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Stat/Biostat 571 Statistical Methodology:

Regression Models for Dependent Data
Jon Wakefield

Departments of Statistics and Biostatistics, UW

Lectures: Monday/Wednesday/Friday 1.30–2.20, T473.

Coursework: (and approximate percentage contribution to final grade)

weekly (30%). Examination at mid-term (30%) and final (40%). The mid-term

and final will be takehome.

Office Hours:

Jon: Monday 2.30–3.20 and Wednesday 2.30–3.30 (Biostatistics, Health

Sciences, 616-6292). Or by appointment (jonno@u.washington.edu, Padelford:

616–9388, HS: 616–6292).

TA: Youyi Fong (yfong@u); office hours to be arranged.

STAT/BIOSTAT 578 Data Analysis, strongly recommended for Applied Exam

(Biostat students). 571 describes methods and not data analysis.

Computing will be carried out using R and WinBUGS.

Class website: http://courses.washington.edu/b571/
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Textbooks:

Main Texts

Diggle, P.J., Heagerty, P., Liang, K.-Y. and Zeger, S.L. (2002). Analysis of

Longitudinal Data, Second Edition. Oxford University Press.

Fitzmaurice, G.M., Laird, N.M. and Ware, J.H. (2004). Applied Longitudinal

Analysis, Wiley.

Background Texts

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (1995). Bayesian Data

Analysis, CRC Press.

Hand, D. and Crowder, M.J. (1996). Practical Longitudinal Data Analysis, CRC

Press.

Pinheiro, J. and Bates, D.G. (2000). Mixed-Effects Models in S and S-PLUS,

Springer-Verlag,

Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal

Data. Springer-Verlag.

Davison, A.C. (2003). Statistical Models. Cambridge University Press.

Demidenko, E. (2004). Mixed Models: Theory and Applications, Wiley.

McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models, Second Edition,

CRC Press.
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COURSE OUTLINE

Revision

Motivating Datasets; Benefits and Challenges of Dependent Data; Marginal

versus Conditional Modeling. Sandwich Estimation; Ordinary and Weighted

Least Squares. Likelihood and Bayesian approaches.

Linear Models

Linear Mixed Effects Models; Frequentist and Bayesian Inference; Equivalence

of Marginal and Conditional Modeling.

General Regression Models

Generalized Linear Mixed Models; Frequentist and Bayesian Inference;

Non-equivalence of Marginal and Conditional Modeling.

Binary Data Models

Modeling the covariance structure. Mixed Effects approach.

Depending on Time:

Model Selection/Formulation

Spatial Models
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Learning Objectives: 571, Winter 2008

By the end of the course the student should be able to:

• Explain why conventional regression models (as reviewed in 570) are

inappropriate for dependent data, and explain the likely detrimental effects

of their use in the dependent context.

• Describe the key differences between the generalized estimating equations,

likelihood and Bayesian approaches to modeling dependent data. In

particular the student should be able to describe the differences between

the conditional and marginal approaches to modeling, and the advantages

and drawbacks of each.

• Suggest appropriate approach(es) to modeling dependent outcomes,

critically evaluate the fit of the fitted models, and interpret the estimated

regression coefficients.

• Outline implementation strategies for each of the generalized estimating

equations, likelihood and Bayesian approaches.
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OVERVIEW

Recall: in a regression analysis we model a response, Y , as a function of

covariates, x.

In 570 we considered situations in which responses are conditionally

independent, that is

p(Y1, ..., Yn|β, x) = p(Y1|β, x1) × p(Y2|Y1, β, x2) × ... × p(Yn|Y1, ..., Yn−1, β, xn)

= p(Y1|β, x1) × p(Y2|β, x2) × ... × p(Yn|β, xn)

so that observations are independent given parameters β and covariates

x1, ..., xn.

In general, Y1, ..., Yn are never independent. For example, suppose

E[Yi|µ, σ2] = µ, var(Yi|µ, σ2) = σ2,

i = 1, 2 and cov(Y1, Y2|µ, σ2) = 0. Then if we are told y1, this will change the

way we think about y2 so that p(Y2|Y1) 6= p(Y2), and the observations are not

independent, however p(Y2|Y1, µ, σ2) = p(Y2|µ, σ2), so that we have conditional

independence.
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Motivating Examples

We distinguish between dependence induced by missing covariates, and that

due to contagion (for example, in an infectious disease context) – we will not

consider the latter.

One theme of the course will be modeling residual dependence, i.e. after we

have controlled for covariates.

The obvious situations in which we would expect dependence is in data

collected over time or space (but lots of others possible, e.g. families).

Example 1: Growth data

Table 1 records dental measurements of the distance in millimeters from the

center of the pituitary gland to the pteryo-maxillary fissure in 11 girls and 16

boys at the ages of 8, 10, 12 and 14 years.

Here we have an example of repeated measures or longitudinal data.

Figure 1 plots these data and we see that dental growth for each child increases

in an approximately linear fashion.

One common aim of such studies is to identify the within-individual and

between-individual sources of variability.
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Girls 8 10 12 14

1 21 20 21.5 23

2 21 21.5 24 25.5

3 20.5 24 24.5 26

4 23.5 24.5 25 26.5

5 21.5 23 22.5 23.5

6 20 21 21 22.5

7 21.5 22.5 23 25

8 23 23 23.5 24

9 20 21 22 21.5

10 16.5 19 19 19.5

11 24.5 25 28 28

Boys 8 10 12 14

1 26 25 29 31

2 21.5 22.5 23 26.5

3 23 22.5 24 27.5

4 25.5 27.5 26.5 27

5 20 23.5 22.5 26

6 24.5 25.5 27 28.5

7 22 22 24.5 26.5

8 24 21.5 24.5 25.5

9 23 20.5 31 26

10 27.5 28 31 31.5

11 23 23 23.5 25

12 21.5 23.5 24 28

13 17 24.5 26 29.5

14 22.5 25.5 25.5 26

15 23 24.5 26 30

16 22 21.5 23.5 25
7
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Figure 1: Dental growth data for girls and boys.
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Inference

We may be interested in characterizing:

1. the average growth curve, or

2. the growth for a particular child.

Two types of analysis that will be distinguished are marginal and conditional.

The former is designed for questions of type 1, and the latter may be used for

both types, but requires more assumptions.

Even if the question of interest is of type 1, we still have to acknowledge the

dependence of responses on the same individual – we do not have 11 × 4

independent observations on girls and 16 × 4 independent observations on boys

but rather 11 and 16 sets of observations on girls and boys.

For either question of interest ignoring the dependence leads to incorrect

standard errors and confidence/credible interval coverage.

A marginal approach (via Generalized Estimating Equations, GEE) to

modeling specifies the moments of the data only, while in a conditional (via a

Mixed Effects Model, MEM) approach the responses of specific individuals are

modeled.
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Models

First question is: why not just analyze the data from each child separately?

Possible but we wouldn’t be able to make formal statements about:

• The average growth rate of teeth for a girl in the age range 8–14 years.

• The between-girl variability in growth rates.

The totality of data on girls may also aid in the estimation of the growth rate

for a particular girl – becomes more critical as the number of observations per

child decreases. For example, in an extreme case, suppose a particular girl has

only one measurement.

