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Bayesian Inference for the LMEM

Consider the model

yi = xiβ + zibi + ǫi

with bi ∼iid N(0, D), ǫi ∼ind N(0, Ini
σ2

ǫ ), with bi and ǫi independent.

The form of the posterior follows from exploiting conditional independencies:

p(β, α, b | y) ∝ p(y | β, α, b)π(β, α, b) =
m
Y

i=1

p(yi | β, α, bi)π(b | α)π(β)π(α)

=

m
Y

i=1

{p(yi | β, α, bi)π(bi | α)}π(β)π(α) (24)

Alternatively, we can derive the posterior for β, α directly:

p(β, α | y) ∝ p(y | β, α)π(β, α) =
m
Y

i=1

p(yi | β, α)π(β, α)

=
m
Y

i=1

Z

p(yi, bi | β, α) dbiπ(β, α)

where the integrand is giving by the term in curly brackets in (24).

The prior on bi is justified by the context, formally via exchangeability.
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Exchangeability

Definition: A finite set Y1, ..., Yn of random variables is said to be

exchangeable if every permutation (Y1, ..., Yn) has the same joint distribution as

every other permutation. An infinite collection is exchangeable if every finite

subcollection is exchangeable.

Every collection of independent and identically distributed random variables is

exchangeable.

Theorem: De Finetti’s representation Theorem for 0/1 random variables.

If Y1, Y2, ... is an infinitely exchangeable sequence of 0/1 random variables,

there exists a distribution π(·) such that the joint mass function Pr(y1, ..., yn)

has the form

Pr(y1, ..., yn) =

Z 1

0

n
Y

i=1

θyi (1 − θ)1−yiπ(θ) dθ,

where
Z θ

0
π(u) du = lim

n→∞

Pr

„

Zn

n
≤ θ

«

,

with Zn = Y1 + ... + Yn, and θ = limn→∞ Zn/n.

88



2009 Jon Wakefield, Stat/Biostat 571

Proof: See Bernardo and Smith (1994) for more details.

Let zn = y1 + ... + yn be the number of 1’s (which we label “successes”) in the

first n observations. Then, due to exchangeability,

Pr(y1 + ... + yn = zn) =

0

@

n

zn

1

APr(Yπ(1), ..., Yπ(n)),

for all permutations π of {1, ..., n} such that yπ(1) + ... + yπ(n) = zn. Then we

can embed the event y1 + ...+yn = zn within a sequence, y1, ..., yN , N ≥ n, and

Pr

 

n
X

i=1

yi = zn

!

=

N−(n−zn)
X

ZN=zn

Pr(y1 + ... + yn = zn, y1 + ... + yN = zN )

=

N−(n−zn)
X

zN =zn

Pr(y1 + ... + yn = zn | y1 + ... + yN = zN )

× Pr(y1 + ... + yN = zN ).

To obtain the conditional probability we observe that it is as if we have a

population of N people of which zN are successes, and N − zN failures, from

which we draw n people, the probability of zn successes is then hypergeometric.
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Hence

Pr(y1 + ... + yn = zn) =

N−(n−zn)
X

zN =zn

0

@

zN

zn

1

A

0

@

N − zN

n − zn

1

A

0

@

N

n

1

A

Pr(zN )

Here Pr(zN ) is the “prior” belief in the number of successes out of N .

Let N → ∞ and by the strong law of law numbers θ = limN→∞ zN /N .

The hypergeometric tends to a binomial with parameters n and θ, and the

prior Pr(zN ) is translated into a prior for θ, π(θ). Hence we have

Pr(y1 + ... + yn = zn) →

0

@

n

zn

1

A

Z

θzn (1 − θ)n−znπ(θ) dθ,

as N → ∞.
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Implications

The interpretation of this theorem is of great significance:

• We may view the Yi to be independent, Bernoulli random variables,

conditional on a random variable θ.

• θ is itself assigned a probability distribution π().

