in placing “comparable” priors

over what may be fundamentally different objects.

(One solution is to place prior on “model-free” quantities.)
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Model Averaging

Suppose the action concerns a parameter of interest ω

(which for simplicity we assume is univariate) that is

well-defined for all models.

We have

E[ω|y] =

J∑

j=1

E[ω|y, Mj ] × Pr(Mj |y),

and

var(ω|y) =
J∑

j=1

var(ω|y, Mj) × Pr(Mj |y)

+
J∑

j=1

{E[ω|y, Mj ] − E[ω|y]}2 × Pr(Mj |y).

This latter term shows how not only parameter uncertainty

but model uncertainty is accounted for.

• Specification of priors is not trivial.

• Interpretation.

• Continuous model expansion.
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A possible compromise

One solution is to never refine the model for a given data

set. This approach is operationally pure but pragmatically

dubious (unless one is in the context of a randomized

experiment) since we may obtain appropriate inference for a

model that is a very poor description of the phenomenon

under study.

The philosophy suggested here is to think as carefully as

possible about the initial model class before the analysis

proceeds, but after fitting to carry out model checking and

refine the model in the face of clear model misspecification,

with refinement ideally being carried out within distinct a

priori known classes.

With reference to (13), if a model is chosen because it is

clearly superior to the alternatives, then it may be

reasonable to assume that E[T | P ] ≈ E[T | M̂ ], because M̂

would be consistently chosen in repeated sampling under

these circumstances.

So, for example, examining quantile-quantile plots for

different t distributions and picking the one that produces

the straightest line would not be a good idea.

Inference then proceeds as if the final model were the one

that were chosen initially. This is clearly a subjective

procedure but can be informally justified via either

philosophical approaches.
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In a similar vein, under a Bayesian approach the above

procedure is consistent with model-averaging but with the

posterior model weight being concentated upon the chosen

model (since alternative models are only rejected on the

basis of clear inadequacy).

The aim is to provide probability statements, from either

philosophical standpoints that are “honest” representations

of uncertainty. The above approach is relevant to analyses

that are more confirmatory in their outlook, as opposed to

being used for prediction, or for more exploratory purposes

(for example, to gain clues to models that may be

appropriate for future data analyses).
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We illustrate some of the difficulties of model selection with

two simple examples.

Example 1: If we carry out a single hypothesis test and only

report the estimate of β1 in a simple linear regression if the

null hypothesis of β1 = 0 is rejected. Figure 25 results – the

bias is clear. There are close links with publication bias in

meta-analysis.
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Figure 25: E[β̂1] = 1.00, while E[β̂1| rejection of H0] = 1.27.
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Example 2: Suppose we are interested in β1 but we wish to

“control” for β2 by testing whether the latter is significant.

In the following simulation, a multiple linear regression in

X1 and X2 was carried out. The true values were

β1 = β2 = 1 and X1, X2 were simulated from a bivariate

normal with means zero, variances one, and correlation 0.7.

Figure 26 shows the results, in (a) we display the sampling

distributions of β̂1 from the adjusted model. The mean and

standard deviation of the distribution of β̂1 are 1.00 and

1.23 Panel (b) displays the sampling distribution of the

reported estimator. The mean and standard deviation of the

distribution of the reported estimate of β1 are 1.23 and 1.01,

respectively, showing positive bias and a reduced variance.
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Figure 26: (a) Sampling distribution of β̂1, (b) sampling dis-

tribution of β̂1 given “control” for the possibility that β2 6= 0.

.
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The above procedures assess the relative importance of

regressors, an alternative is to examine:

All possible subsets: select that model that satisfies some

criterion.

For nested models the R2(= 1 − RSS/CTSS) measure is

non-decreasing in the number of variables and so will

always suggest the most complex model. The adjusted R2

measure defined by

R2
a = 1 − RSS/(n − p − 1)

CTSS/(n − 1)
= 1 − (1 − R2)

(
n − 1

n − p − 1

)
,

is more useful and leads to the selection of the model that

produces the smallest estimate of σ2.

A widely-used statistic is that suggested by Mallows and

defined by

Cp =
RSSp

s2
k

− (n − 2p) =
(n − p)s2

p

s2
k

− (n − 2p),

where RSSp is the residual sum of squares from a model

containing p parameters (including β0), and s2
k is the

estimate from the maximal model. This criteria may be

derived via consideration of the prediction error that results

from choosing the model under consideration.
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Full model: include all p regressors. Recall mean-variance

trade-off. Increased standard errors if lots of regressors.

Bayesian shrinkage Remove regressors that are, a priori,

thought to be of no use, for those that are definitely

important put flat priors on the regressors, for those we’re

not sure about, put a prior centered on zero with a “small”

variance. In this way these coefficients are shrunk towards

zero and so to be important the association in the data

must be really strong.

Closely related to ridge regression.

Penalized likelihood ratio statistics provide another set of

criteria.
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Penalized LR statistics

Consider nested models M0 and M1 with parameters θ0

and θ1 of dimensionality d0 and d1, respectively,

The classical likelihood ratio procedure states that we

should reject model M0 if D10 is sufficiently large, as

measured relative to a χ2
d1−d0

distribution, where

D10 = −2 log LR and

LR =
L(θ̂0)/L(θ̂s)

L(θ̂1)/L(θ̂s)
.