At the other extreme we could fit a single curve to the data from all of the

girl’s data together. The problem with this is that we do not have independent

observations, and what if we are interested in inference for a particular child, or

for a future chid?
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Example 2: Spatial Data

Dependent data may result from studies with a significant spatial component.

Split Plot Data

Example: Three varieties of oats, four nitrogen concentrations.

Agricultural land was grouped into six blocks, each with three plots, and with

each plot further sub-divided into four sub-plots. Within each subplot a

combination of oats and nitrogen was planted. Hence we have 6 × 3 × 4 = 72

observations.

We would expect observations within the same block to be correlated.
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Revision Material: Estimating Functions

Let Y = (Y1, ..., Yn), represent n observations from a distribution indexed by a

p-dimensional parameter θ, with cov(Yi, Yj | θ) = 0, i 6= j.

In the following, for ease of presentation, we assume that Yi, i = 1, ..., n are

independent and identically distributed (i.i.d.).

An estimating function is a function

Gn(θ) =
1

n

nX

i=1

G(θ, Yi) (1)

of the same dimension as θ for which

E[Gn(θ)] = 0 (2)

for all θ. The estimating function Gn(θ) is a random variable because it is a

function of Y .

The corresponding estimating equation that defines the estimator bθn has the

form

Gn(bθn) =
1

n

nX

i=1

G(bθn, Yi) = 0. (3)
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Result: Suppose that bθn is a solution to the estimating equation

Gn(θ) =
1

n

nX

i=1

G(θ, Yi) = 0,

i.e. Gn(bθn) = 0. Then bθn →p θ (consistency) and

√
n (bθn − θ) →d Np(0, A−1BAT−1) (4)

(asymptotic normality) where

A = A(θ) = E

»
∂

∂θ
G(θ, Y )

–

and

B = B(θ) = E[G(θ, Y )G(θ, Y )T] = cov{G(θ, Y )}.

The form of the variance in (4) has lead to it being named a sandwich

estimator.
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Example: Least Squares Estimation

For the ordinary least squares/maximum likelihood estimator

bβ = (xTx)−1xTY (5)

with

var(bβ) = (xTx)−1σ2

if var(Y | x) = σ2I.

Suppose that var(Y | x) = σ2V so that the model from which the estimator

(5) was derived was incorrect.

Then this estimator is still unbiased but the appropriate variance estimator is

var(bβ) = (xTx)−1xTvar(Y | x)x(xTx)−1

= (xTx)−1xTV x(xTx)−1σ2 (6)

14
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Expression (6) can also be derived directly from the estimating function

Gn(β) = xT(Y − xβ),

from which we know that

(A−1
n BnAT

n
−1

)1/2(bβn − β) →d Nk+1(0, I),

(note not iid observations here) where

Bn = var(G) = xTV xσ2

and

An = E

»
∂G

∂β

–
= −xTx,

to give

var(bβ) = (xTx)−1xTV x(xTx)−1σ2.

We still need to know V though.

15

2009 Jon Wakefield, Stat/Biostat 571

Sandwich estimator with uncorrelated errors

We relax the constant variance assumptions. Consider the estimating function

G(β) = xT(Y − xβ).

The “bread” of the sandwich, A−1, remains unchanged since A does not

depend on Y .

The “filling” becomes

B = var{G} = xTvar(Y )x =
nX

i=1

σ2
i xT

i xi, (7)

where σ2
i = var(Yi) and we have assumed that the data are uncorrelated.

Unfortunately σ2
i is unknown – we now discuss various estimation methods.
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An obvious estimator is given by

bBn =
nX

i=1

xT
i xi(Yi − xi

bβ)2, (8)

and its use provides a consistent estimator of (7), if the data are uncorrelated.

For linear regression the estimator

bσ2 =
1

n

nX

i=1

(Yi − xi
bβ)2 =

1

n

nX

i=1

bσ2
i ,

is downwardly biased, with bias −pσ2/n.

The sandwich estimator is therefore also downwardly biased.

Using

eσ2
i =

n

n − p
(Yi − xi

bβ)2 (9)

provides a simple correction, but in general the estimator of the variance has

finite bias since the bias in bσ2 changes as a function of the design points xi –

various corrections have been suggestions (see Kauermann and Carroll, 2001,

JASA).
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Likelihood Methods

A special case of the estimating function methodology occurs when the

estimating equation

G =
∂l

∂θ

is a score equation (derivative of the log-likelihood). Then bθ is the MLE and

√
n (bθn − θ) →d Np(0, I−1) (10)

(asymptotic normality) where I is the expected information matrix:

I = A(θ) = E

»
∂

∂θ
G(θ, Y )

–
= B(θ) = E[G(θ, Y )G(θ, Y )T] = cov{G(θ, Y )}.
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Bayesian Inference

In the Bayesian approach to inference all unknown quantities contained in a

probability model for the observed data are treated as random variables.

These unknowns may include, for example, missing data, the true covariate

value in an errors-in-variables setting, or the failure time of a censored survival

observation.

Inference is made through the posterior probability distribution of θ after

observing y, and is determined from Bayes theorem:

p(θ | y) =
p(y | θ) × π(θ)

p(y)
,

where, for continuous θ, the normalizing constant is given by

p(y) =

Z

θ
p(y | θ)p(θ) dθ,

and is the marginal probability of the observed data given the model

(likelihood and prior). Ignoring this constant gives

p(θ | y) ∝ p(y | θ) × π(θ)

Posterior ∝ Likelihood × Prior
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The use of the posterior distribution for inference is very intuitively appealing

since it probabilistically combines information on the parameters arising from

the data and from prior beliefs.

An important observation is that for all θ for which π(θ) = 0 we have

p(θ | y) = 0 also, regardless of any realization of the observed data. This has

important consequences for prior specification and clearly shows that great care

should be taken in excluding parts of the parameter space a priori.
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Inference

To summarizes the typically multivariate posterior distribution, p(θ | y),

marginal distributions for parameters of interest may be considered.

For example the univariate marginal distribution for a component θi is given by

p(θi | y) =

Z

θ−i

p(θ | y) dθ−i, (11)

where θ−i is the vector θ excluding θi.

Posterior moments may be evaluated from the marginal distributions; for

example the posterior mean is given by

E[θi | y] =

Z

θi

θip(θi | y) dθi. (12)

Further summarization may be carried out to yield the 100×q% quantile, θi(q)

(0 < q < 1) by solving
Z θi(q)

−∞
p(θi | y) dθi. (13)

In particular, the posterior median, θi(0.5), will often provide an adequate

summary of the location of the posterior marginal distribution.
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A 100×p% equi-tailed credible interval (0 < p < 1) is provided by

[ θi{(1 − p)/2}, θi{(1 + p)/2} ].

Such intervals are usually reported though in some cases it which the posterior

is skewed one may wish to instead calculate a highest posterior density (HPD)

interval in which points inside the interval have higher posterior density than

those outside the interval (such an interval is also the shortest credible interval).

Another useful inferential quantity is the predictive distributions for future

observations z which is given, under conditional independence, by

p(z | y) =

Z

θ
p(z | θ)p(θ | y) dθ. (14)

This clearly assumes that the system under study is stable so that the

likelihood for future observations is still the relevant data generation

mechanism.