• π may be interpreted as “beliefs about the limiting relative frequency of

1’s”.

In conventional language, we have the likelihood function

p(Y1, ..., Yn|θ) =
n
Y

i=1

p(Yi|θ) =
n
Y

i=1

θYi (1 − θ)1−Yi ,

where the parameter θ is assigned a prior distribution π(θ).
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Further results

General Representation Theorem:

If Y1, Y2, ... is an infinitely exchangeable sequence of random variables with

probability measure P , there exists a distribution function Q such that the

joint mass function p(Y1, ..., Yn) has the form

p(Y1, ..., Yn) =

Z n
Y

i=1

p(Yi|θ)π(θ)dθ,

with p(·|θ) denoting the density function corresponding to the ‘unknown

parameter’ θ.

Further assumptions on Y1, Y2, ... are required to identify p(·|θ).
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Relevance of Exchangeability

If we believe a priori that θ1, ..., θm are exchangeable (and are considered

within a hypothetical infinite sequence of such random variables), then it can be

shown using representation theorems that the prior can be written in the form

p(θ1, ..., θm) =

Z m
Y

i=1

p(θi|φ)π(φ) dφ,

that is, they are conditionally independent, given hyperparameters φ, with the

hyperparameters having a hyperprior distribution.

Hence we have a two-stage (hierarchical) prior:

Stage A: θi|φ ∼iid p(·|φ), i = 1, ..., m.

Stage B: φ ∼iid π(·).

Parametric choices for p(·|φ) and π(·) are usually made to balance flexibility

and computational convenience.

Contrast with the sampling theory approach in which the random effects are

assumed to be a random sample from a hypothetical infinite population.
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Bayesian Computation

We have seen that to summarize posterior distributions integration is required

and, in all but the simplest (conjugate) models, these integrals are not

analytically tractable.

Integration is also required to integrate out the random effects in nonlinear

mixed effects models, to obtain the likelihood, and later we will review a

number of analytical and numerical approaches, for now we concentrate on

Markov chain Monte Carlo (MCMC).

The first key idea is the duality between densities and samples from that

density: given a density we can always generate samples, and given samples we

can reconstruct the density.

Simulation-based techniques have revolutionized Bayesian statistics, by

allowing the fitting of very complex models.
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Example: Binomial Likelihood with Weird Functions of Interest

Suppose we have

Yj | pj ∼ Binomial(nj , pj)

j = 1, 2, with independent priors

pj ∼ U(0, 1)

The posteriors are available analytically as

pj | yj ∼ Beta(yj + 1, nj − yj + 1)

but suppose we are interested in inference for the odds ratio

φ =
p1

1 − p1
/

p2

1 − p2

and for the relative risk

θ =
p1

p2
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The following is R code to simulate from

p1 | y1, y2 and p2 | y1, y2

and

φ | y1, y2 and θ | y1, y2

when

n1 = 35, n2 = 45, y1 = 30, y2 = 10

> n1 <- 35; n2 <- 45; y1 <- 30; y2 <- 10

> nsamp <- 1000

> p1 <- rbeta(nsamp,y1+1,n1-y1+1); p2 <- rbeta(nsamp,y2+1,n2-y2+1)

> odds <- (p1/(1-p1))/(p2/(1-p2)); rr <- p1/p2

> par(mfrow=c(2,2))

> hist(p1,xlim=c(0,1))

> hist(p2,xlim=c(0,1))

> hist(odds)

> hist(rr)

> sum(odds[odds>10])/sum(odds) # Posterior prob that odds ratio is > than 10

[1] 0.945683
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Figure 7: Posterior distributions for p1, p2, the odds ratio p1
1−p1

/ p2
1−p2

and for

the relative risk θ = p1
p2

.
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The Composition Method

A useful technical for simulating from joint posterior distributions is the

following.

