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Covariance Models for Clustered Data

Whether we take a GEE or LME approach (with inference from the likelihood

or from the posterior) we require flexible yet parsimonious covariance models.

With LME we have so far assumed the model

yi = xiβ + zibi + ǫi, (27)

with bi ∼ind N(0, D) and ǫi ∼ind N(0, Ei), with Ei = Ini
σ2.

With zibi = 1ni
bi we obtained an exchangeable (also known as compound

symmetry):

var(Y i) = σ2

2
666664

1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1

3
777775

This model is particularly appropriate for clustered data with no time ordering

(e.g. ANOVA).
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An obvious extension for longitudinal data is to assume

yi = xiβ + zibi + δi + ǫi,

with:

• Random effects bi ∼ind N(0, D).

• Serial correlation δi ∼ind N(0, Riσ
2
δ ), with Ri an ni × ni correlation

matrix with elements

Rijj′ = corr(Yij , Yij′ |bi),

j, j′ = 1, ..., ni.

• Measurement error ǫi ∼ind N(0, Ini
σ2

ǫ ).

In general it is difficult to identify all three sources of variability – but the

above provides a useful conceptual model.

See DHLZ, Chapter 5; Verbeke and Molenberghs, Chapter 10; Pinheiro and

Bates, Chapter 5.

122



2009 Jon Wakefield, Stat/Biostat 571

Within-Unit Covariance Models

Autoregressive errors

A widely-used time series model is the autoregressive, AR(1), process

δij = ρδi,j−1 + uij , (28)

for j ≥ 2, |ρ| ≤ 1 where uij ∼iid N(0, σ2
u) and are independent of δik, k > 0.

For LMEM we require a likelihood and hence the joint distribution of δi, for

GEE the first two moments.

Repeated application of (28) gives, for k > 0,

δij = uij + ρui,j−1 + ρ2ui,j−2 + ... + ρk−1uj−k+1 + ρkδi,j−k. (29)

Assume the process has been running since j = −∞ and that it is ‘stable’ so

that |ρ| < 1 and the δij all have the same distribution.

Then, from (29)

var(δij) = σ2
u(1 + ρ2 + ρ4 + ... + ρ2(k−1)) + ρ2kvar(δi,j−k).
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As k → ∞, since
P∞

l=1 xl−1 = 1/(1 − x),

var(δij) =
σ2

u

(1 − ρ2)
= σ2

δ ,

and, by substitution of (29),

cov(δij , δi,j−k) = E[δijδi,j−k] =
σ2

uρk

(1 − ρ2)
= σ2

δρk.

Hence under this model we have

Ri =

2
66666664

1 ρ ρ2 ... ρni−1

ρ 1 ρ ... ρni−2

ρ2 ρ 1 ... ρni−3

... ... ... ... ...

ρni−1 ρni−2 ρni−3 ... 1

3
77777775

as the correlation matrix for δi.

Often this model is written in the form

cov(Yij , Yik) = σ2
δ exp(−φdijk),

(ρ = eφ) with dijk = |tij − tik| which is valid for unequally-spaced times also.
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Toeplitz: Banded correlation:

var(Y i) = σ2

2
666664

1 ρ1 ρ2 ρ3

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ3 ρ2 ρ1 1

3
777775

Heterogeneous versions with non-constant variance can also be fitted.

For example, the heterogenenous exchangeable model is given by:

var(Y i) =

2
666664

σ2
1 ρσ1σ2 ρσ1σ3 ρσ1σ4

ρσ2σ1 σ2
2 ρσ2σ3 ρσ2σ4

ρσ3σ1 ρσ3σ2 σ2
3 ρσ3σ4

ρσ4σ1 ρσ4σ2 ρσ4σ3 σ2
4

3
777775

Note that we should be careful when specifying the covariance structure –

identifiability problems may arise if we try to be too flexible.
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Generalized Estimating Equations

We now describe the GEE method of modeling/inference. GEE attempts to

make minimal assumptions about the data-generating process, and is

constructed to answer population-level, rather than individual-level, questions.

We assume

E[Y i] = xiβ,

and consider the ni × ni working variance-covariance matrix:

var(Y i) = W i

with cov(Y i, Y i′ ) = 0 for i 6= i′.

To motivate GEE we begin by assuming that W i is known, and does not

depend on unknown parameters. In this case the GLS estimator minimizes

mX

i=1

(Y i − xiβ)TW−1
i (Y i − xiβ),

and is given by the solution to the estimating function

mX

i=1

xT
i W−1

i (Y i − xiβ)
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The solution is

bβ =

 
mX

i=1

xT
i W−1

i xi

!−1 mX

i=1

xT
i W−1

i Y i.

We have E[bβ] = β, and if the information about β grows with increasing m,

then bβ is consistent.

bβ is a consistent estimator for any fixed W = diag(W1, ..., Wm). The

weighting of observations by the latter dictates the efficiency of the estimator

and not its consistency.

The variance, var(bβ), is given by

 
mX

i=1

xT
i W−1

i xi

!−1 mX

i=1

xT
i W−1

i var(Y i)W
−1
i xi

! 
mX

i=1

xT
i W−1

i xi

!−1

(30)
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If the assumed variance-covariance matrix is substituted, i.e. var(Y i) = W i,

then we obtain the model-based variance:

var(bβ) =

 
mX

i=1

xT
i W−1

i xi

!−1

,

A Gauss-Markov theorem shows that, in this case, the estimator is efficient

amongst linear estimators, if the variance model is correct.

The novelty of GEE is that rather than depend on the variance model being

correct, sandwich estimation is used to repair any deficiency in the working

variance model.
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The GEE Algorithm

We now suppose that var(Y i) = W i(α) where α are unknown parameters in

the variance-covariance model. A common approach is to assume

W i = α1Ri(α2),

where α1 = var(Yij) and Ri(α2) is a working correlation matrix depending on

parameters α2.

There are a number of choices for Ri including independence, exchangeable,

and AR(1) models.