This procedure is inconsistent (in the sense of fixed type I

error rate).

• The likelihood ratio approach is flawed if a fixed α

(Type I error rate) is chosen, irrespective of n since as n

increases β (Type II error rate) drops and so the

alternative hypothesis (i.e. the more complex model) is

favored.

• A more sensible procedure would decrease α as a

function of n but it is not clear how to do this. The

following illustrates how the Bayesian Information

Criteria (BIC, or Schwarz criteria) achieves this

automatically.
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Laplace Approximation to the Bayes factor

To calculate the evidence in the data for models M0 and M1

we may calculate the Bayes factor B01 = p(y|M0)/p(y|M1).

Recall that Laplace’s approximation of

I =

∫
exp{ng(θ)} dθ,

where dim(θ) = d, is given by

Ĩ =

(
2π

n

)d/2

exp{ng(θ̃)} | g̃2 |−1/2,

where θ̃ is the value that maximizes g(θ), and

g̃2 = − ∂2

∂θ∂θT g(θ)

∣∣∣∣
eθ

.

Now suppose we wish to evaluate

p(y) =

∫
p(y | θ)π(θ) dθ,

and so let

g(θ) =
1

n
log p(y | θ) +

1

n
log π(θ),

and in the Laplace approximation, θ̃ corresponds to the

posterior mode.
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For large n, θ̃ → θ̂, the MLE, and for iid data

g̃2(θ̃) → − 1

n

∂2

∂θ∂θT log p(y | θ)

∣∣∣∣
bθ

→ I1(θ̂),

the expected information in a single observation, evaluated

at the MLE.

Hence

Î =

(
2π

n

)d/2

p(y | θ̂)π(θ̂) | I1(θ̂) |−1/2, (14)

provides an approximation to p(y).

We want an approximation to the Bayes factor

BF01 =
p(y | M0)

p(y | M1)
.

Applying (14) to numerator and denominator gives

B̂F01 =
(2π/n)d0/2

(2π/n)d1/2

p(y | θ̂0)

p(y | θ̂1)

π(θ̂0)

π(θ̂1)

| I0(θ̂0) |1/2

| I1(θ̂1) |1/2
.

Note the dependence on the ratio of priors.
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Bayesian Information Criteria

Now consider

−2 log B̂F 01 = (d1 − d0) log n + 2{log p(y | θ̂1) − log p(y | θ̂0)}
= D10 − (d1 − d0) log n + c

where

D10 = 2 log
L(θ̂1)

L(θ̂0)
> 0

is the deviance and

c = (d1 − d0) log(2π) + 2 log

(
π(θ̂1)

π(θ̂0)

)
+ log

| I1 |
| I0 | ,

and is O(1) (for fixed d0, d1).

Schwarz (1978) suggested using

S = D10 − (d1 − d0) log n,

as a test criterion (i.e. setting c = 0). This is also known as

the Bayesian Information Criterion (BIC).

Model M0 is preferred if S < 0, model M1 if S > 0.
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Example: effect of sample size on BIC.

Suppose d1 − d0 = 1 so that the larger model has one more
parameter than that nested within it.

A LR test with type I error α = 0.1 would suggest model
M1 (i.e. reject M0) if D10 > 2.706 (90% point of a χ2

1).

Using BIC there is evidence for model M1 if

S = D10 − log n > 0,

i.e. if
D10 > log n.

n log n α
5 1.609 0.20

e2.706 2.706 0.10
20 3.000 0.0833
100 4.605 0.032
1000 6.908 0.0086

Table 2: Comparison between a LR test and BIC.

Message is that BIC, form a frequentist perspective, has
the effect of providing an α that decreases with n, and so as
n increases favors more simple models when compared to the
likelihood ratio approach.
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This approximation may be used for model averaging also.
If we have models Mj , j = 0, ..., J and Bayes factors Bj0 then

Pr(Mj |y) =
αjBj0∑J

j=0 αjBj0

,

where αj = Pr(Mj)/ Pr(M0) is the prior odds for Mj against
M0, j = 0, ..., J .
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BIC

• BIC provides, from a frequentist perspective, a

consistent model selection procedure.

• In general exp(S/2) provides an O(1) approximation to

B01.

• Under a certain “unit information prior” the

approximation is O(n−1/2), however (Kass and

Wasserman, 1995).

• In general, the choice of sample size is not trivial (e.g.

survival analysis, hierarchical models).
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General Criteria

The Akaike Information Criteria (AIC) for model j is given

by

AICj = D(θ̂j) + 2dj ,

where D(θ̂j) = 2{L(θ̂s) − L(θ̂j)}, j = 0, 1 and θs denote

the parameters of the saturated model. For model

comparison we examine

A10 = AIC0 − AIC1

= {−2 log L(θ̂0) + 2d0} − {−2 log L(θ̂1) + 2d1}
= D10 + 2(d0 − d1). (15)

Model M0 (M1) is preferred if AIC10 < (>)0, i.e. if

D10 < (>)2(d1 − d0).

Notes:

• AIC is, from a frequentist perspective, inconsistent.