Write the joint posterior distribution for θ1, θ2 as

p(θ1, θ2 | y) = p(θ1 | y)p(θ2 | θ1, y)

Then a simulating algorithm to produce independent samples from p(θ1, θ2 | y)

is, for s = 1, ..., S:

1. Simulate θ
(s)
1 ∼ind p(θ1 | y).

2. Simulate θ
(s)
2 ∼ind p(θ2 | θ

(s)
1 , y).
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Markov chain Monte Carlo

MCMC is a very general technique that has revolutionized practical Bayesian

statistics.

In the usual derivation of Markov chains over a discrete sample space we are

given a transition matrix and the aim is to find the stationary distribution (if it

exists). Probabilities of movement depend on the current state only, hence the

name.

In the context of sampling from a distribution π(·), the aim is to construct a

Markov chain whose stationary distribution is π.

Samples θ(s), s = 1, ..., S, produced by a Markov chain “look” more and more

like dependent samples from π as S → ∞. The dependency does not cause a

problem in terms of estimation since

1

S

S
X

s=1

f(θ(s)) → E{f(θ)},

as S → ∞ (provided the expectation exists).

The only difficulty with the dependency is establishing an appropriates Monte

Carlo error on the resultant estimator. The Gibbs sampler, and the

Metropolis-Hastings algorithm are common strategies.
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Gibbs Sampling

Consider a two-parameter problem in which the (intractable) posterior is:

π(θ1, θ2|y) ∝ l(θ1, θ2) × π(θ1, θ2).

We have

π(θ1, θ2|y) = p(θ1|y) × p(θ2|θ2, y),

but p(θ1|y) will typically be unavailable.

Gibbs sampling proceeds by iterating between the steps:

θ
(s)
1 ∼ p(θ1|θ

(s−1)
2 , y),

and

θ
(s)
2 ∼ p(θ2|θ

(s)
1 , y),

to produce the sequence

(θ
(0)
1 , θ

(0)
2 ), (θ

(1)
1 , θ

(1)
2 ), ..., (θ

(s)
1 , θ

(s)
2 ), ...

which may be viewed as a draw from π(θ1, θ2|y)
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Example: Normal likelihood, unknown mean and variance

Likelihood:

Yi|β, σ2 ∼ N(xiβ, σ2), i = 1, ..., n.

Prior:

β ∼ N(µ, V ), σ−2 ∼ Ga(a, b).

Posterior

π(β, σ2|y) ∝ l(β, σ2)π(β)π(σ2),

is intractable unless p(β) is improper uniform and the prior for σ2 is inverse

gamma.
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Gibbs sampling iterates between β|y, σ2 and σ−2|y, β where

p(β|y, σ2) ∝ l(β, σ2)π(β)

∼ N(µ∗, V ∗),

p(σ−2|y, β) ∝ l(β, σ2)π(σ−2)

∼ Ga

„

a +
n

2
, b +

(y − xβ)T(y − xβ)

2

«

.

where

µ∗ = (xTxσ−2 + µTV −1)−1(xTxβ̂σ−2 + µV −1),

and

V ∗ = (xTxσ−2 + V −1)−1.
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Metropolis-Hastings Algorithm

Generalizes the Metropolis algorithm to allow a non-symmetric proposal

density.

Suppose θ(0) denotes the initial point. The Metropolis-Hastings algorithm then

consists of, at iteration s:

• Sample θ∗|θ(s−1) ∼ g(·|θ(s−1)).

• Calculate

r =
π(θ∗)/g(θ∗|θ(s−1))

π(θ(s−1))/g(θ(s−1)|θ∗)
.

• Set

θ(s) =

8

<

:

θ∗ with probability min(r, 1),

θ(s−1) otherwise.

Important point: the calculation of r does not depend on the normalizing

constant of the target density π.
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Issues:

• Convergence of the Markov chain?

• Parameterization.

Convergence

• Early iterations θ(1), θ(2), ..., θ(m) reflect the (arbitrary) starting value θ(0).

• These iterations are called the burn-in.

• Chain will gradually ‘forget’ its initial state and converge to the unique

stationary distribution which is independent of θ(0).