Bayesian inference is deceptively simple to describe probabilistically, but there

have been two major obstacles to its routine use. The first is how to specify

prior distributions and the second is how to evaluate the integrals required for

inference, for example, (11)–(14), given that for most models, these are

analytically intractable
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Example: Normal linear regression, variance unknown

Suppose we have Yi | β, σ2 ∼ind N(xiβ, σ2), i = 1, ..., n. dim(β) = p.

MLE: bβ ∼ tp(β, (xTx)−1s2, n − p), a Student t distribution with n − p degrees

of freedom.

Improper prior: π(β, σ2) ∝ σ−2.

Marginal posterior:

p(β | y) =

Z
p(β, σ2 | y)dσ2,

where

p(β, σ2 | y) ∝ l(β, σ2) × π(β, σ2).

Hence

p(β | y) =

Z
(2πσ2)−n/2

σ2
exp

(
−

[(n − p)s2 + (bβ − β)TxTx(bβ − β)]

2σ2

)
dσ

2

∝

Z
(σ

2
)
−(n/2+1)

exp


−

c

2σ2

ff
dσ

2

where

c = (n − p)s2 + (bβ − β)TxTx(bβ − β).
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We have the kernel of an inverse Gamma distribution IGa(n/2, c).

An inverse gamma r.v. X has density

p(x) =
βα

Γ(α)
x−(α+1) exp(−β/x), x > 0.

Hence

p(β | y) ∝
“ c

2

”−n/2

∝ {(n − p)s2 + (bβ − β)TxTx(bβ − β)}−n/2

∝
(

1 +
(bβ − β)TxTx(bβ − β)

(n − p)s2

)[−(n−p)+p]/2

=

(
1 +

(bβ − β)TΣ−1(bβ − β)

n − p

)[−(n−p)+p]/2

where Σ = (xTx)−1s2.
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Hence the posterior

β | y ∼ tp(bβ, (xTx)−1s2, n − p).

A p dimensional multivariate Student’s t r.v. X with degrees of freedom d has

density

p(x) =
Γ{(d + p)/2}
Γ(d/2)(dπ)p/2

| Σ |−1/2 ×
ˆ
1 + (x− µ)TΣ−1(x− µ)/d

˜−(d+p)/2
.

Note the similarity with frequentist inference.
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LINEAR MODELS

We now begin thinking about specific situations, starting with linear models.

Clearly, in general, ignoring dependence will give inappropriate standard errors.

While making inference for dependent data is more difficult than for

independent data, designs that collect dependent data can be very efficient. For

example (as we see shortly), in a longitudinal data setting applying different

treatments to the same patient over time can be very beneficial since each

patient acts as their own control.

While in the Bayesian approach to inference all parameters are viewed as

random variables, in the frequentist approach there is a distinction between

fixed effects (unknown constants) and random effects (random variables from a

distribution).
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Design Implications of a Longitudinal Study

To examine the implications of carrying out a longitudinal study, as compared

to a cross-sectional study, we consider a very simple situation in which we wish

to compare two treatments, coded as -1 and +1, and we have a linear model.

Cross-Sectional Study:

A single measurement is taken on each of m = 4 individuals where

Yi1 = β0 + β1xi1 + ǫi1,

i = 1, ..., m = 4, ǫi1 iid with var(ǫi1) = σ2 and

x11 = −1, x21 = −1, x31 = 1, x41 = 1

Note: E[Y1|x = 1] − E[Y1|x = −1] = 2β1.

Using least squares:

bβc
0 =

P4
i=1 Yi1

4
, bβc

1 =
Y31 + Y41 − (Y11 + Y21)

4
,

and

var(bβc
0) = var(bβc

1) =
σ2

4
.
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Longitudinal Study:

We assume the model

Yij = β0 + β1xij + bi + δij ,

with bi and δij independent and with var(bi) = σ2
0 , var(δij) = σ2

δ . We therefore

have marginally:

var(Yij |β0, β1) = σ2
0 + σ2

δ = σ2,

and

cov(Yi1, Yi2) = σ2
0 .

We let ρ = σ2
0/σ2, represent the correlation on observations on the same

individual.

We consider two situations, both with two observations on two individuals:

Constant treatment for each individual:

x11 = x12 = −1, x21 = x22 = 1.

Changing treatment for each individual:

x11 = x22 = 1, x12 = x21 = −1.
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Using Generalized Least Squares we have

bβl
= (xTR−1x)−1xTR−1Y ,

and

var(bβl
) = (xTR−1x)−1σ2,

where

R =

2
666664

1 ρ 0 0

ρ 1 0 0

0 0 1 ρ

0 0 ρ 1

3
777775

.

In lectures we will show that

var(bβl
1) =

σ2(1 − ρ2)

4 − 2ρ(x11x12 + x21x22)
.
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The efficiency e is given by

e =
var(bβl

1)

var(bβc
1)

=
(1 − ρ2)

1 − ρ(x11x12 + x21x22)/2
.

Usually we have ρ > 0.

For the constant treatment longitudinal study

e = 1 + ρ,

so that the cross-sectional study is preferable since we have lost information

due to the correlation.

For the changing treatment longitudinal study

e = 1 − ρ,

so that the longitudinal study is more efficient, because each individual is acting

as their own control, that is, we are making within-individual comparisons.

If ρ = 0 the designs have the same efficiency.
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Example: Dental Growth Data

Suppose bβm
0 and bβm

1 are the marginal intercept and slope estimates, and let

em
ij = Yij − bβm

0 − bβm
1 tj ,

i = 1, ..., 11; j = 1, ..., 4, denote marginal residuals, and
2
666664

σ1

ρ12 σ2

ρ13 ρ23 σ3

ρ14 ρ24 ρ34 σ4

3
777775

(15)

represent the standard deviation/correlation matrix of the residuals, where

σj =
q

var(em
ij ),

is the variance of the length at time tj , j = 1, ..., 4, and

ρjk =
cov(em

ij , em
ik)

q
var(em

ij )var(em
ik)

,

is the correlation between residual measurements at times tj and tk taken on

the same girl, j 6= k, j, k = 1, ..., 4.
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Across girls we may empirically estimate the entries of (15) by

2
666664

2.12

0.83 1.90

0.86 0.90 2.36

0.84 0.88 0.95 2.44

3
777775

(16)

illustrating that there is a suggestion that the variance is increasing with the

mean, and clear correlation between residuals at different times on the same

girl.

The fitting of a single curve, and using methods for independent data, ignores

the correlations within each child’s data and so standard errors will clearly be

inappropriate.
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Fitting a marginal model such as this is appealing in one sense, however, since

it allows the direct comparison of the average responses in different (in this

example the populations of girls at different ages) and forms the basis of the

generalized estimating equations (GEE) approach

An alternative fixed effects approach is to assume a fixed curve for each child

and analyze each set of data separately.

We will also often be interested in making formal inference for the population

of girls from which the eleven in the data are viewed as a random sample. This

forms the basis of the mixed effects model approach.

Figure 2(b) displays the lines corresponding to each of these fixed effects

approaches.
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Figure 2: Dental plots for girls only: (a) Individual observed data (with plotting

symbol girl index), (b) Individual fitted curves (dashed) and overall fitted curve

(solid).
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Linear Mixed Effects Models

The basic idea behind mixed effects models is to assume that each unit has a

regression model characterized by unit-specific parameters, with these

parameters being a combination of fixed effects that are common to all units in

the population, and then unit-specific perturbations, or random effects (hence

“mixed” effects refers to the combination of fixed and random effects).