For known α, bβ is the root of the estimating equation

G(β) =
mX

i=1

xT
i W−1

i (α)(Y i − xiβ) = 0. (31)
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When α is unknown we require an estimator bα that converges to “something”

so that, informally speaking, we have a stable weighting matrix, W(bα) in the

estimating function.

The sandwich variance estimator is given by

cvar(bβ) =

 
mX

i=1

xT
i
cW−1

i xi

!−1 mX

i=1

xT
i
cW−1

i var(Y i)cW
−1

i xi

! 
mX

i=1

xT
i
cW−1

i xi

!−1

(32)

where cW i = W i(bα), and with var(Y i) estimated by

(Y i − xi
bβ)(Y i − xi

bβ)T. (33)

This produces a consistent estimate of var(bβ), so long as we have independence

between units, i.e. cov(Y i, Y i′) = 0 for i 6= i′.

It is the replication across units that produces consistency and so the approach

cannot succeed if we have no replication.
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For inference the asymptotic distribution

cvar(bβ)
1/2

(bβ − β) ∼ Nk+1 (0, I) ,

may be used, where we emphasize that the asymptotics are in the number of

units, m.

The variance estimator is sometimes referred to as robust, but empirical is a

more appropriate description since the form is not robust to sample size and

could be highly unstable for small m.

In the most general case we may allow W i(α, β) so that regression parameters

are contained in W i, to allow mean-variance relationships.
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Example

In a longitudinal setting we may have the variance depending on the mean,

µij = E[Yij ], and an autoregressive model:

var(Yij = α1µ2
ij

cov(Yij , Yik = α1α
|tij−tik|

2 µijµik

cov(Yij , Yi′k) = 0, i 6= i′

with j = 1, ..., ni, k = 1, ..., ni′ , and where tij is the time associated with Yij .

Here

• α1 is the variance (which is assumed constant across time and across

individuals),

• α2 is the correlation between responses on the same individual (which is

assumed to be the same across individuals), and

• α = (α1, α2).
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In general the roots of the estimating equation

mX

i=1

xT
i W−1

i (α, β)(Y i − xiβ) = 0. (34)

are not available in closed form because β occurs in W .

We can write the (k + 1) × 1 estimating function in a variety of forms, for

example:

xTW−1(Y − xβ)
mX

i=1

xT
i W−1

i (Y i − xiβ)

mX

i=1

niX

j=1

niX

k=1

xijW jk
i (Yik − xikβ)

where W ij
i denotes entry (i, j) of the inverse W i. We use the middle form

since this emphasizes that the basic unit of replication is indexed by i.
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Relationship to the LMEM:

• The GEE approach is constructed to carry out marginal inference, and so

individual-level inference cannot be performed.

• For a linear model marginalizing a LMEM produces a marginal model

identical to that used in a GEE approach.

• For the LMEM sandwich estimation may of course be applied to the MLE

of β.
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So far as the choice of “working” correlation structure is concerned, the

trade-off is between choosing a simple structure for which there are few

elements in α to estimate, and a more complex model that will provide more

efficient estimation of β if the variance model is closer to the true data

generating mechanism but more instability in estimation of α.

To summarize, the GEE approach to modeling/estimation consists of:

1. A mean model E[Y i] = xiβ.

2. A working variance model var(Y i) = W i(α).

3. From 1. and 2. an estimating function is constructed, and sandwich

estimation is applied to the variance of the resultant estimator.
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Estimation of Variance Parameters

To formalize the estimation of α, we may introduce a second estimating

equation. In the context of data with var(Yij) ∝ v(µij), with µij = E[Yij ], the

pair of estimating equations are given by:

G1(β, α) =
mX

i=1

xT
i W−1

i (Y i − xiβ)

G2(β, α) =
mX

i=1

ET
i H−1

i (T i − Σi)

where

• the “data” in the second estimating equation are given by

TT
i = (Ri1Ri2, ..., Rini−1Rini

, R2
i1, ..., R2

ini
),

with Rij = {Yij − µij}/v(µij)
1/2,

• Σi(α) = E[T i] is a model for the correlations and variances for these

standardized residuals,

• Ei = ∂Σi

∂α
, and

• Hi = cov(T i) is the working covariance model for the squared and cross

residual terms.
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Recall that dim(β) = k + 1 so that the estimating equation G1 is of dimension

(k + 1) × 1 with k + 1 = dim(β), and G2 is of dimension a × 1 where

a = dim(α).

The vector T i has ni(ni − 1)/2 + ni elements in general. It is not

straightforward to specify a working covariance model Hi for T i and

independence is often assumed.

If G2 is correctly specified then there will be efficiency gains.

A further advantage of this method is that it is straightforward to incorporate

a regression model for the variance-covariance parameters, i.e. α = g(x), for

some link function g(·).
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If E[T ] 6= Σ then we will not get a consistent estimate of the true variance

model but, importantly, consistency of β through G1 is guaranteed, so long as

bα converges to “something”.

We reiterate that a consistent estimate of var(bβ) is guaranteed through the use

of sandwich estimation, so long as units are independent.

For general H we will require the estimation of fourth order statistics,

i.e. var(T ), which is a highly unstable endeavor unless we have an abundance of

data.

For this reason, working independence, Hi = I, is often used.
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Example

As an illustration of the approach assume for simplicity ni = n = 3 so that

TT
i = [Ri1Ri2 Ri1Ri3 Ri2Ri3 R2

i1 R2
i2 R2

i3]

with an exchangeable variance model:

Σi(α)T = E[TT
i ] = [α1α2 α1α2 α1α2 α1 α1 α1]

so that α1 is the marginal variance, and α2 is the correlation on observations

on the same unit.