• If d1 − d0 = 1 then AIC corresponds to a likelihood

ratio test with α = 0.157.
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Prostate Cancer Example

For this example, forward selection, backwards elimination

and stepwise regression all lead to the same model with for

example lcavol being the most significant variable

(F=111.3) followed by lweight (F=10.6), svi (F=10.1) and

lbph (F=2.57). The latter may or not be included

depending on the F-to-enter value. With the three most

significant variables in the model, the coefficients listed in

Table 3 were obtained. The three estimated coefficients all

have smaller standard errors, though the uncertainty in the

model search has not been acknowledged. We see that the

estimated standard deviation is also smaller.

Figure 27 plots the Cp value versus number of parameters

in the model. Here we pick out the model which gives Cp

beneath the Cp = p line, here occurring for the model with

the five variables lcavol, lweight, age, lbph and svi.
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Figure 27: Mallows’ Cp statistic plotted versus p, where p−1

is the number of covariates in the model. the line of equality

is indicated since for a good model E[Cp] ≈ p.

Using the adjusted R2, R2
a to pick the best model (which

recall is equivalent to picking that model with the smallest

σ̂2) gives a model with seven variables, gleason being that

which is not included. This gave σ̂ = 0.7048. The model

giving the minimum AIC contained the variables lcavol,

lweight, age, lbph and svi, i.e. the same as Mallows’ Cp.

The minimum BIC model was the same model as picked by

the stepwise procedures.
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We now describe a Bayesian analysis using an informative

prior distribution. With the improper prior

π(β, σ2) ∝ σ−2,

inference is identical with the frequentist approach so that

the values in columns 2 and 3 of Table 4 are also posterior

means and posterior standard deviations.

Without more specific knowledge we here take the improper

prior

π(β, σ2) ∝
8∏

j=0

π(βj) × σ−2,

with π(β0) ∝ 1 and π(βj) ∼ N(0, vj). The standard

deviations for the prior,
√

vj , were chosen in the following

way.

For the prostate data we believe that it is unlikely that any

one covariate, over it’s range (which we denote xj max), will

change the log(PSA) by more than Ymax = 2 units (on the

log scale), giving a slope of βmax = |Ymax/xmax|. The way

we achieve this is by assuming that the approximate 95%

point of the prior corresponds to the maximum value of βj ,

βmax, that we believe a priori is plausible. Formally we have

2
√

vj = βmax =
Ymax

xj max
to give vj =

Y 2
max

22X2
j max

.
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Prior model Shrinkage model

Variable Median St. Dev. 95% Interval Median St. Dev. 95% Interval

lcavol 0 0.197 -0.387 0.387 0.4946 0.0806 0.3335 0.6495

lweight 0 0.273 -0.536 0.536 0.3472 0.1452 0.0592 0.6267

age 0 0.027 -0.053 0.053 -0.0133 0.0103 -0.0334 0.0072

lbph 0 0.275 -0.539 0.539 0.1116 0.0564 0.0006 0.2220

svi 0 1.020 -2.000 2.000 0.7660 0.2359 0.3039 1.2260

lcp 0 0.238 -0.466 0.466 -0.0386 0.0837 -0.2009 0.1278

gleason 0 0.340 -0.667 0.667 0.0577 0.1397 -0.0045 0.0110

pgg45 0 0.010 -0.020 0.020 0.0033 0.0039 -0.0045 0.0110

σ – – – – 0.7137 0.0554 0.6193 0.8370

Table 4: Prior and posterior summaries for the Bayesian shrinkage model for the

prostate cancer data.
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The Wishart Distribution

Consider the LMEM

yi = xiβ + zibi + ǫi,

with bi ∼ Nq+1(0, D), and ǫi ∼ Nni
(0, σ2

ǫ Ini
), i = 1, ..., m.

A Bayesian analysis requires prior distributions on β, D, σ2
ǫ ;

we assume independent priors

π(β, D, σ2
ǫ ) = π(β)π(D)π(σ2

ǫ ).

If D is a diagonal matrix with elements σ2
k, k = 0, 1, ..., q,

then a prior that leads to conjugate conditional

distributions in a Gibbs sampling algorithm is

π(σ2
0, ..., σ

2
q) =

q∏

k=0

IGa(ak, bk),

where IGa(ak, bk) denotes the inverse gamma distribution

with pre-specified parameters ak, bk, k = 0, ..., q.

For non-diagonal D we require a prior for the

(q + 2)(q + 1)/2 elements, with the restriction that the

resultant matrix is positive definite.

The conjugate choice is the so-called inverse Wishart

distribution.
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Suppose Z1, ..., Zr ∼iid Np(0, S), where S is a non-singular

variance-covariance matrix, and let

W =

r∑

j=1

ZjZ
T

j . (16)

Then W follows a Wishart distribution, denoted Wp(r, S),

and

p(w) = c−1 | w |(r−p−1)/2 exp

{
−1

2
tr(wS−1)

}

where

c = 2rp/2Γp(r/2) | S |r/2, (17)

with

Γp(r/2) = πp(p−1)/4

p∏

j=1

Γ((r + 1 − j)/2)

the generalized gamma function, and n ≥ p for a proper

density. The mean is given by

E[W ] = rS.

The Wishart distribution is a multivariate version of the

gamma distribution. Taking p = 1 yields

p(w) =
(2S)−r/2

Γ(r/2)
wr/2−1 exp(−w/2S),

for w > 0, the gamma distribution Ga(r/2, S/2). Further,

taking S = 1 gives a χ2
r random variable, which is clear

from (16).