Given data yi = (yi1, ..., yini)
T on unit i a mixed effects model is characterized

by a combination of

• a (k + 1) × 1 vector of fixed effects, β,

• a (q + 1) × 1 vector of random effects, bi, with q ≤ k.

• xi = (xi1, ..., xini)
T, the design matrix for the fixed effect with

xij = (1, xij1, ..., xijk)T, and

• zi = (zi1, ..., zini)
T, and design matrix for the random effects with

zij = (1, zij1, ..., zijq)T.
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We then have the following (two stage) Linear Mixed Effects Model (LMEM):

Stage 1: Response model, conditional on random effects:

yi = xiβ + zibi + ǫi, (17)

where ǫi is an ni × 1 zero mean vector of error terms.

Stage 2: Model for random terms:

E[ǫi] = 0, var(ǫi) = Ei(α),

E[bi] = 0, var(bi) = D(α),

cov(bi, ǫi) = 0

where α is the vector of variance-covariance parameters.

The two stages define the marginal model:

E[yi] = µi(β) = xiβ,

var(yi) = V i(α) = ziDzT
i + Ei,

cov(yi, yi′) = 0, i 6= i′.

We describe likelihood and Bayesian approaches to inference.
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Likelihood Inference

We need to specify a complete probability distribution for the data, and this

follows by specifying distributions for ǫi and bi, i = 1, ..., m. A common model

is

ǫi ∼ind N(0, σ2
ǫ Ini), bi ∼iid N(0, D),

where

D =

2
6666664

σ2
00 σ2

01 ... σ2
0q

σ2
10 σ2

11 ... σ2
1q

.

.

.
.
.
.

. . .
.
.
.

σ2
q0 σ2

q1 ... σ2
qq

3
7777775

.

Here α = (σ2
ǫ , D) denote the variance-covariance parameters. Here

V = zDzT + σ2
ǫ IN , where N =

Pm
i=1 ni.

Likelihood methods are designed for fixed effects, and so we integrate the

random effects from the two-stage model:

p(y|β, α) =

Z

b
p(y|b, β, α) × p(b|β, α) db.
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Exploiting conditional independencies we have:

p(y|β, α) =
mY

i=1

Z

bi

p(yi|bi, β, σ2
ǫ ) × p(bi|D) dbi.

Since a convolution of normals is normal we obtain

y|β, α ∼
mY

i=1

N{µi(β), V i(α)}.

The log-likelihood is

l(β, α) = − N

2
log 2π − 1

2

mX

i=1

log |V i(α)|

− 1

2

mX

i=1

(Y i − xiβ)TV (α)−1
i (Y i − xiβ). (18)
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Example: One-way ANOVA

Consider the simple ANOVA model

Yij = β0 + bi + ǫij ,

with bi and ǫij independent and distributed as

• bi ∼ind N(0, σ2
0),

• ǫij ∼ind N(0, σ2
ǫ )

for i = 1, ..., m, j = 1, ..., ni, with
Pm

i=1 ni = N . This model can also be

written as

Y i = 1nβ0 + 1nbi + ǫi,

with E[Y ] = 1Nβ0, var(Y ) = V = 1N1T
N σ2

0 + INσ2
ǫ = JNσ2

0 + INσ2
ǫ , where

JN is the N × N matrix of 1’s.
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The marginal variance V is the N × N matrix

σ2

2
6666666666666666666664

1 ρ ρ ρ ... 0 0 0 0

ρ 1 ρ ρ ... 0 0 0 0

ρ ρ 1 ρ ... 0 0 0 0

ρ ρ ρ 1 ... 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 ... 1 ρ ρ ρ

0 0 0 0 ... ρ 1 ρ ρ

0 0 0 0 ... ρ ρ 1 ρ

0 0 0 0 ... ρ ρ ρ 1

3
7777777777777777777775

with σ2 = σ2
ǫ + σ2

0 and

ρ =
σ2
0

σ2
=

σ2
0

σ2
ǫ + σ2

0

.
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Here we have a total of 3 regression parameters and variance components

(β0, σ2
0 , σ2

ǫ ), but m + 3 if we count the random effects.

A fixed effects model with a separate parameter for each group would have

m + 1 parameters (and corresponds to the above model with σ2
0 = ∞).

In some situations we may have more fixed and random effects than data

points, but the random effects have a special status, since they are tied

together through a common distribution.

Random effects may be viewed as a means by which dependencies are induced

in marginal models.
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Inference for Regression Parameters

The score equation for β is

∂l

∂β
=

mX

i=1

xT
i V −1

i Y i −
mX

i=1

xT
i V −1

i xiβ,

and yields the MLE for β as

bβ =

 
mX

i=1

xT
i V −1

i xi

!−1 mX

i=1

xT
i V −1

i yi

!
, (19)

which is a weighted least squares estimator. If D = 0 then V = σ2
ǫ IN and bβ

corresponds to the ordinary least squares estimator.

The variance of bβ may be obtained either directly from (19), or from the

second derivative of the log-likelihood. Since

∂2l

∂β∂βT
= −

mX

i=1

xT
i V −1

i xi,

the observed and expected information matrices coincide with

Iββ = −E

»
∂2l

∂β∂βT

–
=

mX

i=1

xT
i V −1

i xi.
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The estimator, bβ is a linear combination of Y i and so, under correct

specificiation of the model bβ is linear also and

bβ ∼ Nk+1

8
<
:β,

 
mX

i=1

xiV
−1
i xi

!−1
9
=
; .

In practice, α is never known, but asymptotically, as m → ∞ (it is not

sufficient to have m fixed and ni → ∞ for i = 1, ..., m):

 
mX

i=1

xiV i(bα)−1xi

!1/2

(bβm − β) →d Nk+1 (0k+1, Ik+1) ,

where bα is a consistent estimator of α. This result is also relevant if the data

and random effects are not normal, so long as the second moment assumptions

are correct.

Various t and F -like approaches have been suggested for correcting for the

estimation of α, see Verbeke and Molenberghs (2000, Chapter 6), but if the

sampling size is not sufficiently large for reliable estimation of α, we

recommend following a Bayesian approach to inference.
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So far as the MLE is concerned, the expected information matrix is partitioned

as

I(β, α) =

2
4 Iββ 0

0 Iαα

3
5 .

Standard ML theory gives the asymptotic distribution for the MLE bβ, bα, as
2
4
bβ
bα

3
5 ∼ Nk+1+r+1

0
@
2
4 β

α

3
5 ,

2
4 I−1

ββ 0

0 I−1
αα

3
5
1
A ,

where r is the number of distinct elements in D.

We have already seen the form of Iββ ; the form of Iαα is not pleasant.

The diagonal form of the expected information has a number of implications.

Firstly, we may carry out separate maximization of the log-likelihood with

respect to β and α. Secondly, asymptotically, we have independence between bβ
and bα, so any consistent estimator of α will give an asymptotically efficient

estimator for β.

Likelihood ratio tests are available for regression parameters.
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Inference for Variance Components by MLE

The MLE of α follows from maximization of (18), and in general there is no

closed-form solution.

The maximization may produce a negative variance estimate, in which case this

variance is set equal to zero (MLEs must lie in the parameter space).

Maximum likelihood for variance components give estimators that do not

acknowledge the estimation of β.