With Hi = I, a working independence model for the variance parmaters, the

estimating function for α is

G2(bβ, α) =

mX

i=1

2
4 α2 α2 α2 1 1 1

α1 α1 α1 0 0 0

3
5

0
BBBBBBBBBB@

2
66666666664

Ri1Ri2

Ri1Ri3

Ri2Ri3

R2
i1

R2
i2

R2
i3

3
77777777775

−

2
66666666664

α1α2

α1α2

α1α2

α1

α1

α1

3
77777777775

1
CCCCCCCCCCA
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Hence we need to simultaneously solve the two equations:

mX

i=1

bα2

2
4X

j<k

RijRik − bα1bα2

3
5+

3X

j=1

(R2
ij − bα1) = 0

mX

i=1

bα1

2
4X

j<k

RijRik − bα1bα2

3
5 = 0

Dividing the second of these by bα1 gives

bα1bα2 =
1

3m

mX

i=1

X

j<k

RijRik

and substituting this into the first equation gives

bα1 =
1

3m

mX

i=1

X

j<k

R2
ij

to give a pair of method-of-moment estimators.
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In general iteration is needed to simultaneously estimate β and α. Let bα(0) be

an initial estimate, then set t = 0 and iterate between

1. Solve G(bβ, bα(t)) = 0, with G given by (31), to give bβ(t+1)
,

2. Estimate bα(t+1) based on bβ(t+1)
.

Set t → t + 1 and return to 1.
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Dental Example

Look at various estimators of β for girls only. Note here that we might question

the asymptotics for GEE since we only have replication across m = 11 units

(girls) (check with simulation – see coursework).

Start with ordinary least squares – unbiased estimator for β, but standard

errors are wrong because independence is assumed.

> summary(lm(distance~age,data=Orthgirl))

Call:

lm(formula = distance ~ age, data = Orthgirl)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.3727 1.6378 10.608 1.87e-13 ***

age 0.4795 0.1459 3.287 0.00205 **

Residual standard error: 2.164 on 42 degrees of freedom

Multiple R-Squared: 0.2046, Adjusted R-squared: 0.1856

F-statistic: 10.8 on 1 and 42 DF, p-value: 0.002053
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Now implement GEE with working independence – the following is an R

implementation.

> library(nlme); data(Orthodont); Orthgirl <- Orthodont[Orthodont$Sex=="Female",]

> install.packages("geepack")

> library(geepack)

> summary(geese(distance~age,id=Subject,data=Orthgirl,corstr="independence"))

Call:

geese(formula = distance ~ age, id = Subject, data = Orthgirl,corstr = "independence")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.3727273 0.7819784 493.56737 0.000000e+00

age 0.4795455 0.0666386 51.78547 6.190604e-13

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 4.470403 1.373115 10.59936 0.001131270

Correlation Model:

Correlation Structure: independence

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4
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Next we examine an exchangeable correlation structure in which all pairs of

observations on the same unit have a common correlation:

> summary(geese(distance~age,id=Subject,data=Orthgirl,corstr="exchangeable"))

geese(formula = distance ~ age, id = Subject, data = Orthgirl,

corstr = "exchangeable")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.3727273 0.7819784 493.56737 0.000000e+00

age 0.4795455 0.0666386 51.78547 6.190604e-13

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 4.470403 1.373115 10.59936 0.001131270

Correlation Model:

Correlation Structure: exchangeable

Correlation Link: identity

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.8680178 0.1139327 58.04444 2.564615e-14

Number of clusters: 11 Maximum cluster size: 4
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Notes:

• Independence estimates are always identical to OLS because we have

assumed working independence, which means that the estimating equation

is the same as the normal equations.

• Standard error for β1 is smaller with GEE because regressor (time) is

changing within an individual.

• Here we obtain the same estimates for exchangeable as working

independence but only because balanced and complete (i.e. no missing)

data.
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Finally we look at AR(1) and unstructured errors – this time we see slight
differences in estimates and standard errors.

> summary(geese(distance~age,id=Subject,data=Orthgirl,corstr="ar1"))

geese(formula = distance ~ age, id = Subject, data = Orthgirl, corstr = "ar1")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.3049830 0.85201953 412.51833 0.000000e+00

age 0.4848065 0.06881228 49.63692 1.849965e-12

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 4.470639 1.341802 11.101 0.0008628115

Correlation Model:

Correlation Structure: ar1

Correlation Link: identity

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.9298023 0.07164198 168.4403 0

Number of clusters: 11 Maximum cluster size: 4
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Now delete last two observations from girl 11 to illustrate that identical
answers before were consequence of balance and completeness of data.

> Orthgirl2<-Orthgirl[1:42,]

> summary(lm(distance~age,data=Orthgirl2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.0713 1.5102 11.966 8.56e-15 ***

age 0.3963 0.1357 2.921 0.00571 **

Residual standard error: 1.964 on 40 degrees of freedom

> summary(geese(distance~age,id=Subject,data=Orthgirl2,

corstr="independence"))

Coefficients:

estimate san.se wald p

(Intercept) 18.0713312 0.82603439 478.61250 0.000000e+00

age 0.3962971 0.06934195 32.66253 1.096304e-08

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 3.674926 1.317669 7.778294 0.005287771

Correlation Model:

Correlation Structure: independence

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4

147

2009 Jon Wakefield, Stat/Biostat 571

> summary(geese(distance~age,id=Subject,data=Orthgirl2,corstr="exchangeable"))

Call:

geese(formula = distance ~ age, id = Subject, data = Orthgirl2,

corstr = "exchangeable")

Mean Model:

Mean Link: identity

Variance to Mean Relation: gaussian

Coefficients:

estimate san.se wald p

(Intercept) 17.6050097 0.79007168 496.52320 0.000000e+00

age 0.4510122 0.06641218 46.11913 1.112765e-11

Scale Model:

Scale Link: identity

Estimated Scale Parameters:

estimate san.se wald p

(Intercept) 3.706854 1.320019 7.88589 0.004982194

Correlation Model:

Correlation Structure: exchangeable

Correlation Link: identity

Estimated Correlation Parameters:

estimate san.se wald p

alpha 0.7968515 0.09367467 72.36198 0

Returned Error Value: 0

Number of clusters: 11 Maximum cluster size: 4
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Comparison of Analyses

In Table 6 summaries are presented under likelihood, Bayesian and GEE

analyses.