• Burn-in samples should be ignored when summarizing the samples for

posterior inference via Monte Carlo integration, i.e.

E[g(θ)] ≈
1

n − m

n
X

s=m+1

g(θ(s))
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Convergence Diagnosis

• Strictly speaking, convergence is only achieved for n = ∞.

• But we only need Markov chain to be ‘approaching’ convergence for Monte

Carlo integration to yield a consistent estimate of the true expectation.

• How do we determine m, the number of ‘burn-in’ iterations?

• Informal examination of time series plots and running of multiple chains is

a must.

• Two issues: have we ‘found’ the posterior? Do we have enough samples to

answer the inferential questions? Some chains may be very slow mixing

(examination of autocorrelation is important).
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Parameterization

The Markov chain will display better mixing properties if the parameters are

approximately independent in the posterior.

In an extreme case, if we have independence then

p(θ1, ..., θk|y) =
k
Y

i=1

p(θi|y),

and Gibbs sampling via the conditional distributions p(θi|y), i = 1, ..., n, is

equivalent to direct sampling from the posterior.

In general it is better to sample ‘blocks’ of parameters that are approximately

independent.
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Hyperpriors

Consider the LMEM

yi = xiβ + zibi + ǫi,

with bi ∼ Nq+1(0, D), and ǫi ∼ Nni
(0, σ2

ǫ Ini
), i = 1, ..., m. A Bayesian

analysis requires prior distributions on β, D, σ2
ǫ ; it is common to assume

independent priors

π(β, D, σ2
ǫ ) = π(β)π(D)π(σ2

ǫ ).

For β a multivariate normal distribution and for σ2
ǫ an inverse gamma

distribution are often specified since they lead to conditional distributions of

convenient form for Gibbs sampling, but other choices are possible.

If D is a diagonal matrix with elements σ2
k, k = 0, 1, ..., q, then a prior that

leads to conjugate conditional distributions in a Gibbs sampling algorithm is

π(σ2
0 , ..., σ2

q ) =

q
Y

k=0

IGa(ak, bk),

where IGa(ak, bk) denotes the inverse gamma distribution with pre-specified

parameters ak, bk, k = 0, ..., q.
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The Wishart Distribution

A prior for a non-diagonal D is more troublesome; there are (q + 2)(q + 1)/2

elements, with the restriction that the resultant matrix is positive definite.

The inverse Wishart distribution is the conjugate choice, and is the only

distribution for which any great practical experience has been gained.

Suppose Z1, ..., Zr ∼iid Np(0, S), with S a non-singular variance-covariance

matrix, and let

W =
r
X

j=1

ZjZT
j . (25)

Then W follows a Wishart distribution, denoted Wp(r, S), and

p(w) = c−1 | w |(r−p−1)/2 exp



−
1

2
tr(wS−1)

ff

where

c = 2rp/2Γp(r/2) | S |r/2, (26)

with

Γp(r/2) = πp(p−1)/4
p
Y

j=1

Γ((r + 1 − j)/2)

the generalized gamma function, and r ≥ p for a proper density.
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The mean is given by

E[W ] = rS.

The Wishart distribution is a multivariate version of the gamma distribution.

Taking p = 1 yields

p(w) =
(2S)−r/2

Γ(r/2)
wr/2−1 exp(−w/2S),

for w > 0, the gamma distribution Ga(r/2, 1/(2S)). Further, taking S = 1 gives

a χ2
r random variable, which is clear from (25).
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The Inverse Wishart Distribution

If W ∼ Wp(r, S), the distribution of D = W−1 is known as the inverse

Wishart distribution, and is given by

p(d) = c−1 | d |−(r+p+1)/2 exp



−
1

2
tr(d−1S)

ff

where c is again given by (26). The mean is given by

E[D] =
S−1

r − p − 1

and is defined for r > p + 1. If p = 1 we recover the inverse gamma distribution

IGa(r/2, 1/2S) with E[D] = 1/[s(r − 2)] and var(D) = 1/[S2(r − 2)(r − 4)] (so

that small r gives a larger spread).

