Now assume a non-diagonal \boldsymbol{D} for all four parameters.

```
> nlme2.indo2 <- update( nlme.indo, random=A1+lrc1+A2+lrc2~1)
> summary(nlme.indo2)
Nonlinear mixed-effects model fit by maximum likelihood
    Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)
Random effects:
    Formula: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)
    Level: Subject
    Structure: General positive-definite, Log-Cholesky parametrizatic
        StdDev Corr
A1 0.77583020 A1 lrc1 A2
lrc1 0.26863662 0.963
A2 0.38707000 0.459 0.682
lrc2 0.48253192 0.153 0.414 0.948
Residual 0.06962038
Fixed effects: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)
    Value Std.Error DF t-value p-value
A1 2.8531611 0.3485825 57 8.185039 0e+00
lrc1 0.8755645 0.1253269 57 6.986245 0e+00
A2 0.6357872 0.1715520 57 3.706091 5e-04
lrc2 -1.2757709 0.2161119 57 -5.903288 0e+00
Correlation:
    A1 lrc1 A2
lrc1 0.907
A2 0.411 0.676
lrc2 0.108 0.378 0.912
```


Figure 34: Data with fitted curves from
nlme analysis superimposed from the model
nlme.indo. \quad Created with the command
plot(augPred(nlme.indo), aspect=' 'xy',, grid=T).

Laplace Approximation (Pinheiro and Bates, Chapter 7)

We wish to evaluate
$p\left(\boldsymbol{y}_{i} \mid \boldsymbol{\beta}, \boldsymbol{\alpha}\right)=\left(2 \pi \sigma^{2}\right)^{-n_{i} / 2}(2 \pi)^{-(q+1) / 2}|\boldsymbol{D}|^{-1 / 2} \int \exp \left\{n_{i} g\left(\boldsymbol{b}_{i}\right)\right\} d \boldsymbol{b}_{i}$,
where
$-2 n_{i} g\left(\boldsymbol{b}_{i}\right)=\left[\boldsymbol{y}_{i}-\boldsymbol{f}_{i}\left(\boldsymbol{\beta}, \boldsymbol{b}_{i}\right)\right]^{\mathrm{T}}\left[\boldsymbol{y}_{i}-\boldsymbol{f}_{i}\left(\boldsymbol{\beta}, \boldsymbol{b}_{i}\right)\right] / \sigma_{\epsilon}^{2}+\boldsymbol{b}_{i}^{\mathrm{T}} \boldsymbol{D}^{-1} \boldsymbol{b}_{i}$.
A Laplace approximation is a second-order Taylor series expansion of g about

$$
\widehat{\boldsymbol{b}}_{i}=\arg \min _{\boldsymbol{b}_{i}}-g\left(\boldsymbol{b}_{i}\right)
$$

The Laplace approximation is generally more accurate than the LB algorithm since the expansion is about \boldsymbol{b}_{i} only.

It is, however, more computationally expensive.
Penalized Quasi-Likelihood
Breslow and Clayton (1993) used a Laplace approximation in the context of GLMMs, and then use a variant of Fisher scoring to find estimates.
Adaptive Quadrature
Adaptive Gaussian quadrature may also be used increasing the number of points in the integration rule allows some assessment of the accuracy of the approximation.

Bayesian Approach

A Bayesian approach adds a prior distribution for $\boldsymbol{\beta}, \boldsymbol{\alpha}$.
A proper prior is required for the matrix \boldsymbol{D} and, in general a proper prior is required for $\boldsymbol{\beta}$ also, both to ensure the propriety of the posterior distribution.
Closed-form inference is unavailable, but MCMC is almost as straightforward as in the LMEM case, the only difference is that a Gibbs sampling strategy will not yield closed form conditional distributions for $\boldsymbol{\beta}$ and \boldsymbol{b}_{i} and so Metropolis-Hastings steps (for example), are required.

Generalized Linear Mixed Models

A GLMM is defined by

1. Random Component: $Y_{i j} \mid \theta_{i j}, \phi \sim p(\cdot)$ where $p(\cdot)$ is a member of the exponential family, that is

$$
\left.p\left(y_{i j} \mid \theta_{i j}, \alpha\right)=\exp \left[\left\{y_{i j} \theta_{i j}-b\left(\theta_{i j}\right)\right\}\right) / a(\alpha)+c\left(y_{i j}, \alpha\right)\right],
$$

for $i=1, \ldots, m$ units, and $j=1, \ldots, n_{i}$, measurements per unit.
2. Systematic Component: If $\mu_{i j}=\mathrm{E}\left[Y_{i j} \mid \theta_{i j}, \alpha\right]$ then we have a link function $g(\cdot)$, with

$$
g\left(\mu_{i j}\right)=\boldsymbol{x}_{i j} \boldsymbol{\beta}+\boldsymbol{z}_{i j} \boldsymbol{b}_{i},
$$

so that we have introduced random effects into the linear predictor. The above defines the conditional part of the model. The random effects are then assigned a distribution, and in a GLMM this is assumed to be

$$
\boldsymbol{b}_{i} \sim_{i i d} N(\mathbf{0}, \boldsymbol{D}) .
$$

We also have

$$
\operatorname{var}\left(Y_{i j} \mid \theta_{i j}, \alpha\right)=\alpha v\left(\mu_{i j}\right)
$$