Two Bayesian models were fitted, a normal model:

βi | β, D ∼iid N(β, D), var(βi | β, D) = D

D−1 ∼ W(r, R−1), E[var(βi | β, D)] =
R

r − 3

R =

"
1.0 0

0 0.1

#
, r = 4

and a Student t4 model:

βi | β, D ∼iid St4(β, D), var(βi | β, D) = 2D

D−1 ∼ W(r, R−1
t ), E[var(βi | β, D)] = 2

Rt

r − 3

Rt =

"
0.5 0

0 0.05

#
, r = 4
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Approach bβ0 s.e.(bβ0) bβ1 s.e.(bβ1)

LMEM ML 22.65 0.62 0.480 0.065

LMEM REML 22.65 0.63 0.479 0.066

Bayes Normal 22.65 0.60 0.479 0.075

Bayes t4 22.65 0.58 0.475 0.073

GEE Independence 22.65 0.55 0.480 0.067

GEE AR(1) 22.64 0.58 0.485 0.069

Table 6: Summaries for fixed effects.

• Overall, the analyses are in good correspondence.
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Approach cvar(β0i) cvar(β1i) dcorr(β0i, β1i) bσǫ

LMEM ML 1.98 0.15 0.55 0.67

LMEM REML 2.08 0.16 0.53 0.67

Bayes Normal 1.93 (1.29,2.96) 0.18 (0.10,0.31) 0.39 (-0.32,0.85) 0.70 (0.52,0.93)

Bayes t4 2.06 (1.18,3.46) 0.20 (0.11,0.35) 0.42 (-0.34,0.88) 0.71 (0.54,0.95)

Table 7: Summaries for variance components.

GEE with working independence gives α1 = 4.47.

GEE with working AR(1) gives α1 = 4.47, α2 = 0.93.

The parameterization adopted for the linear model changes the interpretation

of D. For example:

Model 1: (β0 + b0i) + (β1 + b1i)tj , bi ∼ N(0, D).

Model 2: (γ0 + b⋆
0i) + (γ1 + b⋆

1i)(tj − t), b⋆
i ∼ N(0, D⋆).

Giving β0 = γ0 − γ1t, β1 = γ1.

b0i = b⋆
0i − tb⋆

1i, b1i = b⋆
1i.

Moral: D 6= D⋆; D00 = D⋆
00 − 2tD⋆

01 + t
2
D⋆

11, D01 = D⋆
01 − tD11, D11 = D⋆

11.
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Assessment of Assumptions

Each of the approaches to modeling that we have described depend upon

assumptions concerning the structure of the data; to ensure that inference is

appropriate we need to attempt to check that these assumptions are valid.

We first recap the assumptions:

GEE

Model:

Y i = xiβ + ei,

with working covariance model var(ei) = W i(α), i = 1, ..., m.

G1 Marginal model E[Y i] = xiβ is appropriate.

G2 m is sufficiently large for asymptotic inference to be appropriate.

G3 m is sufficiently large for robust estimation of standard errors.

G4 The working covariance W i(α) is not far from the “true” covariance

structure; if this is the case then the analysis will be very inefficient

(standard errors will be much bigger than they need to be).

152



2009 Jon Wakefield, Stat/Biostat 571

LMEM via Likelihood Inference

Model:

Y i = xiβ + zibi + ǫi,

with bi ∼ N(0, D), ǫi ∼ N(0, Ei), bi and ǫi independent (Ei may have

complex structure depending on both independent and dependent terms),

i = 1, ..., m.

L1 Mean model for fixed effects xiβ is appropriate.

L2 Mean model for random effects zibi is appropriate.

L3 Variance model for ǫi is correct.

L4 Variance model for bi is correct.

L5 Normality of ǫi.

L6 Normality of bi.

L7 m is sufficiently large for asymptotic inference to be appropriate.

LMEM via Bayesian Inference

Model as for LMEM, plus priors for β and α.

Each of L1–L6 (asymptotic inference is not required if, for example, MCMC is

used, though “appropriate” priors are needed).
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Overall strategy

Before any formal modeling is carried out the data should be examined, in

table and plot form, to see if the data have been correctly read in and to see if

there are outliers.

For those individuals with sufficient data, individual-specific models should also

be fitted, to allow examination of the appropriateness of initially hypothesized

models in terms of the:

• linear component (which covariates, including transformations and

interactions),

• and assumptions about the errors, such as constant variance and serial

correlation.

Following fitting of marginal, mixed models, the assumptions should then be

re-assessed, primarily through residual analysis.
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Residual Analysis

Residuals may be defined with respect to different levels of the model.

A vector of unstandardized population-level (marginal) residuals is given by

ei = Y i − xiβ.

A vector of unstandardized unit-level (Stage One) residuals is given by

ǫi = Y i − xiβ − zibi.

The vector of random effects, bi, is also a form of (Stage Two) residual.

Estimated versions of these residuals are given by

bei = Y i − xi
bβ

bǫi = Y i − xi
bβ − zi

bbi

and bbi, i = 1, ..., m.

Recall from consideration of the ordinary linear model that estimated residuals

have dependencies induced by the estimation procedure; in the dependent data

context the situation is much worse as the “true” residuals have dependencies

due to the dependent error terms of the models used.

Hence standardization is essential to remove the dependence.
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Standardized Population Residuals

If V i(α) is the true error structure then

var(ei) = V i, and var(bei) ≈ V i(bα),

so that the residuals are dependent under the model, which means that it is not

possible to check whether the covariance model is correctly specified (both form

of the correlation structure and mean-variance model).

Plotting beij versus xij may also be misleading due to the dependence within

the residuals.

As an alternative, let bV i = LiL
T
i be the Cholesky decomposition of

bV i = V i(bα), the estimated variance-covariance matrix.
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We can use this decomposition to form

be⋆
i = L−1

i bei = L−1
i (Y i − xi

bβ).

so that var(e⋆
i ) ≈ Ini

. We have the model

Y ⋆
i = x⋆

i β + e⋆
i

where Y ⋆
i = L−1

i Y i, x⋆
i = L−1

i xi, e⋆
i = L−1

i ei.

Hence plots of be⋆
ij against columns of x⋆

ij should not show systematic patterns,

if the assumed form is correct.

