
Likelihood Inference

As with the linear mixed effects model (LMEM) we

maximize L(β, α) where α denote the variance components

in D, and

L(β, α) =

m
∏

i=1

∫

p(yi|β, bi) × p(bi|α) dbi.

Unlike the LMEM the required integrals are not available in

closed form and so some sort of analytical or numerical

approximation is required.

Example: Log-linear Poisson regression GLMM

With a single random effect we have α = σ2.
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an integral with respect to a normal random variable

(which is analytically intractable).
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Likelihood Inference fo loglinear GLMM

In general there are two approaches to inference from a

likelihood perspective:

1. Carry out conditional inference in order to eliminate

the random effects.

2. Make a distributional assumption for bi, and then carry

out likelihood inference (using some form of

approximation to evaluate the required integrals).

We first consider the first approach. For simplicity we

assume the canonical link function,

g(µij) = θij = xijβ + zijbi

to give likelihood

L(β, b) = exp







m
∑

i=1

ni
∑

j=1

yijxijβ + yijzijbi − b(xijβ + zijbi)







,

so that we have sufficient statistics

t1 =
∑m

i=1

∑ni

j=1 yijxij =
∑m

i=1 t1i for β and

t2i =
∑ni

j=1 yijzij for bi.
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Recall the definition of conditional likelihood. Suppose the

distribution of the data may be factored as

p(y | β, b) = h(y)×p(t1, t2 | β, b) = h(y)×p(t1 | t2, β)×p(t2 | β, b),

where we choose to ignore the second term and consider the

conditional likelihood

Lc(β) = p(t1 | t2, β) =
p(t1, t2 | β, b)

p(t2 | β, b)
.

In the context of GLMMs we have

Lc(β) =

m
∏

i=1

p(t1i | t2i, β) =

m
∏

i=1

p(t1i, t2i | β, bi)

p(t2i | β, bi)

where

p(t1i, t2i | β, bi) ∝ p(yi | β, bi)

and

p(t2i | β, bi) =
∑

S2i

p(u1i, t2i | β, bi),

and S2i is the set of values of yi such that T 2i = t2i, a set

of disjoint events.

The different notation is to emphasize that T 1i takes on

values different to t1i.

Example: Matched Binary Pairs Data

225 2005 Jon Wakefield, Stat/Biostat 571

Conditional Likelihood: Binary Longitudinal Data

Consider individual i with binary observations yi1, ..., yini

and assume the model Yij | γi, β ∼ Bernoulli(pij), where

log

(

pij

1 − pij

)

= γi + xijβ

with γi = β0 + bi and xijβ = xij1β1 + ... + xijpβp (a slight

change from our usual notation).

We have

Pr(yi1, ..., yini
| γi, β) =

ni
∏

j=1

exp (γiyij + xijβyij)

1 + exp (γi + xijβ)

=
exp

(

γi

∑ni

j=1 yij +
∑ni

j=1 xijyijβ
)

∏ni

j=1 [1 + exp (γi + xijβ)]

=
exp (γit2i + t1iβ)

∏ni

j=1 [1 + exp (γi + xijβ)]

=
exp (γit2i + t1iβ)

k(γi, β)

= p(t1i, t2i | γi, β)

where

t1i =

ni
∑

j=1

xijyij , t2i =

ni
∑

j=1

yij

k(γi, β) =

ni
∏

j=1

[1 + exp (γi + xijβ)] .
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We have

Lc(β) =
m
∏

i=1

p(t1i | t2i, β) =
m
∏

i=1

p(t1i, t2i | γi, β)

p(t2i | γi, β)

where

p(t2i | γi, β) =

∑( ni
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)
l=1 exp

(
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j=1 yij +
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k=1 xikyl
ikβ

)
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,

where the summation is over the
(

ni

yi+

)

ways of choosing yi+

ones out of ni, and yl
i = (yl

i1, ..., y
l
ini

), l = 1, ...,
(

ni

yi+

)

is the

collection of these ways.

Hence
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m
∏

i=1
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(
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j=1 xijyijβ
)
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)

=

m
∏
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)
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)
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(
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)
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Notes

• Can be computationally expensive to evaluate

likelihood if ni is large, e.g. if ni = 20 and yi+ = 10,
(

ni

yi+

)

= 184, 756.

• There is no contribution to the conditional likelihood

from individuals:

– With ni = 1.

– With yi+ = 0 or yi+ = ni.

– For those covariates with xi1 = ... = xini
= xi. The

conditional likelihood estimates β’s that are

associated with within-individual covariates. If a

covariate only varies between individuals, then it

cannot be estimated using conditional likelihood.

For covariates that vary both between and within

individuals, only the within-individual contrasts are

used.

• The similarity to Cox’s partial likelihood may be

exploited to carry out computation.

• We have not made a distribution assumption for the

γi’s!
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Examples:

If ni = 3 and yi = (0, 0, 1) so that yi+ = 1 then

y1
i = (1, 0, 0), y2

i = (0, 1, 0), y3
i = (0, 0, 1),

and the contribution to the conditional likelihood is

exp(xi3β)

exp(xi1β) + exp(xi2β) + exp(xi3β)
.

If ni = 3 and yi = (1, 0, 1) so that yi+ = 2 then

y1
i = (1, 1, 0), y2

i = (1, 0, 1), y3
i = (0, 1, 1),

and the contribution to the conditional likelihood is

exp(xi1β + xi3β)

exp(xi1β + xi2β) + exp(xi1β + xi3β) + exp(xi2β + xi3β)
.
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Penalized Quasi-Likelihood

Breslow and Clayton (1993) introduced the method of

Penalized Quasi-Likelihood (PQL) which was an attempt to

extend quasi-likelihood to GLMMs. One justification of the

method is a Laplace approximation.

If we write the required integration in the form

log L(β, α) = −
1

2
log |D| + log

(
∫

exp{−α(b)}db

)

,

and use a Laplace approximation to the second term to

obtain

log L(β, α) ≈ −
1

2
log |D| −

1

2
log |κ′′(b̂)| − κ(b̂),

where b̂ maximizes α(b), and so satisfies κ′(b̂) = 0.

PQL is very poor for binary data but may be OK for

binomial and Poisson data (as long as the counts are not

too small).

Within the MASS package the glmmPQL function obtains PQL

estimates, while within the lme4 package the GLMM function

obtains PQL estimates, or second-order approximations.
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