Thinking ahead to application in the LMEM if W ∼ Wq+1(r, R
−1), then

E[W ] = rR−1,

and

E[D] = R/(r − q − 1 − 1),

so that R, may be scaled to be a prior estimate of D, with r acting as a

strength of belief in the prior.
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Issues with the Wishart Prior

• A problem with the Wishart distribution is that it is deficient in second

moment parameters since there is only a single degrees of freedom

parameter r. So, for example, it is not possible to have differing levels of

certainty in the tightness of the prior distribution for different elements of

D. With diagonal D and independent inverse gamma priors we have a

precision parameter for each variance.

• The form of the conditional distribution suggests that it may be better to

err on the side of picking R too small (if m small, prior always influential).

• Intuition: as if our prior data for the precision consists of observing r

normal random variables with variance-covariance matrices R.

• We need to take r ≥ q + 1 for a proper prior, with the flattest prior

corresponding to r = q + 1. A proper prior is required to ensure propriety

of the posterior distribution.

• Figure 8 displays samples from the Wishart distribution W2{20, (20S)−1}

where S =

"

0.4 0

0 1.0

#

. The mean is E[W ] = S−1 =

"

2.5 0

0 1.0

#

.
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Figure 8: Histograms of (a) w11, (b) w12, (c) w22, scatterplots of (d) w11, w12,

(e) w11, w22, w12, w22
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Conditional Conjugacy

We now consider a Gibbs sampling scheme and assume for simplicity that

xi = zi. It is computational more convenient to reparameterize in terms of the

set {β1, ..., βm, τ, β, W} where βi = β + bi, τ = σ−2
ǫ , W = D−1.

The joint posterior is

p(β1, ..., βm, τ, β, W | y) ∝
m
Y

i=1

{p(yi | βi, τ)p(βi | β, W)}π(β)π(τ)π(W),

with priors:

β ∼ Nq+1(β0, V 0)

τ ∼ Ga(a0, b0)

W ∼ Wq+1(r, R
−1)

and derive the required conditional distributions:

• p(β | τ, W , β1, ..., βm, y)

• p(τ | β, W , β1, ..., βm, y)

• p(W | β, τ, β1, ..., βm, y)

• p(βi | β, τ, W , y), i = 1, ..., m.
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Conditional for β

β | β1, ..., βm, W ∼ Nq+1

(

“

mW + V −1
0

”

−1
 

W

m
X

i=1

βi + V −1
0 β0

!

,
“

mW + V −1
0

”

−1
)

Conditional for τ

τ | βi, y ∼ Ga

 

a0 +

Pm
i=1 ni

2
, b0 +

1

2

m
X

i=1

(yi − xiβi)
T(yi − xiβi)

!

Conditional for βi

βi | τ, W , β, y ∼ Nq+1

˘

(τxT
i xi + W)−1(τxT

i yi + Wβ), (τxT
i xi + W)−1

¯

Note the way that the conditional independencies have been exploited so that

in each case we condition on only a subset of the parameters.
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Conditional for W

First note that

(βi − β)TW(βi − β) = tr((βi − β)TW(βi − β)) = tr(W(βi − β)(βi − β)T).

Then

W | y, βi, β ∝
m
Y

i=1

p(βi | W) × π(W)

∝ | W |(m+r−q−1−1)/2 exp

(

−
1

2

"

m
X

i=1

(βi − β)TW(βi − β) + tr(WR)

#)

= | W |(m+r−q−1−1)/2 exp

(

−
1

2
tr

 

W

"

m
X

i=1

(βi − β)(βi − β)T + R

#!)

Hence the conditional distribution is

W | β1, ..., βm, β, y ∼ Wq+1

8

<

:

r + m,

 

R +
m
X

i=1

(βi − β)(βi − β)T

!