182 2005 Jon Wakefield, Stat/Biostat 571



The Inverse Wishart Distribution

If W ∼ Wp(r, S), the distribution of D = W−1 is known as

the inverse Wishart distribution, and is given by

p(d) = c−1 | d |−(r+p+1)/2 exp

{
−1

2
tr(d−1S)

}

where c is again given by (17). The mean is given by

E[D] =
S−1

r − p − 1

and is defined for r > p + 1.

Note that if p = 1 we recover the inverse gamma

distribution IGa(r/2, 1/2S).

We now consider a Gibbs sampling scheme and derive the

conditional distribution for W = D−1, with a

Wq+1(r, R
−1) prior for W .

Note that

E[W ] = rR−1,

and

E[D] = R/(r − q − 1 − 1),

so that R, may be scaled to be a prior estimate of D, with

r acting as a strength of belief in the prior.
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Conditional Conjugacy

Let b = (b1, ..., bm) and note that

bTwb = tr(bTwb) = tr(wbbT).

Then

p (w | y, β, b, σ2
ǫ ) ∝ π(b | W ) × π(W )

∝ | w |m/2 exp

{
−1

2
bTwb

}
| w |(r−q−1−1)/2 exp {tr(wR)}

= | w |(m+r−q−1−1)/2 exp

{
−1

2
[bTwb + tr(wR)]

}

= | w |(m+r−q−1−1)/2 exp

{
−1

2
tr(w[bbT + R])

}

Hence the conditional distribution is

W | y, β, b, σ2
ǫ ) ∼ Wq+1



r + m,

(
R +

m∑

i=1

bib
T

i

)−1


 .

So note that

E[W | y, β, b, σ2
ǫ ] =

r + m

R +
∑m

i=1 bib
T

i

.

Shows how r is acting like a sample size.

184 2005 Jon Wakefield, Stat/Biostat 571



Issues with the Wishart Prior

• A problem with the Wishart distribution is that it is

deficient in second moment parameters since there is

only a single degrees of freedom parameter r. So, for

example, it is not possible to have differing levels of

certainty in the tightness of the prior distribution for

different elements of D. Note that with diagonal D and

independent inverse gamma priors we have a precision

parameter for each variance.

• The form of the conditional distribution suggests that it

may be better to err on the side of picking R too small

(though m is small, will always be influential).

• Intuition: as if our prior data for the precision consists

of observing r normal random variables with

variance-covariance matrices R.

• We need to take r ≥ q + 1 for a proper prior, with the

flattest prior corresponding to r = q + 1. A proper prior

is required to ensure propriety of the posterior

distribution.

• Figure 28 displays samples from the Wishart

distribution W2{20, (20S)−1} where S =

[
0.4 0

0 1.0

]
.

The mean is therefore E[W ] = S−1 =

[
2.5 0

0 1.0

]
.
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Figure 28: (a) Histogram of w11, (b) Histogram of w12, (c)

Histogram of w22, (d) Scatterplot of w11, w12, (e) Scatterplot

of w11, w22, (f) Scatterplot of w12, w22
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Example: Dental Data for Girls

Three-Stage Hierarchical Model:

First Stage:

yij = β0i + β1i(tj − 11) + ǫij ,

with N(0, σ2
ǫ ), j = 1, ..., 4, i = 1, ..., 11.

Second Stage: Let

βi =


 β0i

β1i


 µ =


 β0

β1


 D =


 D00 D01

D10 D11


 ,

and then

βi | β, D ∼ N2(β, D),

i = 1, ..., m.

Third Stage:

π(σ2
ǫ , β, D−1) ∝ σ−2

ǫ ×N2




 0

0


 ,


 106 0

0 106




×W2(r, R

−1).
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Results below are for priors, with prior mean

E[D] =


 1.0 0

0 0.1




and different degrees of freedom r.

We see sensitivity to the prior in inference for D, but not

for β.

Note the greater shrinkage to the prior mean for the second

and third priors, with r = 28 we have four times as much

information in the prior, as in the data (m = 11).

r R β0 β1

4 1.0 0 0 0.1 22.6 (21.4,23.8) 0.48 (0.33,0.63)

7 4.0 0 0 0.4 22.6 (21.5,23.7) 0.48 (0.31,0.65)

28 25 0 0 2.5 22.6 (21.8,23.5) 0.48 (0.28,0.67)

Table 5: Posterior medians and 95% intervals for population

means, under three priors.

r Diag R D00 D01 D11

4 1.0 0.1 3.48 (1.66, 8.75) 0.13 (-0.10,0.54) 0.03 (0.01,0.10)

7 4.0 0.4 2.97 (1.51, 6.63) 0.10 (-0.14,0.46) 0.05 (0.02,0.12)

28 25 2.5 1.78 (1.14, 2.97) 0.04 (-0.10,0.20) 0.08 (0.05,0.14)

Table 6: Posterior medians and 95% intervals for population

variances, under two priors.
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The code below is for the analysis with r = 4, BUGS

parametrizes the Wishart in terms of R−1 and r.

model

{

for( i in 1 : N ) {

for( j in 1 : T ) {

Y[i , j] ~ dnorm(mu[i , j],eps.tau)

mu[i , j] <- beta[i,1] + beta[i,2] * (x[j]-11)

}

beta[i,1:2] ~ dmnorm(beta.mu[1:2],iSigma[1:2,1:2])

}

beta.mu[1:2] ~ dmnorm(mean[1:2], prec[1:2, 1:2])

iSigma[1:2, 1:2] ~ dwish(R[1:2, 1:2], r)

Sigma[1:2, 1:2] <- inverse(iSigma[1:2, 1:2])

eps.tau <- exp(logtau)

logtau ~ dflat()

sigma <- 1 / sqrt(eps.tau)

}

list(x = c(8,10,12,14), N = 11, T = 4,

Y = structure(

.Data = c(21,20,21.5,23,

........