QQ plots of be⋆
ij versus the expected residuals from a normal distribution can be

used to assess normality (normal residuals are not required for GEE, but will

help asymptotics).

Unstandardized versions will still be normally distributed if the ei are (since

the e⋆
ij are linear combinations of ei), though the variances may be

non-constant, and there may be strong dependence between different points.

The correctness of the mean-variance relationship can be assessed via

examination of e⋆2
ij versus bµ⋆

ij = x⋆
ij
bβ.

Local smoothers can be added to plots to aid interpretation. Plotting symbols

also useful – unit number, or observation number.
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Stage One Residuals

If ǫi ∼ N(0, σ2
i Ini

) then residuals

bǫi = Y i − xi
bβ − zi

bbi

may be formed. Standardized versions are given by bǫi/bσi.

The standardized versions should be used if the σi are unequal across i. Some

uses:

• Plot residuals against covariates. Departures may suggest adding in

covariates, both to xi and zi.

• To provide QQ plots – mean-variance relationship is more important to

detect than lack of normality (so long as sample size is not small).

• assess constant variance assumption – one useful plot is (bǫi/bσi)
2 versus

bµij = xij
bβ + zij

bbi.

• assess if serial correlation present in residuals

may be plotted against covariates to assess the form of the model, with QQ

plots assessing normality of the measurement errors.

If ǫi ∼ N(0, σ2
ǫ Ri) with Ri a correlation matrix then the residuals should be

standardized, as with population residuals.
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Stage Two Residuals

Predictions of the random effects bbi may be used to assess assumptions

associated with the random effects distribution, in particular:

• Are the random effects normally distributed?

• If we have assumed independence between random effects, does this appear

reasonable?

• Is the variance of the random effects independent of covariates xi?

It should be born in mind that interpretation of random effects predictions is

more difficult since they are functions of the data.

Recall that bbi are shrinkage estimators, and hence assumptions about bi may

not be reflected in bbi.

We may fit curves for particular individuals with ni large, and then check the

assumptions from these.

For the LMEM it is better to examine first and second stage residuals –

population residuals are a mixture so if something wrong not clear at which

stage there is trouble.
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Assessing Adequacy of the Temporal Covariance Structure

An informal method for assessing whether there is residual temporal

dependence is to plot residuals versus time, we now consider more formal tools

such as the correlgram and the variogram.

We begin with some definitions.

Consider a stochastic process Y (t) and let

γ(t, s) = cov{Y (t), Y (s)} = E[{Y (t) − µ(t)}{Y (s) − µ(s)}],

denote the autocovariance function of Y (t).

The term serial dependence signifies that there is dependence between Y (t) and

Y (s) for at least some pairs (s, t) with s 6= t.
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We write

Y (t) = µ(t) + e(t),

where µ(t) is the deterministic trend component.

Definition: A process e(t) is second-order stationary if E[e(t)] is constant, for

all t, and γ(t, s) depends only on |t − s|. For a residual process any non-zero

constant has been absorbed into µ(t).

Example: The simplest example of a stationary random sequence is white noise

which consists of a sequence of mutually independent random variables, each

with mean 0 and finite variance σ2.

There is a fundamental difficulty with trying to decompose Y (t) into the trend

and the stochastic component in a single series because the two are

unidentifiable without further assumptions.

Is it serial dependence in the residuals, or a high-order polynomial trend for

example?
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The Autocorrelation Function

For a second-order stationary random process, the autocovariance function is

cov{Y (t), Y (t + u)} = cov{e(t), e(t + u)},

so that C(0) is the variance of Y (t) for all t.

The autocorrelation function is defined as

ρ(u) =
C(u)

C(0)
.

For equally-spaced data we could fit a model and then examine the

autocorrelation function (ACF) of the residuals,

et =
yt − byt

cvar(Yt)1/2
.
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Consider a stochastic process e(t), and realizations et, t = 1, ..., n. The

emprical autocorrelation is defined as

bρ(u) = dcorr{e(t), e(t + u)} =

Pn−u
t=1 etet+u/(n − u)Pn

t=1 e2
t /n

,

for u = 0, 1, ....

A correlogram plot is bρ(u) versus u. If the residuals are a white noise process,

we have the asymptotic result

√
n bρ(u) →d N(0, 1),

for u = 1, 2, ..., to give confidence bands ±1.96/
√

n.
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The Variogram

For unequally-spaced data the ACF is not so convenient, unless we round the

observations.

An alternative is provided by the semi-variogram which is defined, for a process

et and d ≥ 0.

γ(d) =
1

2
var (et − et−d) =

1

2
E
h
{et − et−d}2

i
.

Recall that for a second-order stationary process, E[et] = µ for all t and

cov(et, et−d) only depends on the distance d (which implies constant variance).

A smooth process is L2-continuous, i.e.

E{(et − et−d)2} → 0

as d → 0. For a second-order stationary smooth process

γ(d) =
1

2

˘
E[e2

t ] + E[e2
t−d] − 2E[etet−d]

¯

= σ2
e{1 − ρ(d)},

where var(e) = σ2
e .
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The semi-variogram is also well-defined for an intrinsically stationary process

for which E[et] = µ and for which

E[(et − et−d)2] = 2γ(d).

As d increases then for observatons far apart in time

γ(d) → var(et) = σ2
e ,

which (recall) is assumed constant.

Consider measurement error, ǫt with E[ǫt] = 0, var(ǫt) = σ2
ǫ , and

Yt = µt + et + ǫt,

so that we no longer have a smooth process. Then

γ(d) =
1

2
E
h
{Yt − Yt−d}2

i
= σ2

e{1 − ρ(d)} + σ2
ǫ ,

and we have a “nugget” effect σ2
ǫ .
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The Variogram in Longitudinal Data Analysis

Define the semi-variogram of the population residuals, eij = Yij − xijβ, as

γi(dijk) =
1

2
E
h
{eij − eik}2

i
,

for dijk =| tij − tik |≥ 0. We emphasize that we are examining differences on

the same individual.

The sample semi-variogram uses the empirical halved differences between pairs

of population residuals

vijk =
1

2
(eij − eik)2,

along with the spacings uijk = tij − tik.