Marginal Moments

Mean:

$$
\begin{aligned}
\mathrm{E}\left[Y_{i j}\right] & =\mathrm{E}\left\{\mathrm{E}\left[Y_{i j} \mid \boldsymbol{b}_{i}\right]\right\} \\
& =\mathrm{E}\left[\mu_{i j}\right]=\mathrm{E}_{\boldsymbol{b}}\left[g^{-1}\left(\boldsymbol{x}_{i j} \boldsymbol{\beta}+\boldsymbol{z}_{i j} \boldsymbol{b}_{i}\right)\right] .
\end{aligned}
$$

Variance:

$$
\begin{aligned}
\operatorname{var}\left(Y_{i j}\right) & =\mathrm{E}\left[\operatorname{var}\left(Y_{i j} \mid \boldsymbol{b}_{i}\right)\right]+\operatorname{var}\left(\mathrm{E}\left[Y_{i j} \mid \boldsymbol{b}_{i}\right]\right) \\
& =\alpha \mathrm{E}_{\boldsymbol{b}}\left[v\left\{g^{-1}\left(\boldsymbol{x}_{i j} \boldsymbol{\beta}+\boldsymbol{z}_{i j} \boldsymbol{b}_{i}\right)\right\}\right] \\
& +\operatorname{var}_{\boldsymbol{b}}\left[g^{-1}\left(\boldsymbol{x}_{i j} \boldsymbol{\beta}+\boldsymbol{z}_{i j} \boldsymbol{b}_{i}\right)\right] .
\end{aligned}
$$

Covariance:

$$
\begin{aligned}
\operatorname{cov}\left(Y_{i j}, Y_{i k}\right) & =\mathrm{E}\left[\operatorname{cov}\left(Y_{i j}, Y_{i k} \mid \boldsymbol{b}_{i}\right)\right]+\operatorname{cov}\left(\mathrm{E}\left[Y_{i j} \mid \boldsymbol{b}_{i}\right], \mathrm{E}\left[Y_{i k} \mid \boldsymbol{b}_{i}\right]\right) \\
& =\operatorname{cov}\left\{g^{-1}\left(\boldsymbol{x}_{i j} \boldsymbol{\beta}+\boldsymbol{z}_{i j} \boldsymbol{b}_{i}\right), g^{-1}\left(\boldsymbol{x}_{i k} \boldsymbol{\beta}+\boldsymbol{z}_{i k} \boldsymbol{b}_{i}\right)\right\} \\
& \neq 0,
\end{aligned}
$$

for $j \neq k$ due to shared random effects, and

$$
\operatorname{cov}\left(Y_{i j}, Y_{l k}\right)=0
$$

for $i \neq l$, is there are no shared random effects.

Example: Log-Linear Poisson Regression

Stage 1: $Y_{i j} \mid \boldsymbol{\beta}, b_{i} \sim_{\text {ind }} \operatorname{Poisson}\left(\mu_{i j}\right)$, with

$$
g\left(\mu_{i j}\right)=\log \mu_{i j}=\boldsymbol{x}_{i j} \boldsymbol{\beta}+b_{i} .
$$

Hence

$$
\mathrm{E}\left[Y_{i j} \mid b_{i}\right]=\mu_{i j}=\exp \left(\boldsymbol{x}_{i j} \boldsymbol{\beta}+b_{i}\right),
$$

and

$$
\operatorname{var}\left(Y_{i j} \mid b_{i}\right)=\mu_{i j} .
$$

Stage 2: $b_{i} \sim_{i i d} N\left(0, \sigma^{2}\right)$.
The marginal mean is given by

$$
\mathrm{E}\left[Y_{i j}\right]=\exp \left(\boldsymbol{x}_{i j} \boldsymbol{\beta}+\sigma^{2} / 2\right)
$$

and the marginal median by

$$
\exp \left(\boldsymbol{x}_{i j} \boldsymbol{\beta}\right)
$$

The marginal variance is given by

$$
\begin{aligned}
\operatorname{var}\left(Y_{i j}\right) & =\mathrm{E}\left[\mu_{i j}\right]+\operatorname{var}\left(\mu_{i j}\right) \\
& =\mathrm{E}\left[Y_{i j}\right]\left\{1+\mathrm{E}\left[Y_{i j}\right]\left(\mathrm{e}^{\sigma^{2}}-1\right)\right\} \\
& =\mathrm{E}\left[Y_{i j}\right]\left(1+\mathrm{E}\left[Y_{i j}\right] \times \kappa\right)
\end{aligned}
$$

where $\kappa=\mathrm{e}^{\sigma^{2}}-1>0$ illustrating that we have excess-Poisson variation which increases as σ^{2} increases.