24.5,25,28,28),

.Dim = c(11,4)),mean = c(0, 0),r=4,

R = structure(.Data = c(1, 0, 0,0.1),

.Dim = c(2, 2)),

prec = structure(.Data = c(1.0E-6, 0,0,1.0E-6),

.Dim = c(2, 2))))
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Dental Data – GEE

We now examine the question of examining the population

profiles for boys and girls, using GEE, LMEM and Bayesian

hierarchical models.

A priori we would expect differences between boys and girls,

and so we carry out separate analyses of boys and girls. As

a secondary analysis we examine possible simplifications of

the model.

For the GEE analyses, we used an exchangeable working

correlation structure, since we expect correlation on

observations on the same individual (and so an

independence working model would be less efficient).

Letting α denote the common correlation parameter, for

boys we found α̂ = 0.47 (0.20) and for girls α̂ = 0.87 (0.11).
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Dental Data – LMEM

We assumed a non-diagonal D for both boys and girls, and

a separate measurement error variance σǫ, so that we have

carried out separate analyses.

We obtained the following results using REML:

Error variances: σ̂B
ǫ = 1.61 and σ̂G

ǫ = 0.668.

Random effects matrices:

D̂
B

=


 1.642 = 2.69 −0.01 × 1.64 × 0.189

−0.01 × 1.64 × 0.189 0.1892 = 0.0357




for boys and

D̂
G

=


 2.082 = 4.33 0.527 × 2.08 × 0.161

0.527 × 2.08 × 0.161 0.1612 = 0.0259




for girls.

The larger DG
11 element for girls is consistent with greater α

for girls with GEE.
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Dental Data – Hierarchical Bayes

For the Bayesian analysis, as with the LMEM analyses we

assumed separate measurement error variances and

non-diagonal D for both boys and girls.

We specified the following priors (for both boys and girls):

π(σ2
ǫ , β, D−1) ∝ σ−2

ǫ ×N2




 0

0


 ,


 106 0

0 106




×W2(r, R

−1),

with r = 4 and R−1 =


 4.0 0

0 0.4


, so that

E[D] = R =


 1.0 0

0 0.1


 ,

for both boys and girls.

We ran the Markov chain for 10,000 iterations, and

discarded the initial 1,000 as burn-in.

Note that the intervals in Table 7 are not asymptotic but

reflect the posterior uncertainty.

For inference on the differences βB
0 − βG

0 and βB
1 − βG

1 , and

the correlations and standard deviations
√

D11 and
√

D22

functions of interest were defined in WinBUGS.
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For the Bayes analyses σ̂B
ǫ = 1.68 and σ̂G

ǫ = 0.684.
We assumed a non-diagonal D for both boys and girls, and

obtained posterior medians of:

D̂
B

=

[
1.372 = 1.877 0.02 × 1.37 × 0.181

0.02 × 1.37 × 0.181 0.1812 = 0.0328

]

for boys and

D̂
G

=

[
1.872 = 3.50 0.43 × 2.08 × 0.176

0.43 × 1.87 × 0.176 0.1762 = 0.0310

]

for girls.
These estimates differ from the LMEM results in the di-

rections expected due to the priors, the prior mean for D11 is
smaller than the MLE, and the prior mean for D22 is larger
than the MLE

Table 7 summarizes the analyses for the population param-
eters.

We see that very similar result from all analyses, which is
reassuring (and not surprising in this very balanced situation).
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Analysis of Reduced Dataset

Artificially create a reduced growth curve data set within which
it is assumed that children randomly drop out of the study at
some point after their first measurement. This yielded the data
in Figure 29 – there are now 39 measurements on boys (previ-
ously 64), and 25 on girls (previously 44).

Again we analyze using GEE, LMEM and hierarchical Bayes,
but in each case with simplified models (due to smaller sample
size).

GEE: Single off-diagonal parameter in exchangeable structure,
estimated as α̂ = 0.84.

Table 8 shows that the standard errors under exchangeable cor-
relation structure appear too small (compared to LMEM and
Bayes) – hence, also carried out with working independence,
giving results more in line with other two analyses.

Reason? Negative bias in sandwich estimation due to small
and unbalanced dataset?
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LMEM: Single measurement error (σ̂ǫ = 1.41) and single variance-
covariance matrix for boys and girls:

D̂ =

[
2.232 0.88 × 2.23 × 0.13

0.88 × 2.23 × 0.133 0.1332

]
.

Bayes: Single measurement error (σ̂ǫ = 1.48) and single variance-
covariance matrix for boys and girls:

D̂ =

[
1.982 0.53 × 1.98 × 0.190

0.53 × 1.98 × 0.190 0.1982

]
.