For the simple linear model, the MLE of σ2 is RSS/n, and not the unbiased

version RSS/(n − k − 1).

An alternative and often preferable method is provided by restricted maximum

likelihood (REML). In general REML is carried out to reduce bias in

estimation of variance components by “accounting for the estimation of β”.
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Hypothesis tests for variance components

Testing whether random effect variances are zero requires care since the null

hypothesis lies on the boundary, and so the usual regularity conditions are not

satisfied.

As an example, in the model

Yij = β0 + bi + xijβ + ǫij

with bi ∼ N(0, σ2
0), consider the test of H0 : σ2

0 = 0 versus HA : σ2
0 > 0, where

σ2
0 is a non-negative scalar. In this case the asymptotic null distribution is a

50:50 mixture of χ2
0 and χ2

1 distributions, where the former is the distribution

that gives probability mass 1 to the value 0.

Intuition: Estimating σ2
0 is equivalent to estimating ρ = σ2

0/σ2, and setting

equal to zero if the estimated correlation is negative, and under the null this

will happen half the time. Setting bρ = 0 gives the null, and so the likelihood

ratio will be one.

If the usual χ2
1 distribution is used then the null would be accepted too often,

leading to a variance component structure that is too simple.
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Inference for Variance Components by REML

Restricted (or residual) maximum likelihood (REML) is a method that has

been proposed as an alternative to ML, there are a number of justifications; we

later provide a Bayesian justification, and here provide another based on

marginal likelihood.

Marginal Likelihood

Let S1, S2, A be a minimal sufficient statistic where A is ancillary, and for

which

p(y | λ, φ) ∝ p(s1, s2, a | λ, φ)

= p(a)p(s1 | a, λ)p(s2 | s1, a, λ, φ)

where λ are parameters of interest and φ are the remaining (nuisance)

parameters.
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Inference for λ may be based on the marginal likelihood

Lm(λ) = p(s1 | a, λ).

This is desirable if inference is simplified or if it avoids problems encountered

with standard likelihood methods. For example dim(φ) may increase with n.

The marginal likelihood has similar properties to a regular likelihood.

These advantages may outway the loss of efficiency in ignoring the

p(s2 | s1, a, λ, φ) term. If there is no ancillary statistic then the marginal

likelihood is

Lm(λ) = p(s1 | λ).
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Example: Normal linear model

Assume Y | β, σ2 ∼ind Nn(xβ, σ2I) where dim(β) = k + 1. Suppose the

parameter of interest is λ = σ2, with remaining parameters φ = β. Minimal

sufficient statistics are: s1 = s2 = RSS/(n − k − 1), and s2 = bβ. We have

p(y | σ2, β) = p(s1, s2 | σ2, β) = p(s1 | σ2)p(s2 | β, σ2).

Hence the marginal likelihood is

Lm(σ2) = p(s2 | σ2).

We know
(n − k − 1)s2

σ2
∼ χ2

n−k−1 = Ga

„
n − k − 1

2
,
1

2

«
,

and so

p(s2 | σ2) =

„
n − k − 1

2σ2

«(n−k−1)/2
`
s2
´(n−k−1)/2−1

Γ
“

n−k−1
2

” × exp

»
− (n − k − 1)s2

2σ2

–
,

to give

lm = log Lm = −(n − k − 1) log σ − (n − k − 1)s2

2σ2
,

and

bσ2 = s2.
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REML for LMEM

To use marginal likelihood we need to find a function of the data, U = f(Y ),

whose distribution does not depend upon β, and then base inference for α on

this distribution.

A natural function to choose is the vector of residuals following an ordinary

least squares fit:

R = Y − xbβo = Y − x(xTx)−1xTY

= (I − x(xTx)−1xT)Y = (I − H)Y ,

where bβo = (xTx)−1xTY is the OLS estimator.

We have

R = (I − H)Y = (I − H)(xβ + zb + ǫ) = (I − H)(zb + ǫ),

and so the distribution of R does not depend on β.
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Unfortunately the distribution of R is degenerate as it has rank N − k − 1.

Consider the (N − k − 1) × 1 random variables

U = BTY

where B is an N × (N − k − 1) matrix with BBT = I − H and BTB = I

(such a matrix always exists).

Then

U = BTY = BTBBTY = BT(I − H)Y = BTR,

and BTY is a linear combination of residuals.

Further BTx = 0, so that

U = BTY = BTzb + BTǫ,

and the distribution of U does not depend upon β, and E[U] = 0.

We now derive the distibution of U. To do this we consider the transformation

from Y → (U, bβG) = (BTY , GTY ), where

bβG = GTY = (xTV −1x)−1xTV −1Y ,

is the generalized least squares estimator.
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We derive the Jacobian of the transformation. To do this we need the following

two facts:

1. det(ATA) = det(AT)det(A) = det(A)2.

2.

˛̨
˛̨
˛̨

T U

V W

˛̨
˛̨
˛̨ =| T || W − V T−1U | .

Then

| J | =

˛̨
˛̨
˛
∂(U, bβG)

∂Y

˛̨
˛̨
˛ =| B G |=

˛̨
˛̨
˛̨

2
4 BT

GT

3
5 [B G]

˛̨
˛̨
˛̨

1/2

=

˛̨
˛̨
˛̨

2
4 BTB BTG

GTB GTG

3
5
˛̨
˛̨
˛̨

1/2

= | BTB |1/2| GTG− GTB(BTB)−1BTG |1/2

= 1× | GTG− GT(I − H)G |1/2

= | xTx |−1/2 6= 0

which implies that (U, bβg) is of full rank (= N). The vector (U, bβG) is a linear

combination of normals and so is normal.
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We have

p(y | α, β) = p(U, bβG | α, β) | J |= p(U | bβG, α, β)p(bβG | α, β) | J |

and

cov(U, bβG) = E[U(bβG − β)T] = 0,

and so U and bβG are uncorrelated, and since normal therefore independent.

Hence

p(y | α, β) = p(U | α)p(bβG | α, β) | J | .

Inference for λ may be based on the marginal likelihood

Lm(λ) = p(s1 | λ).

In the REML context we have s1 = u, s2 = bβG, λ = α, φ = β, and p(U | α)

is a marginal likelihood.

Hence

p(U | α) =
p(y | α, β)

p(bβG | α, β)
| J |−1 .

We have

p(y | α, β) = (2π)−N/2 | V |−1/2 exp


−1

2
(y − xβ)TV −1(y − xβ)

ff
,
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and

p(bβG | α, β) = (2π)−(k+1)/2 | xTV −1x |1/2

× exp


−1

2
(bβG − β)TxTV −1x(bβG − β)

ff

This leads to

p(U | α) = (2π)−(N−k−1)/2 | xTx |1/2| V |−1/2

| xTV −1x |1/2

× exp


−1

2
(y − xbβG)TV −1(y − xbβG)

ff
(20)

which does not depend upon B, hence we can choose any linear combination of

the residuals.
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• To summarize: the “data” U (a linear combination of residuals from an

OLS fit), has a distribution that depends on α only – this defines a

marginal likelihood (the REML likelihood) which may then be maximized

as a function of α.

• The log marginal (restricted) likelihood is, upto a constant,

lm(α) = −1

2
log | xTV −1x | −1

2
log | V | −1

2
(y − xbβG)TV −1(y − xbβG).