With highly-irregular sampling times the variogram can be estimated from the

pairs (uijk, vijk), i = 1, ..., m, j < k = 1, ..., ni, with the resultant plot being

smoothed.
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The marginal distribution of each vijk is χ2
1, and this large variability can make

the variogram difficult to interpret.

The total variance is estimated as the average of 1
2
(eij − elk)2, for i 6= l, since

1

2
E
ˆ
(eij − elk)2

˜
=

1

2

˘
E[e2

ij ] + E[e2
lk]
¯

= σ2,

assuming that observations on different individuals are independent (and the

variance is constant over time, and for different individuals).

Consider the interpretation of the variogram for the model

Yij = xijβ + bi + δij + ǫij ,

where bi ∼ind N(0, σ2
0) (note, univariate), ǫij ∼ind N(0, σ2

ǫ ), and δij represent

error terms with serial dependence.

A simple and commonly-used form for serial dependence is the AR(1) model

given by

cov(δij , δik) = σ2
δρ|tij−tik|.

Under this model

var(Yij |β) = σ2 = σ2
0 + σ2

δ + σ2
ǫ .

167

2009 Jon Wakefield, Stat/Biostat 571

Consider the theoretical variogram for the residuals

eij = Yij − xijβ = bi + δij + ǫij ,

i = 1, ..., m; j = 1, ...ni, with the AR(1) model.

For differences in residuals on the same individual

eij − eik = bi + δij + ǫij − bi − δik − ǫik = δij + ǫij − δik − ǫik,

and so

γi(dijk) =
1

2
E
ˆ
(eij − eik)2

˜
= σ2

δ (1 − ρdijk ) + σ2
ǫ . (35)

As dijk → 0, γi(dijk) → σ2
ǫ and bi is the mean of eij and so its variance does

not appear in (35).

Figure 9 shows the theoretical semi-variogram under this model and for the

population residuals.
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The variogram is limited in its use for population residuals for the LMEM, as

we now illustrate.

Consider, the mixed effects model with random intercepts and independent

random slopes:

bi0 ∼ N(0, D0), bi1 ∼ N(0, D1)

leads to non-constant marginal variance

var(Yij |β) = σ2
ǫ + D0 + D1t2ij ,

so that we would not want to look at a variogram of population residuals

because we do not have second-order stationarity. However, we could look at

individual residuals after the random intercepts and slopes model has been

fitted.

In my experience the variogram is often dominated by sampling variability

(and there can be strong dependence in the plot since each residual contributes

many points).
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Figure 9: Theoretical variogram for a model with a random intercept, serial

correlation, and measurement error.
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Example: FEV1 over Time

Data Description

We examine data from an epidemiological study described by van der Lende

(1981). We analyze a sample of 133 men and women. Study participants were

followed over time to obtain information on the prevalence of, and risk factors

for, chronic obstructive lung diseases.

The sample, initially aged 15-44, participated in follow-up surveys

approximately every 3 years for up to 21 years.

At each survey, information on respiratory symptoms and smoking status was

collected by questionnaire and spirometry was performed.

Pulmonary function was measured by spirometry and a measure of forced

expiratory volume (FEV1) was obtained every three years for the first 15 years

of the study, and also at year 19.

Each study participant was either a current or a former smoker, with current

smoking defined as smoking at least one cigarette per day.
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Missing Data

In this dataset FEV1 was not recorded for every subject at each of the planned

measurement occasions so that the number of repeated measurements of FEV1

on each subject varied between 1 and 7.

Table 8 shows the numbers of observations available at each time point. There

are 32 former smokers and 101 current smokers in total, and we see that the

numbers with missing observations at each time point are not drastically

different. Hopefully this means that the missingness does not depend on the

unobserved FEV1 at these time points.

Time Former smoker Current smoker

0 3.52 (23) 3.23 (85)

3 3.58 (27) 3.12 (95)

6 3.26 (28) 3.09 (89)

9 3.17 (30) 2.87 (85)

12 3.14 (29) 2.80 (81)

15 2.87 (24) 2.68 (73)

19 2.91 (28) 2.50 (74)

Table 8: Mean FEV1 (and sample size) by smoking status and time.
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Initial Plots
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Figure 10: Mean FEV1 profiles versus time for 133 individuals: clear that there

is a difference in the overall level, with former smokers having a higher level.
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Figure 11: FEV1 versus time for 133 individuals, former smokers coded 0, current

smokers 1. Large between-person variability in levels. It is clear that observations

on the same individual will be correlated.
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Models

Let Yij represent the FEV1 on individual i at time (from baseline) tij (in

years), and Si the smoking status with 0 representing former smoker and 1

current smoker.

We initially fit the following three models using REML:

Yij = β0 + β1tij + bi + ǫij (36)

Yij = β0 + β1tij + β2Si + bi + ǫij (37)

Yij = β0 + β1tij + β2Si + β3Si × tij + bi + ǫij (38)

with bi ∼iid N(0, σ2
0) and ǫij ∼iid N(0, σ2

ǫ ), and with ǫij and bi independent,

i = 1, ..., m, j = 1, ..., ni.
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Parameter Estimates

Compared to the equivalent LMEM the standard errors of the LS estimates

corresponding to time-varying covariates (time and the interaction) are reduced

in the LMEMs. This behavior occurs because within-person comparisons are

more efficient in a longitudinal study.

Model β1 (Time) s.e. β2 (Smoke) s.e. β3 (Inter) s.e.

LMEM TIME -0.037 0.0013 – – – –

LMEM TIME+SMOKE -0.037 0.0013 -0.31 0.11 – –

LMEM TIME × SMOKE -0.034 0.0026 -0.27 0.11 -0.0046 0.0030

LS TIME × SMOKE -0.038 0.0067 -0.31 0.085 -0.00041 0.0077

Table 9: Results of a least squares fit (LS) and various linear mixed effects model

(LMEM) analyses.
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Fixed Effect Testing

To illustrate how one may test between the three LMEMs in Table 9 we must

use MLE for likelihood ratio tests since the data are not constant under the

different models under REML (due to different bβG).