Same Wishart prior as before – note shrinkage to prior mean.
95% interval estimate on correlation is (-0.53,0.93).
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Method βB
0 βB

1 βG
0 βG

1 βB
0 − βG

0 βB
1 − βG

1

GEE E 24.78 0.671 22.77 (0.68) 0.502 (0.096) 2.011 (0.93) 0.210 (0.15)

(,) (,) (21.43,24.10) (0.179,0.888) (0.190,3.83) (-0.0760,0.496)

GEE I 24.88 0.772 22.17 (0.91) 0.535 (0.27) 2.700 (1.18) 0.237 (0.18)

(,) (,)

LMEM 24.75 0.702 22.83 (0.81) 0.533 (0.18) 1.917 (1.04) 0.169 (0.23)

(,) (,) (21.25,24.42) (-0.120,3.953) (0.179,0.888) (-0.280,0.618)

Bayes 24.73 0.693 22.77 (0.79) 0.504 (0.21) 1.962 (1.00) 0.189 (0.26)

(23.49,25.97) (0.377,0.992) (21.21,24.34) (0.0928,0.917) (-0.0336,3.895) (-0.321,0.700)

Table 8: Posterior medians and 95% intervals for population means, under GEE

(exchangeable and independence working covariance models), LMEMs and Bayes

hierarchical models, for reduced data set.
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CHAPTER 9: GENERAL REGRESSION MODELS

Motivating Examples:

Wakefield et al. (1994) model drug concentration data from

10 patients following administration of the drug

Cadralazine. The regression model for individual i is

non-linear in the parameters (and is not a GLM).

Yu et al. (2001) record the presence/absence of wheeze on

asthmatic children each day for approximately 60 days,

with daily pollution measures also being available. If we

only had data from a single child then we might use a

logistic or probit regression model.

Clayton and Kaldor (1987) examine the incidence of lip

cancer in Scottish areas, with the proportion of individual’s

employed in agriculture being available for each area.

Poisson counts, but with the potential for spatial

dependence (exchangeability not reasonable here – areas

close together more likely to be similar than those far

apart).

We begin by considering the class of Generalized Linear

Mixed Models (GLMMs), before turning to more general

non-linear mixed effects models.

In this chapter we will consider both a conditional approach

to modeling via the introduction of random effects, and a

marginal approach using GEEs.
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Example: Log-Linear Regression

For non-linear models marginal and conditional models

have different interpretations – we illustrate with a simple

example with non-dependent data, but overdispersion.

Conditional Models

Stage 1: Yi|βc
0, β1, bi ∼ind Poisson(µc

i ), where

µc
i = E[Yi|βc

0, β1, bi] = Ni exp(βc
0 + bi + β1xi),

is the conditional mean, i = 1, ..., n.

Stage 2: bi ∼iid N(0, σ2
0).

We now evaluate the marginal mean and variance – useful

to recall the mean and variance of a lognormal random

variable Z ∼ LN(µ, σ2):

E[Z] = exp(µ + σ2/2),

and

var(Z) = E[Z]2{exp(σ2
0) − 1}.

Note: exp(bi) ∼ LN(0, σ2
0).
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Marginally we have mean

E[Yi|βc
0, β1, σ

2
0] = Ebi|σ2

0
{E[Yi|βc

0, β1, bi]}
= Ni exp(βc

0 + σ2
0/2 + β1xi).

Interpretation: exp(βc
0) is not the expected response given

that xi = 0, rather it the median response given xi = 0.

The expected response at x = 0 is exp(βc
0 + σ2

0/2). This is a

marginal interpretation.

Alternatively, we might say that exp(βc
0) is the average

response for an individual with xi = 0, and bi = 0, a

“typical” individual. This is a conditional interpretation.
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We may also evaluate the marginal variance

var(Yi|βc
0, β1, σ

2
0) = varbi|σ2

0
{E[Yi|βc

0, β1, bi]}
+ Ebi|σ2

0
{var[Yi|β0, β1, bi]}

= E[Yi|βc
0, β1, σ

2
0](1 + E[Yi|βc

0, β1] × c),

where c = exp(σ2
0) − 1, and covariance

cov(Yi, Yj |βc
0, β1, σ

2
0) = 0.

If we had considered the model:

Yi|βc
0, β1, δi ∼ind Poisson(Ni exp(βc

0 + β1xi)δi),

with δi ∼iid Ga(α, α), then the marginal distribution of the

data is obtained by integrating out the δi, and is negative

binomial.

For the Poisson-normal model there is no closed form for

the integrated marginal distribution:

p(yi|βc
0, β1, σ

2
0) =

∫

bi

p(yi|βc
0, β1, σ

2
0) × p(bi|σ2

0)dbi,

and so numerical/analytical approximations are needed.
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In a likelihood context we may maximize

l(βc
0, β1, σ

2
0) =

n∑

i=1

log p(yi|βc
0, β1, σ

2
0),

and use standard theory. For estimates of the random

effects, empirical Bayes methods may be used.

For a Bayesian analysis, we consider the posterior

p(βc
0, β1, σ

2
0|y) =

p(y|βc
0, β1, σ

2
0)π(βc

0, β1, σ
2
0)

p(y)
,

where π(βc
0, β1, σ

2
0) is the prior.

Computation is conveniently carried out by Markov chain

Monte Carlo.
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Marginal Model: We might specify

E[Yi|βm
0 , β1] = µm

i = Ni exp(βm
0 + β1xi),

so that now βm
0 may be interpreted marginally as the

expected response at x = 0.