The profile log-likelihood based on Y is:

lP (α) = −1

2
log | V | −1

2
(y − xbβG)TV −1(y − xbβG),

and so we have the additional term − 1
2

log | xTV x | that accounts for the

degrees of freedom in estimation of β.

• In terms of computation calculating REML estimators can be carried out

with ML code, altered to include the extra term.
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• In general, REML estimators have finite sample bias, but they are

preferable to ML estimators, particularly for small samples.

• So far as estimation of the variance components are concerned, the

asymptotic distribution of the ML/REML estimator is normal, with

variance given by Fisher’s information.

• Suppose we fit two (nested) models using REML. Different sets of

observations are used in each and so we cannot use a likelihood ratio on

regression parameters to test whether the smaller model is a valid

statistical simplification of the larger model.

• Likelihood ratio tests for variance components are valid.
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Implementation of MLE and REML

MLE and REML require iteration between bβ|bα and bα|bβ.

Originally the EM algorithm was used, e.g., Laird and Ware (1982,

Biometrics). We illustrate for MLE and, for example, suppose Ei = Iniσ
2.

The “missing data” here are the random effects bi and the errors ǫi.

The M-step: Given bi and ǫi, obtain estimates bα = (bσ2, bD):

bσ2 =

Pm
i=1 ǫT

i ǫiPm
i=1 ni

=
t1

N

bD =
1

m

mX

i=1

bib
T
i =

t2

m
,

where t1 and t2 are the sufficient statistics.

The E step: Estimate the sufficient statistics given the current values bα, via their

expected values:

bt1 = E

"
mX

i=1

ǫ
T
i ǫi|yi,

bβ(bα), bα
#

bt2 = E

"
mX

i=1

b
T
i bi|yi,

bβ(bα), bα
#

.
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Closed form fixed and random effect estimates are available once we know α.

Slow convergence has been reported so that now the Newton-Raphson method

is more frequently used.

Let θ be a p × 1 parameter vector containing the variance components, l(·) the

log-likelihood, G the p × 1 score vector, and I⋆(·) the p × p observed

information matrix. Then a second order Taylor series expansion of l(·) about

θ(t), the estimate at iteration t gives:

g(t)(θ) = l(θ) + G(t)T(θ − θ(t)) +
1

2
(θ − θ(t))TI⋆(t)(θ − θ(t)),

differentiating and setting equal to zero:

∂g(t)

∂θ
= G(t) + I⋆(t)(θ − θ(t)) = 0,

gives the next estimate

θ(t+1) = θ(t) − {I⋆(t)}−1G(t).

The use of the expected information gives Fisher’s scoring method.

See Lindstrom and Bates (1988, JASA) for details.

Lack of convergence of the algorithm/negative estimates, may sometimes

indicate that a poor model is being fitted.
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Dental Example

The simplest possible mixed effects model is given by

Yij = β0 + bi + β1tj + ǫij ,

where ǫij are iid with E[ǫij ] = 0 and var(ǫij) = σ2
ǫ and bi represent random

effects with bi ∼iid N(0, σ2
0), and represent perturbations for girl i from the

population intercept β0.

Girl-specific intercepts β0i = β0 + bi.

We could write b0i, but use bi for simplicity.

After conditioning on the random effect we have independent observations on

each girl, we have assumed that allowing the intercepts to vary has removed all

within-girl correlation.
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The marginal distribution is normal with mean

E[Y |β0, β1, σ2
ǫ , σ2

0 ] = µ,

where

µ = (µ1, ..., µm)T

is a 4m × 1 vector and

µ1 = ... = µm = (β0 + β1t1, β0 + β1t2, β0 + β1t3, β0 + β1t4)T.

The variance is given by

var(Y |β0, β1, σ2
ǫ , σ2

0) = V ,

where V is the 4m × 4m block diagonal matrix with

V i = var(Y i) = σ2[Jniρ + Ini(1 − ρ)],

with σ2 = σ2
ǫ + σ2

0 and ρ =
σ2
0

σ2 =
σ2
0

σ2
ǫ +σ2

0
. Hence the random intercepts model

induces a marginal form with constant variances and constant correlations on

measurements on the same child, regardless of the time between observations.
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We analyze the dental data using LMEMs. To do this we use the nlme package

which is described in Pinheiro and Bates (2000) – very flexible, but the syntax

is not always obvious...

The groupedData function is useful for plotting and modeling (attaches a model

function as an attribute to a dataset).

> library(nlme)

> data(Orthodont) # Dental data is one of the data sets in the package.

> Orthgirl <- Orthodont[Orthodont$Sex=="Female",]

> trelldat <- groupedData( distance ~ age | Subject, data=Orthgirl )

> plot(trelldat)

Figure 3 shows the data plotted using a “trellis” plot – note that data are not

plotted in the original order.
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Figure 3: Length versus age (in years) for 11 girls.
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We now carry out parameter estimation, first naively, and then using LMEM

via REML.

> summary(lm(distance~age,data=Orthgirl))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.3727 1.6378 10.608 1.87e-13 ***

age 0.4795 0.1459 3.287 0.00205 **

> summary(lme( distance ~ age, data = Orthgirl, random = ~1 | Subject ))

Linear mixed-effects model fit by REML

Random effects:

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 2.06847 0.7800331

Fixed effects: distance ~ age

Value Std.Error DF t-value p-value

(Intercept) 17.372727 0.8587419 32 20.230440 0

age 0.479545 0.0525898 32 9.118598 0

63

2009 Jon Wakefield, Stat/Biostat 571

Notice the standard error for β1 is smaller for the REML analysis – slopes are

being estimated from within-girl comparisons.

The REML estimates of the variance components are bσǫ = 0.78, bσ0 = 2.07 so

that bρ = 0.875 which ties in with the empirical correlations (16). The marginal

standard deviation is given by (bσ2
ǫ + bσ2

0)1/2 = 2.21, in agreement with the

diagonal elements of (16).
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Now for comparison we fit the LMEM with ML:

> summary(lme( distance ~ age, data = Orthgirl, random = ~1 | Subject, method = "ML" ))

Linear mixed-effects model fit by maximum likelihood

Random effects:

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 1.969870 0.7681235

Fixed effects: distance ~ age

Value Std.Error DF t-value p-value

(Intercept) 17.372727 0.8506287 32 20.423397 0

age 0.479545 0.0530056 32 9.047078 0

Note that the MLEs of the variance components are smaller than the REML

counterparts. Slight differences in the standard errors of the fixed effects (but

not a big difference here).
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Bayesian Justification for REML

Another justification is to assign a flat improper prior to the regression

coefficients and then integrate these from the model.

Example: Normal Linear Model

Consider the linear regression for independent data: Y |β, σ2 ∼ N(xβ, Inσ2),

with dim(β) = k + 1.

Consider

p(y|σ2) =

Z
p(y|β, σ2)π(β)dβ,

and assume π(β) ∝ 1.
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Hence

p(y|σ2) =

Z
(2πσ2)−n/2 exp

»
− 1

2σ2
(y − xβ)T(y − xβ)

–
dβ

= (2πσ2)−n/2

Z
exp

»
− 1

2σ2
(y − xbβ + xbβ − xβ)T

× (y − xbβ + xbβ + xβ)
i

dβ

= (2πσ2)−(n−k−1)/2 exp

»
−RSS

2σ2

–
|xTx|−1/2

where the residual sum of squares

RSS = (y − xbβ)T(y − xbβ).