For

H0 : TIME versus H1 : TIME+SMOKE

we have a statistic of 8.22 on 1 degree of freedom and a p-value of 0.0042.

Hence there is strong evidence to reject the null and conclude that there are

differences in intercepts for former and current smokers.

For

H0 : TIME+SMOKE versus H1 : TIME+SMOKE+TIME×SMOKE

we have a statistic of 2.29 on 1 degree of freedom and a p-value of 0.13, hence

there is no evidence to reject the null and conclude that the interaction is not

needed.
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Bayesian and GEE Analyses

We now report a Bayesian analysis of model (37) with improper flat priors on

β0, β1, β2, the improper prior σ2
ǫ ∝ 1

σ2
ǫ

and σ−2
0 ∼ Ga(0.5, 0.02). The latter

prior gives 95% of its mass for σ0, the between-individual slope, between 0.09

and 6.5.

The results are given in Table 10, and are very similar to the likelihood-based

approach, which is reassuring.

We now fit the marginal model version of (37) using GEE. We use an

exchangeable correlation structure, since clearly we have dependence between

measurements on the same individual at different times, but the exact form of

the correlation is not clear.

The results are given in Table 10, and again show good agreement for the

regression coefficients.

In the exchangeable correlation structure there are two components to α

parameters, a marginal variance, α1, and a common marginal correlation, α2.
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The exchangeable model may be compared to the random intercepts model in

which we have marginal variance α1 = σ2
0 + σ2

ǫ and marginal correlation

α2 = σ2
0/(σ2

0 + σ2
ǫ ).

We have bα1 = 0.31, bα2 = 0.82 which gives
√
bα1 × bα2 = 0.50, which is

comparable to the estimates of σ0 in Table 10.

Model β1 (Time) s.e. β2 (Smoke) s.e. σ0

Likelihood LMEM -0.037 0.0013 -0.32 0.11 0.53

Bayes LMEM -0.037 0.0013 -0.31 0.12 0.53

GEE -0.037 0.0015 -0.31 0.11 –

Likelihood LMEM AR(1) -0.037 0.0013 -0.31 0.11 0.53

Table 10: Results of linear mixed effects models (likelihood and Bayesian) and

GEE analyses.
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Assessment of Assumptions

We examine the assumptions for the linear model that includes time and

smoking (but no interaction).

Figure 12 summarizes the Stage One residuals: the top left panel shows that the

distribution of the errors is symmetric, but heavier tailed than normal — with

such a large sample there is nothing troubling in this plot. No outlying points.

The next two figures plot the residuals against time and smoking status. We

see no nonlinear behavior in the time plot, and no great divergence from

constant variance in either plot.

A very important assumption in mixed effects modeling is that the random

effects distribution do not depend on covariates. To examine this separate

analyses were carried out for former and current smokers. The estimates for

former smokers were bσǫ = 0.22, bσ0 = 0.58, and for current smokers

bσǫ = 0.21, bσ0 = 0.51. The differences between the two groups are small and we

conclude that there is no evidence against a common distribution.

The final plot is the absolute value of the residuals versus fitted values with a

smoother. There is slight evidence of an increase but nothing to be too

concerned about. These residual plots were based on residuals from the

likelihood analysis, Bayesian versions were similar.
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Figure 12: First stage residual plots.
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For the 132 individuals who produce individual least squares fits, Figure 13

shows a QQ plot of the (a) intercepts, and (b) slopes, and (c) a bivariate

scatter plot. The estimates look remarkably normal, and there are no outlying

individuals.

Figure 14 gives boxplots of the LS estimates of (a) intercepts and (b) slopes

versus smoking status. There is no evidence of a great difference in spread

between former and current smokers.
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Figure 13: Second stage least squares estimate plots.
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Figure 14: Least squares estimates of intercepts (left) and slopes (right) versus

smoking status.
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Figure 15: Semi-variogram of first stage residuals.
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Finally we examine the residuals for serial correlation.

Figure 15 gives the semi-variogram of the first-stage residuals and indicates

some dependence. Consequently, we fit an AR(1) model for the residuals using

restricted likelihood and obtain the parameter estimates in the last row of

Table 10.

This model is a significant improvement over the non-serial correlation model

(as measured by a likelihood ratio test, p = 0.0002). However, there is virtually

no change in the estimates/standard errors here since the AR correlation

parameter is just 0.20, with an asymptotic 95% confidence interval of

(0.087,0.30).

We may also examine whether random slopes are required. Fitting this model

via restricted likelihood gave a standard deviation of bσ1 = 0.0099.

The likelihood ratio statistic testing for correlated random intercepts and

slopes, versus random intercepts only is 10.9 which is significant at around the

0.0025 (where the distribution under the null is a mixture of χ2
1 and χ2

2

distributions).
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Conclusions

Inference under either the random intercept or random intercepts and slopes

models is relatively similar since although the random slopes model is a

statistical improvement over the random intercepts only, the

between-individual variability in slopes is small.

The population change in FEV1 over time is a drop of 0.037 litres per year,

with a standard error of 0.0013–0.0015 depending on the model.

The median for the intra-person correlation is 0.84 with 95% interval

(0.82,0.89) suggesting that the majority of the variability is between-person.
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Stochastic Covariates

In some longitudinal situations, the response at time t on individual i may

depend on not just the current covariates, but also previous values.

For example, in an investigation into the health effects of recent air pollution

we may believe that the response depends on not just today’s exposure, but

also the preceeding days.

In such situations, obtaining the correct form of the model will in general be

difficult, and instead we might decide to estimate the association for a simpler

model.

As an example, suppose that we have a single covariate, and we decide to

examine the cross-sectional association:

µij = E[Yij | Xij ]. (39)

In such a situation great care must be taken to obtain a consistent estimator.

We demonstrate with a GEE approach, though the pitfalls of estimation apply

equally to likelihood and Bayesian approaches.
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Example

Suppose the “true” model is given by:

E[Yit|Xit, Xit−1] = γ0 + γ1Xit + γ2Xit−1

Xit = ρXit−1 + ǫit

with |ρ| < 1. For example Xit may represent an air pollutant on day t, and Yit

a measure of an individual’s lung function.