For the variance we may assume

var(Yi|βm
0 , β1) = E[Yi|βm

0 , β1] × (1 + αq × E[Yi|βm
0 , β1]),

where αq, the parameter in a quadratic variance model,

needs to be estimated.

Alternatively:

var(Yi|βm
0 , β1) = αlE[Yi|βm

0 , β1],

where αl, the parameter in a linear variance model, to be

estimated.

In both cases we assume

cov(Yi, Yj |βm
0 , β1) = 0.
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Inference for the marginal model may proceed via the

estimating functions:

G(βm
0 , β1) = DTV (α)−1(Y − µ),

where V (α) is n × n variance-covariance matrix that is a

function of the parameter α, and D is the n × 2 matrix of

derivatives with i−th row
[

∂µi

∂βm
0

∂µi

∂β1

]
.

For the linear variance model we have

G(βm
0 , β1) = xT(Y − µ),

where x is the n × 2 matrix with i−th row [1 xi] and so we

do not need an estimate of αl to obtain the estimate.

For standard errors etc, we need an estimate of αl.
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Non-Linear Mixed Effects Models

Likelihood Approach See Pinheiro and Bates (2000,

Chapter 7).

Consider the model

yij = f(φij , xij) + ǫij ,

where xij are covariates (e.g. time), and

φij = φ(β, bi) = Aijβ + Bijbi,

with Aij and Bij functions of potentially time-varying

covariates xij ,

• dim(β) = p + 1,

• dim(bi) = q + 1

• ǫij ∼ N(0, σ2
ǫ ),

• bi ∼ N(0, D)

• ǫij and bi independent, i = 1, ..., m; j = 1, ..., ni.

Let α represent σ2
ǫ and the parameters of D and

N =
∑

i ni.
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The likelihood is, as usual, obtained by integrating out the

random effects:

L(β, α) = (2πσ2)−N/2(2π)−m/2|D|−m/2

×
m∏

i=1

∫
exp

[
− (yi − f i)

T(yi − f i)

2σ2
ǫ

− biD
−1bi

2

]
dbi.

where f i = f{φ(β, bi), xi}, i = 1, ..., m.

There are two difficulties here:

1. How to calculate the required integrals (which for

non-linear models are analytically intractable, recall for

linear models they were available in closed form).

2. How to maximize the resultant likelihood (for the linear

model, we described Newton-Raphson and EM

algorithms).
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Example: Pharmacokinetics of Indomethacin

Six human volunteers received bolus intravenous doses (of

the same size) of Indomethacine, and subsequently blood

samples were taken, and the drug concentrations recorded.

Figure 30 shows the concentration-time data – the curves

follow a similar pattern but there is clearly person to person

variability.

The compartmental model that has previously been used

for this drug is the two-compartment bi-exponential model:

E[Y ] = A1 exp{−α1t} + A2 exp{−α2t},

where Y is concentration, and t is time, and

A1, A2, α1, α2 > 0.

Note: this model is unidentifiable since the parameter set

(A1, α1, A2, α2) gives the same fitted curve (and hence

likeihood) as the set (A1, α1, A2, α2). If this is a practical

problem for a particular dataset (say α1 ≈ α2) then we may

parameterize in terms of α1 and α2 − α1.

Figure 31 gives the log concentrations versus time – such a

plot can be useful for picking the number of exponentials

(and modeling the log concentration can provide initial

estimates). Certainly not linear in time so more than a

single exponential needed.
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Figure 30: Concentration time data for Indomethacin.
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Figure 31: Log concentration time data for Indomethacin.
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Individual fits

Let Yij be the drug concentration at time tij on indvidual i,

j = 1, ..., 11, i = 1, ..., 6. We first fit bi-exponential models

to each individual, using non-linear least squares.

We parameterize as

E[Yij | θi] = θ1i exp{−eθ3itij} + θ2i exp{−eθ4itij},

for i = 1, ..., 6.

Even though the data are balanced, the standard errors are

different for different individuals, as we see in Figure 32.

> indiv.lis <- nlsList( conc ~ SSbiexp(time,A1,lrc1,A2,lrc2),

data=Indometh )

> indiv.lis

Call:

Model:conc~SSbiexp(time,A1,lrc1,A2,lrc2)|Subject

Data: Indometh

Coefficients:

A1 lrc1 A2 lrc2

1 2.029277 0.5793887 0.1915475 -1.7877849

4 2.198132 0.2423124 0.2545223 -1.6026859

2 2.827673 0.8013195 0.4989175 -1.6353512

5 3.566103 1.0407660 0.2914970 -1.5068522

6 3.002250 1.0882119 0.9685230 -0.8731358

3 5.468312 1.7497936 1.6757522 -0.4122004

Degrees of freedom: 66 total; 42 residual

Residual standard error: 0.0755502
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Figure 32: Asymptotic 95% CIs for elements of θi, i = 1, ..., 6.
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The nlme algorithm

Within nlme an algorithm, introduced by Lindstrom and

Bates (1990) is used.

The algorithm alternates between two steps:

Penalized Non-linear Least Squares (PNLS)

Condition on the current estimates of D̂ and σ̂2
ǫ and then

minimize

1

σ̂2
ǫ

m∑

i=1

(yi − f i)
T(yi − f i) + biD̂

−1
bi,

to obtain estimates β̂, b̂1, ...b̂m.