Maximization of l(σ2) = log p(y|σ2) yields the unbiased estimator

bσ2 =
RSS

n − k − 1
.
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Example: LMEM

Again obtain the distribution of the data as a function of α only, by integrating

β from the model, and assuming an improper flat prior for β.

We have

p(y|α) =

Z

β
p(y|β, α) × π(β) dβ,

leading to

l(α) = log p(y|α) = −1

2

mX

i=1

log |V i(α)|

− 1

2

mX

i=1

log |xT
i V i(α)xi| −

1

2

mX

i=1

(yi − xi
bβ)TV −1(α)(yi − xi

bβ),

which differs from the “usual” likelihood by the term

−1

2

mX

i=1

log |xT
i V −1

i (α)xi|.

This expression as the same as that which results from the maximization of the

distribution of the residuals.

Estimates of β change since they are a function of bα.
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Inference for Random Effects

Examples:

• Pharmacokinetics: individualization of a profile.

• Dairy herds: genetic merit of a particular bull – data are in the form of the

milk yields of his daughters.

• Psychology: inference for the IQ of an individual from a set of test scores.

• Industrial applications: operating characteristics of a particular machine.

From a frequentist perspective, inference for random effects is often viewed as

prediction rather than estimation, since b are random variables.

The usual frequentist optimality criteria for a fixed effect θ, are based upon

unbiasedness:

E[bθ] − θ = 0,

where θ is a fixed constant, and upon the variance of the estimator

var(bθ).

These need to be adjusted when inference is required for a random effect b.

69

2009 Jon Wakefield, Stat/Biostat 571

We wish to find a predictor eb = f(Y ) of b.

An unbiased predictor eb is such that

Ey,b[eb− b] = E[eb− b] = 0,

to give

E[eb] = E[b]

so that the expectation of the predictor is equal to the expectation of the

random variable that it is predicting.

The variance of a random variable is defined with respect to a fixed number,

the mean. In the context of prediction of a random variability, a more relevant

summary of the variability is

var(eb− b) = var(eb) + var(b) − 2cov(eb, b).
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There are many different criteria that may be used to find a predictor.

Since we are predicting a random variable it is natural to use minimum mean

squared error (MSE) as a criteria, rather than minimum variance.

The MSE of eb is given by

MSE(eb) = Ey,b[(eb− b)TA(eb− b)],

for non-singular A.

This leads to eb = E[b | y], irrespective of A (see Exercises 2). Hence the best

prediction is that which estimates the random variable by its conditional mean.

We now examine properties of eb.

Unbiasedness

We have

Ey [eb] = Ey{Eb|y [b | y]} = Eb[b]

where we first step follows on substitution of eb and the second from iterated

expectation. (Note: Eu[U ] = Eu,v [U ] = Ev{Eu|v [U |V ]}.)
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Variability

Recall an appropriate measure of variability:

var(ebi − bi) = var(ebi) + var(bi) − 2cov(ebi, bi).

We have

coveb,b
(ebi, bi) = Ey [cov(ebi, bi | y)] + covy(E[ebi | y], E[bi | y])

= Ey [cov(ebi, bi | y)] + covy(ebi,ebi) (21)

= var(ebi)

The first term in (21) is the covariance between a constant E[eb | y] (since y is

conditioned upon), and eb, and so is zero (because the covariance between a

constant and any quantity is zero). In the second term we have used

E[ebi | y] = E[E[bi | y] | y] = ebi.

Hence

var(ebi − bi) = var(bi) − var(ebi).
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Application to the LMEM

The predictor, eb = E[b | y], is a random variable, since it a function of y, and

so we need to know something about p(b | y) in order to derive its form.

Definitions: Suppose U is an n × 1 vector of random variables, and V is an

m × 1 vector of random variables. Then cov(U, V ) = C is an n × m matrix

with (i, j)-th element cov(Ui, Vj), i = 1, ..., n; j = 1, ..., m. Also

cov(V , U) = CT. Now suppose V = AU where A is an m × n matrix. Then

cov(U, AU) = WAT where W = cov(U), and cov(AU, U) = AW .

Consider the LMEM

y = xβ + zb + ǫ,

and assume b and ǫ are independent and bi ∼ N(0, D), ǫ ∼ N(0, σ2
ǫ I) then,

using the above results:
2
4 bi

yi

3
5 ∼ Nq+1+ni

0
@
2
4 0

xiβ

3
5 ,

2
4 D DzT

i

ziD V i

3
5
1
A .

since

cov(bi, yi) = cov(bi, xiβ + zibi + ǫi) = cov(bi, zibi) = DzT
i ,

and similarly cov(yi, bi) = ziD.
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Using properties of the multivariate normal distribution, the predictor takes

the form:
ebi = E[bi|yi] = DzT

i V −1
i (yi − xiβ) (22)

This is known as the best linear unbiased predictor (BLUP), where unbiased

refers to it satisfying E[ebi] = E[bi].

The random effect predictor is a shrinkage estimator since it pulls the fixed

effect estimator towards zero, as we see in examples later.

The form (22) is not of practical use since it depends on the unknown β and α;

instead we use
ebi = E[bi|yi] = bDzT

i
bV −1

i (yi − xi
bβ). (23)

Substitution of bβ is not such a problem (since it is an unbiased estimator, and

appears in (22) in a linear fashion), but bα is more problematic.
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The uncertainty in the prediction is given by

var(ebi − bi) = var(bi) − var(ebi) = D − var(ebi)

We have
ebi = DzT

i V −1
i (Y i − xi

bβ) = Ki(Y i − xi
bβ),

and

var(Y i − xi
bβ) = var(Y i) + xivar(bβ)xT

i − 2cov(Y i, xi
bβ).

Since

bβ = (xTV −1x)−1
mX

i=1

xT
i V −1

i Y i,

we have

cov(Y i, xi
bβ) = xi(x

TV −1x)−1xT
i V −1

i var(Y i) = xivar(bβ)xT
i ,

and so

var(ebi) = Ki[var(Y i) − xivar(bβ)xT
i ]KT

i = Ki[V i − xivar(bβ)xT
i ]KT

i

to give

var(ebi − bi) = D − DzT
i V −1

i ziD + DzT
i V −1

i xi(x
TV −1x)−1xT

i V −1
i ziD.

The variability of the prediction does not acknowledge the uncertainty in bα.
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We now examine fitted values:

bY i = xi
bβ + zi

bbi

= xi
bβ + zi{DzT

i V −1
i (Y i − xi

bβ)}
= (Ini − ziDzT

i V −1
i )xi

bβ + ziDzT
i V −1

i Y i,

a weighted combination of the population profile, and the unit’s data.

Note that if D = 0 we obtain bY i = xi
bβ.

We can also write

bY i = σ2
ǫ V −1

i xi
bβ + (Ini − σ2

ǫ V −1
i )Y i

so that as σ2
ǫ → 0, bY i → Y i.
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Example: One-way ANOVA

For the simple balanced ANOVA model previously considered

ebi =
nσ2

0

σ2
ǫ + nσ2

0

(yi − β0).

In practice we have an estimate bβ0, and the predictor is a weighted

combination of the distance yi − bβ0 and zero. Hence for finite n the predictor is

biased towards zero (recall our definition of unbiasedness is in terms of b).