Likelihood Inference

As with the linear mixed effects model (LMEM) we maximize $L(\boldsymbol{\beta}, \boldsymbol{\alpha})$ where $\boldsymbol{\alpha}$ denote the variance components in \boldsymbol{D}, and

$$
L(\boldsymbol{\beta}, \boldsymbol{\alpha})=\prod_{i=1}^{m} \int p\left(\boldsymbol{y}_{i} \mid \boldsymbol{\beta}, \boldsymbol{b}_{i}\right) \times p\left(\boldsymbol{b}_{i} \mid \boldsymbol{\alpha}\right) \mathrm{d} \boldsymbol{b}_{i}
$$

Unlike the LMEM the required integrals are not available in closed form and so some sort of analytical or numerical approximation is required.

Example: Log-linear Poisson regression GLMM

With a single random effect we have $\boldsymbol{\alpha}=\sigma^{2}$.

$$
\begin{aligned}
L(\boldsymbol{\beta}, \boldsymbol{\alpha}) & =\prod_{i=1}^{m} \int \prod_{j=1}^{n_{i}} \frac{\exp \left(-\mu_{i j}\right) \mu_{i j}^{y_{i j}}}{y_{i j}!} \times\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}} b_{i}^{2}\right) \mathrm{d} b_{i} \\
& =\prod_{i=1}^{m}\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(\sum_{i=1}^{n_{i}} y_{i j} x_{i j} \boldsymbol{\beta}\right) \\
& \times \int \exp \left(-\mathrm{e}^{b_{i}} \sum_{j=1}^{n_{i}} \mathrm{e}^{\boldsymbol{x}_{i j} \boldsymbol{\beta}}+\sum_{j=1}^{n_{i}} y_{i j} b_{i}-\frac{1}{2 \sigma^{2}} b_{i}^{2}\right) \mathrm{d} b_{i} \\
& =\prod_{i=1}^{m} \exp \left(\sum_{i=1}^{n_{i}} y_{i j} x_{i j} \boldsymbol{\beta}\right) \times \int h\left(b_{i}\right) \frac{\exp \left\{-b_{i}^{2} /\left(2 \sigma^{2}\right)\right\}}{\left(2 \pi \sigma^{2}\right)^{-1 / 2}} \mathrm{~d} b_{i},
\end{aligned}
$$

an integral with respect to a normal random variable (which is analytically intractable).

Likelihood Inference fo loglinear GLMM

In general there are two approaches to inference from a likelihood perspective:

1. Carry out conditional inference in order to eliminate the random effects.
2. Make a distributional assumption for \boldsymbol{b}_{i}, and then carry out likelihood inference (using some form of approximation to evaluate the required integrals).

We first consider the first approach. For simplicity we assume the canonical link function,

$$
g\left(\mu_{i j}\right)=\theta_{i j}=\boldsymbol{x}_{i j} \boldsymbol{\beta}+\boldsymbol{z}_{i j} \boldsymbol{b}_{i}
$$

to give likelihood
$L(\boldsymbol{\beta}, \boldsymbol{\alpha})=\exp \left\{\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} y_{i j} \boldsymbol{x}_{i j} \boldsymbol{\beta}+y_{i j} \boldsymbol{z}_{i j} \boldsymbol{b}_{i}-b\left(\boldsymbol{x}_{i j} \boldsymbol{\beta}+\boldsymbol{z}_{i j} \boldsymbol{b}_{i}\right)\right\}$,
so that we have sufficient statistics $\boldsymbol{t}_{1}=\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} y_{i j} \boldsymbol{x}_{i j}$ for $\boldsymbol{\beta}$ and $\boldsymbol{t}_{2 i}=\sum_{j=1}^{n_{i}} y_{i j} \boldsymbol{z}_{i j}$ for \boldsymbol{b}_{i}.

Recall the definition of conditional likelihood. Suppose the distribution of the data may be factored as

$$
p(\boldsymbol{y} \mid \boldsymbol{\beta}, \boldsymbol{b})=c p\left(\boldsymbol{t}_{1} \mid \boldsymbol{t}_{2}, \boldsymbol{\beta}\right) \times p\left(\boldsymbol{t}_{2} \mid \boldsymbol{\beta}, \boldsymbol{b}\right)
$$

where we choose to ignore the second term and consider the conditional likelihood

$$
l_{c}(\boldsymbol{\beta})=p\left(\boldsymbol{t}_{1} \mid \boldsymbol{t}_{2}, \boldsymbol{\beta}\right) \propto \frac{p(\boldsymbol{y} \mid \boldsymbol{\beta}, \boldsymbol{b})}{p\left(\boldsymbol{t}_{2} \mid \boldsymbol{\beta}, \boldsymbol{b}\right)} .
$$

In the context of GLMs we have

$$
l_{c}(\boldsymbol{\beta})=\prod_{i=1}^{m} p\left(\boldsymbol{t}_{1 i} \mid \boldsymbol{t}_{2 i}, \boldsymbol{\beta}\right) \propto \frac{p\left(\boldsymbol{y}_{i} \mid \boldsymbol{\beta}, \boldsymbol{b}\right)}{p\left(\boldsymbol{t}_{2 i} \mid \boldsymbol{\beta}, \boldsymbol{b}\right)} .
$$

In lectures: development of conditional likelihood for GLMMs.