−1
9

=

;

.
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Example: Dental Data for Girls

Three-Stage Hierarchical Model:

First Stage:

yij = β0i + β1i(tj − 11) + ǫij ,

with ǫiid ∼ N(0, τ−1), j = 1, ..., 4, i = 1, ..., 11.

Second Stage: Let

βi =

2

4

β0i

β1i

3

5 β =

2

4

β0

β1

3

5 D =

2

4

D00 D01

D10 D11

3

5 ,

and then

βi | β, D ∼ N2(β, D),

i = 1, ..., m.

Third Stage:

π(τ, β, D−1) ∝ Ga(0, 0) × N2

0

@

2

4

0

0

3

5 ,

2

4

106 0

0 106

3

5

1

A× W2(r, R−1).
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Results below are for priors, with prior mean

E[D] =
1

r − q − 2
R =

1

r − 3
R =

2

4

1.0 0

0 0.1

3

5

(since q = 1) and different degrees of freedom r.

We see sensitivity to the prior in inference for D, but not for β.

Note the greater shrinkage to the prior mean for the second and third priors.

r R β0 β1

4 1.0 0 0 0.1 22.6 (21.4,23.8) 0.48 (0.33,0.63)

7 4.0 0 0 0.4 22.6 (21.5,23.7) 0.48 (0.31,0.65)

28 25 0 0 2.5 22.6 (21.8,23.5) 0.48 (0.28,0.67)

Table 4: Posterior medians and 95% intervals for population means, under three

priors.
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r Diag R D00 D01 D11

4 1.0 0.1 3.48 (1.66, 8.75) 0.13 (-0.10,0.54) 0.03 (0.01,0.10)

7 4.0 0.4 2.97 (1.51, 6.63) 0.10 (-0.14,0.46) 0.05 (0.02,0.12)

28 25 2.5 1.78 (1.14, 2.97) 0.04 (-0.10,0.20) 0.08 (0.05,0.14)

Table 5: Posterior medians and 95% intervals for population variances, under

two priors.
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The code below is for the analysis with r = 4, BUGS parametrizes the Wishart

in terms of R−1 and r.

model

{

for( i in 1 : N ) {

for( j in 1 : T ) {

Y[i , j] ~ dnorm(mu[i , j],eps.tau)

mu[i , j] <- beta[i,1] + beta[i,2] * (x[j]-11)

}

beta[i,1:2] ~ dmnorm(beta.mu[1:2],iSigma[1:2,1:2])

}

beta.mu[1:2] ~ dmnorm(mean[1:2], prec[1:2, 1:2])

iSigma[1:2, 1:2] ~ dwish(R[1:2, 1:2], r)

Sigma[1:2, 1:2] <- inverse(iSigma[1:2, 1:2])

eps.tau <- exp(logtau)

logtau ~ dflat()

sigma <- 1 / sqrt(eps.tau)

}
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list(x = c(8,10,12,14), N = 11, T = 4,

Y = structure(

.Data = c(21,20,21.5,23,

21,21.5,24,25.5,

20.5,24,24.5,26,

23.5,24.5,25,26.5,

21.5,23,22.5,23.5,

20,21,21,22.5,

21.5,22.5,23,25,

23,23,23.5,24,

20,21,22,21.5,

16.5,19,19,19.5,

24.5,25,28,28),

.Dim = c(11,4)),mean = c(0, 0),r=4,

R = structure(.Data = c(1, 0, 0, 0.1),

.Dim = c(2, 2)),

prec = structure(.Data = c(1.0E-6, 0,0,1.0E-6),

.Dim = c(2, 2))))

list(beta = structure(.Data = c(18,.5,18,.5,18,.5,18,.5,18,.5,18,.5,18,.5,18,

.5,18,.5,18,.5,18,.5), .Dim=c(11,2)), beta.mu = c(18,.5),

iSigma = structure(.Data = c(1, 0, 0, 0.1), .Dim = c(2, 2)), logtau = 0)
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