Note: may be viewed as finding the posterior mode for β

and b1, ..., bm.
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Linear Mixed Effects (LME)

Carry out a first-order Taylor series of f i about β̂, b̂i.

This results in a linear mixed effects model which can be

maximized to obtain estimates of D and σ2
ǫ .

We have likelihood

L(β, α) =| D |−m/2 σ−N
ǫ

∫
exp

{
−1

2

m∑

i=1

(yi − f i)
T(yi − f i) − bT

i D−1bi

}
dbi (18)

where f i = f{φ(β, bi), xi}, i = 1, ..., m.

Carry out a first-order Taylor series expansion of fi about

the estimates, obtained in the PNLS step at iteration k, of

β and bi, call these β̂
(k)

and b̂
(k)

i .

210 2005 Jon Wakefield, Stat/Biostat 571



Specifically

f
i
(β, bi) ≈ f

i

“
bβ(k)

, bb(k)

i

”
+ bx(k)

i

“
β −

bβ(k)
”

+ bz(k)
i

“
bi −

bbi

(k)
”

where

x̂
(k)
i =

∂f i

∂βT

∣∣∣∣bβ
(k)

,
bb

(k)

i

ẑ
(k)
i =

∂f i

∂bT

i

∣∣∣∣bβ
(k)

,
bb

(k)

i

This gives

y
i
− f

i
(β, bi) ≈ y

(k)
i

− bx(k)
i

β − bz(k)
i

bi

where

y
(k)
i

= y
i
− f

i

“
bβ(k)

, bb(k)

i

”
+ bx(k)

i
bβ(k)

+ bz(k)
i

bb(k)

i
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Substitution in (18) allows the integral to be evaluated in
closed-form to give log-likelihood

l(α) = −1

2

m∑

i=1

log |V̂ i| −
1

2

m∑

i=1

(y
(k)
i − x̂

(k)
i β)TV̂

−1

i (Y i − x̂iβ)

where
V̂ i = ẑ

(k)
i Dẑ

(k)T
i + σ2

ǫ Ii,

which may be maximized to give ML estimates. REML esti-
mates are obtained by adding the term

−1

2

m∑

i=1

log | x̂
(k)T
i V̂ i(α)x̂

(k)
i |

Alternatives: Laplace method (very close to the above al-
gorithm), Gauss-Hermite quadrature, importance sampling.
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Inference

Under the LB algorithm, the asymptotic distribution of the

REML estimator β̂ is

β̂ ∼̇ Np+1


β,

[
m∑

i=1

x̂
T

i V̂
−1

i x̂i

]−1

 ,

where x̂i = x̂
(k)
i with k the final iteration, i = 1, ..., m

Similarly, the asymptotic distribution of α is based on the

information as calculated from the linear approximation to

the likelihood.

Empirical Bayes estimates for the random effects are

available, but caution should be given to using these for

checking assumptions since they are strongly influenced by

the assumption of normality being correct. If ni is large

then this will be less of a problem.
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Indomethacin Example Revisited

First assume a diagonal D with random effects for first

three elements only.

> nlme.indo <- nlme( indiv.lis,random=pdDiag(A1+lrc1+A2~1))

> summary(nlme.indo)

Nonlinear mixed-effects model fit by maximum likelihood

Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)

Data: Indometh

AIC BIC logLik

-93.18472 -75.66748 54.59236

Random effects:

Formula: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1)

Level: Subject

Structure: Diagonal

A1 lrc1 A2 Residual

StdDev: 0.57135 0.1581214 0.1115283 0.08149631

Fixed effects: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)

Value Std.Error DF t-value p-value

A1 2.8276029 0.2639744 57 10.711656 0e+00

lrc1 0.7732529 0.1100086 57 7.029021 0e+00

A2 0.4610197 0.1127560 57 4.088648 1e-04

lrc2 -1.3450041 0.2313139 57 -5.814627 0e+00

Correlation:

A1 lrc1 A2

lrc1 0.055

A2 -0.102 0.630

lrc2 -0.139 0.577 0.834
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Now assume a non-diagonal D for all four parameters.

> nlme2.indo2 <- update( nlme.indo, random=A1+lrc1+A2+lrc2~1)

> summary(nlme.indo2)

Nonlinear mixed-effects model fit by maximum likelihood

Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)

Random effects:

Formula: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)

Level: Subject

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

A1 0.77583020 A1 lrc1 A2

lrc1 0.26863662 0.963

A2 0.38707000 0.459 0.682

lrc2 0.48253192 0.153 0.414 0.948

Residual 0.06962038

Fixed effects: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)

Value Std.Error DF t-value p-value

A1 2.8531611 0.3485825 57 8.185039 0e+00

lrc1 0.8755645 0.1253269 57 6.986245 0e+00

A2 0.6357872 0.1715520 57 3.706091 5e-04

lrc2 -1.2757709 0.2161119 57 -5.903288 0e+00

Correlation:

A1 lrc1 A2

lrc1 0.907

A2 0.411 0.676

lrc2 0.108 0.378 0.912
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Figure 33: Comparison of non-linear LS and

nlme estimates, with the latter from the

model nlme.indo Created using the command

plot(compareFits(coef(indiv.is),coef(nlme.indo))).
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