We may be interested in the cross-sectional effect of the pollutant, e.g. suppose

we have data on Xit only. We have

E[Yit|Xit] = β0 + β1Xit

where β0 = γ0 and β1 = γ1 + ργ2.
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Estimation for Stochastic Covariate Situations

The full covariate conditional mean (FCCM) condition is given by

µit ≡ E[Yit|Xit] = E[Yit|Xi1, Xi2, ..., XiT ]

and if true gives an unbiased GEE estimating equation, as we now illustrate.

In the example we just described the FCCM condition was not satisfied.

With a GLM:

ηij = g(µij) = xijβ,

and assume for simplicity β = (β0, β1)T. The generalized estimating function is

given by

G(β) =
mX

i=1

DT
i W−1

i (Y i − µi)

which has second row

G2(β) =
mX

i=1

2
4

niX

j=1

niX

k=1

XijW ⋆
ijk(Yik − µik)

3
5

where (39) is the assumed model, i.e. µik = E[Yij | Xik], and W ⋆
ijk =

∂µij

∂ηij
W jk

i

with W jk
i the (j, k)-th element of W−1

i .
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To obtain consistency we require

E[G(β)] = 0.

Previously we have seen that if the mean specification is correct then we obtain

consistency of bβ.

Since now the estimating function depends on the random variables

X = (X1, ..., Xm)T the expectation is with respect to X and Y . Specifically

EY,X [G2(β)] =
mX

i=1

EYi,Xi

2
4

niX

j=1

niX

k=1

XijW ⋆
ijk(Yik − µik)

3
5

and

EYi,Xi

h
XijW ⋆

ijk(Yik − µik)
i

= EXi

n
EYi|Xi

[XijW ⋆
ijk(Yik − µik)

i

= EXi

n
XijW ⋆

ijk(E
ˆ
Yik | Xi1, ..., Xini

˜
− µik)

o

Hence to ensure an unbiased estimating function, in general, and hence

consistency of our estimator, we require the FCCM condition:

E
ˆ
Yik | Xi1, ..., Xini

˜
= µik = E[Yik | Xik],

otherwise we have bias.
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Suppose we assume working independence, the above simplifies to

G2(β) =
mX

i=1

niX

j=1

XijW ⋆
ijj(Yij − µij),

so that

E[G(β)] =
mX

i=1

niX

j=1

EXij

ˆ
XijW ⋆

ijj(E[Yij | Xij ] − µij)
˜

= 0,

and we obtain a consistent estimator.

For more details see DHLZ, Section 12.3.1.
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Cross-Sectional Versus Longitudinal Studies

Consider modeling Y = FEV1 as a function of age. We might envisage that Y

changes both with age within an individual, and that individuals may have

different baseline levels of Y from which they begin, due to “cohort” effects. A

birth cohort is a group of individuals who were born in the same year.

Cohort effects include the effects of environmental pollutants, and differences in

lifestyle choices and medical treatment.

In a cross-sectional study a group of individuals are measured at a single time

point. A great advantage of longitudinal studies, over cross-sectional studies is

that both cohort and aging effects can be estimated.
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As an illustration Figure 16 shows three hypothetical individuals outcome

trajectory over calendar time — the starting positions are different due to

cohort effects.

1970 1975 1980 1985 1990 1995 2000

295
300

305
310

calendar year

y

Cohort 1
Cohort 2
Cohort 3

Figure 16: Three individual’s trajectories over time.
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Figure 17 shows the same individuals but with trajectories plotted versus age,

and the cross-sectional association, which would resolve from observing the

final measurement only, highlighted.

40 45 50 55 60 65 70

295
300

305
310

age (years)

y

Cross−sectional 

Figure 17: Relationship between cross-sectional and longitudinal effects in hy-

pothetical example with three individuals.
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To illustrate, consider the model:

E[Yij | xij , xi1] = β0 + βCxi1 + βL(xij − xi1)

where Yij is the j-th FEV1 measurement on individual i and xij is the age of

the individual when that measurement was taken, with xi1 begin the age on a

certain day (so that all the individuals are comparable).

Parameter interpretation

We have

E[Yi1 | xi1] = β0 + βCxi1,

so that βC is the average change in Y between two populations who differ by

one unit in their baseline ages; said another way we are examining the

differences in Y between two birth cohorts a year apart.

Also

E[Yij | xij , xi1] − E[Yi1 | xi1] = βL(xij − xi1)

so that βL is the longitudinal effect, that is the change in the average response

between two populations who are in the same birth cohort, and whose ages

differ by one year.
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The usual cross-sectional model is given by:

E[Yij | xij ] = β0 + β1xij (40)

= β0 + β1xi1 + β1(xij − xi1)

so that the model implicitly assumes equal longitudinal and cohort effects,

i.e. β1 = βL = βC .

In a cohort study with model (40) we have

bβ1 =

Pm
i=1

Pni
j=1(xij − x)(Yij − Y )

Pm
i=1

Pni
j=1(xij − x)2

with x = 1
N

Pm
i=1

Pni
j=1 xij , Y = 1

N

Pm
i=1

Pni
j=1 Yij with N =

Pm
i=1 ni. The

expected value of this estimator is

E[bβ1] = βL +

Pm
i=1 ni(xi1 − x1)(xi − x)Pm

i=1

Pni
j=1(xij − x)2

(βC − βL)

so that the estimate if of a combination of cohort and longitudinal effects.

The cross-sectional regression model will give an unbiased estimate of the

longitudinal association if βL = βC or if {xi1} and {xi} are orthogonal.

This illustrates that a benefit of a longitudinal study is the ability to estimate

both cohort and longitudinal effects.
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If we write β0i = β0 + βCxi1 then we could fit the model

E[Yij | xij , xi1] = β0i + βL(xij − xi1)

so that each individual has their own intercept, though this runs into problems

with individuals with sparse data (can’t use a random effects model since the

intercepts are related to xi1, invalidating an assumption of the model).
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