As n → ∞, ebi → yi − bβ0, so that

bβ0 +ebi → yi → E[Yi].
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The form
ebi = E[bi|yi] = bDzT

i
bV −1

i (yi − xi
bβ)

can be justified in a number of ways, other than MSE.

Rather than assume normality we could consider estimators that are linear in

y. In Exercises 2 we show that this again leads to the above form.

Hence the best linear predictor is identical to the best predictor under

normality.

For general distributions, E[bi|yi] is not necessarily linear in y. Once we plug

α into the BLUP we don’t even have a linear predictor.

The BLUP is an empirical Bayes estimator. We should be considering E[b | y],

with

p(b | y) =

Z Z
p(b, β, α | y) dβdα =

Z Z
p(b | β, α, y)p(β, α | y) dβdα,

but instead the BLUP is the mean of the distribution

p(b | bβ, bα, y),

so that rather than integrating over β, α, estimates have been conditioned

upon.
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Example: Dental Growth

We again fit a LMEM with random intercepts only.

> remlelm <- lme(distance~I(age-11),data = Orthgirl,random = ~1 | Subject)

> summary(remlelm)

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 2.06847 0.7800331

Value Std.Error DF t-value p-value

(Intercept) 22.647727 0.6346568 32 35.6850 0

I(age - 11) 0.479545 0.0525898 32 9.1186 0

> b0hat <- b1hat <- NULL

> for (i in 1:11){

x <- Orthgirl$age[seq((i-1)*4+1,(i-1)*4+4)]-11

y <- Orthgirl$distance[seq((i-1)*4+1,(i-1)*4+4)]

mod <- lm(y~x)

b0hat[i] <- mod$coef[1]

b1hat[i] <- mod$coef[2]

}

> index <- c(10,9,6,1,5,7,2,8,3,4,11)

> LSb0hat <- b0hat[index]; LSb1hat <- b1hat[index]
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Shrinkage of Intercepts

> cbind(LSb0hat,LSb1hat,rcoef)

LSb0hat LSb1hat (Intercept) I(age - 11)

F10 18.500 0.450 18.64240 0.4795455

F09 21.125 0.275 21.17728 0.4795455

F06 21.125 0.375 21.17728 0.4795455

F01 21.375 0.375 21.41869 0.4795455

F05 22.625 0.275 22.62578 0.4795455

F07 23.000 0.550 22.98791 0.4795455

F02 23.000 0.800 22.98791 0.4795455

F08 23.375 0.175 23.35003 0.4795455

F03 23.750 0.850 23.71216 0.4795455

F04 24.875 0.475 24.79853 0.4795455

F11 26.375 0.675 26.24704 0.4795455

Note ordering difference in coefficients from lme, and the slight shrinkage here

towards the overall mean of 22.65; not much shrinkage here since bσ0 is large

relative to bσǫ (see Figure 4).
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Left: LS estimates, Right: Smoothed estimates
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Figure 4: Least squares estimates and smoothed estimates, bβ0 +ebi.

81

2009 Jon Wakefield, Stat/Biostat 571

Dental Example: Boys and Girls Joint Analyses

Table 2 describes LMEMs applied to the dental data and Table 3 results.

Model Description

1 Separate fits, random intercepts

2 Separate fits, random intercepts and slopes, uncorrelated

3 Separate fits, random intercepts and slopes, correlated

4 Combined fit, separate intercepts, common slope, random intercepts

5 Combined fit, separate intercepts and slopes, random intercepts

6 Combined fit, separate intercepts and slopes, random intercepts and slopes, uncorrelated

7 Combined fit, separate intercepts and slopes, random intercepts and slopes, correlated

Table 2: Various LMEMs.

Boys Girls

Model bβ0
bβ1 bσ0 bσ1 bρ01 bσǫ bβ0

bβ1 bσ0 bσ1 bρ01 bσǫ

1 25.0 0.78 1.63 – – 1.68 22.7 0.48 2.07 – – 0.78

2 25.0 0.78 1.64 0.19 – 1.61 22.6 0.48 2.08 0.16 – 0.67

3 25.0 0.78 1.64 0.19 -0.01 1.61 22.6 0.48 2.08 0.16 0.53 0.67

4 25.0 0.66 1.81 – – 1.43 22.6 0.66 1.81 – – 1.43

5 25.0 0.78 1.82 – – 1.39 22.6 0.48 1.82 – – 1.39

6 25.0 0.78 1.83 0.18 – 1.31 22.6 0.48 1.83 0.18 – 1.31

7 25.0 0.78 1.83 0.18 0.21 1.31 22.6 0.48 1.83 0.18 0.21 1.31

Table 3: Various LMEM analyses.

82



2009 Jon Wakefield, Stat/Biostat 571

R code for models

# Set parameterization (to corner point)

> options(contrasts=c("contr.treatment","contr.poly"))

# Separate fits - intercept only, model 1

> remlF <- lme( distance ~ I(age-11), data = Orthgirl, random = ~1 )

> remlM <- lme( distance ~ I(age-11), data = Orthboy, random = ~1 )

# Separate fits - intercept and age, diagonal, model 2

> remlF2d <- lme( distance ~ I(age-11), data = Orthgirl,random = pdDiag(~I(age-11)))

> remlM2d <- lme( distance ~ I(age-11), data = Orthboy,random = pdDiag(~I(age-11)))

# Separate fits - intercept and age, non-diagonal, model 3

> remlF2 <- lme( distance ~ I(age-11), data = Orthgirl, random = ~I(age-11))

> remlM2 <- lme( distance ~ I(age-11), data = Orthboy, random = ~I(age-11))

# Combined fit - common slope, intercept only, model 4

> remlMF <- lme( distance ~ I(age-11)+Sex, data = Orthodont, random = ~1 )

# Combined fit - seperate intercepts and slopes, intercept only - model 5

> remlMFi <- lme( distance ~ I(age-11)+Sex+I(age-11):Sex, data = Orthodont,

random = ~1 )

# Combined fit -sep intercepts and slopes, uncor random intercepts and slopes - model 6

> remlMF2 <- lme( distance ~ I(age-11)+Sex+I(age-11):Sex, data = Orthodont,

random=pdDiag(~I(age-11)) )

# Combined fit - sep intercepts and slopes, cor random intercepts and slopes - model 7

> remlMF3 <- lme( distance ~ I(age-11)+Sex+I(age-11):Sex, data = Orthodont,

random=~I(age-11) )
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Example of Output (model 4)

> summary(remlMF)

Random effects:

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 1.807425 1.431592

Fixed effects: distance ~ I(age - 11) + Sex

Value Std.Error DF t-value p-value

(Intercept) 24.968750 0.4860008 80 51.37595 0.0000

I(age - 11) 0.660185 0.0616059 80 10.71626 0.0000

SexFemale -2.321023 0.7614168 25 -3.04829 0.0054

Correlation:

(Intr) I(-11)

I(age - 11) 0.000

SexFemale -0.638 0.000

Number of Observations: 108

Number of Groups: 27

Figure 5 gives normal QQ plots of the LS estimates of intercepts and slopes, for

boys and girls.

Figure 6 gives a scatter plot of the LS estimates of intercepts and slopes, for

boys and girls.
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Figure 5: QQ plot of the LS estimates.
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Figure 6: Plot of the LS estimates for boys and girls.
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