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GENERAL REGRESSION MODELS

We consider the class of Generalized Linear Mixed Models (GLMMs) and

non-linear mixed effects models (NLMEMs).

In this chapter we will again consider both a conditional approach to modeling,

via the introduction of random effects, and a marginal approach using GEEs.

Likelihood and Bayesian methods will be used for inference in the conditional

approach.

First we briefly review generalized linear models and non-linear models for

independent data.

199

2009 Jon Wakefield, Stat/Biostat 571

Generalized Linear Models

GLMs provide a very useful extension to the linear model class. GLMs specify

stochastic and deterministic components:

The responses yi follow an exponential family so that the distribution is of the

form

p(yi | θi, α) = exp({yiθi − b(θi)}/α + c(yi, α)), (41)

where θi and α are scalars. This is sometimes referred to as a linear or natural

exponential family. It is straightforward to show that

E[Yi | θi, α] = µi = b′(θi)

and

var(Yi | θi, α) = b′′(θi)α,

for i = 1, ..., n, with cov(Yi, Yj | θi, θj , α) = 0 for i 6= j.
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The link function g(·) provides the connection between µ = E[Y | θ, α] and the

linear predictor xβ, via

g(µ) = xβ,

where x is a (k + 1) × 1 vector of explanatory variables (including a 1 for the

intercept) and β is a 1 × (k + 1) of regression parameters.

If α is known this is a one-parameter (natural) exponential family model and

there is a (k + 1)-dimensional sufficient statistic for β. If α is unknown then the

distribution may or may not be a two-parameter exponential family model.
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Likelihood Inference

We now derive the score vector and information matrix. For an independent

sample from the exponential family (41), we have

l(θ) =
nX

i=1

yiθi − b(θi)

α
+ c(yi, α) =

nX

i=1

li(θ),

where θ = [θ1(β), ..., θn(β)] is the vector of canonical parameters.

Using the chain rule we may write

S(β) =
∂l

∂β
=

nX

i=1

∂li

∂θi

dθi

dµi

∂µi

∂β

=

nX

i=1

Yi − b′(θi)

α

1

Vi

dµi

dβ

where Vi = var(Y | β)/α and

d2b

dθ2
i

=
d

dθi
µi = Vi.
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Hence

S(β) =
nX

i=1

„
∂µi

∂β

«T {Yi − E[Yi | µi]}
var(Yi | µi)

= DTV −1{Y − µ(β)}, (42)

where D is the n × p matrix with elements ∂µi/∂βj , i = 1, ..., n, j = 1, ..., p,

and V is the n × n diagonal matrix with i−th diagonal element var(Yi | µi).
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The MLE has asymptotic distribution

In(β)1/2(bβn − β) →d Np(0, Ip),

where

In(β) = E[S(β)S(β)T] = DTV −1D.

In practice we use

In(bβ) = bDT bV bD,

where bV and bD are V and D evaluated at bβ. Hence an estimator bβ defined

through S(bβ) = 0 will be consistent so long as the mean function is

appropriate. The variance of the estimator is appropriately estimated if the

second moment is correctly specified.
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Nonlinear Regression Models

Consider models of the form

Yi = µi(β) + ǫi,

i = 1, ..., n, where µi(β) = µ(xi, β) is nonlinear in xi, β is assumed to be of

dimension k × 1, and E[ǫi | µi] = 0, var(ǫi | µi) = σ2f(µi) with

cov(ǫi, ǫj | µi) = 0.

Such models are often used for positive responses, and if such data are modeled

on the original scale it is common to find that the variance is of the form

f(µ) = µ or f(µ) = µ2.

An alternative approach that is appropriate in the case of f(µ) = µ2 is to log

transform the responses and then assume constant errors.
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Likelihood Inference

To obtain the likelihood function the probability model for the data must be

fully specified. Assume

Yi | β, σ2 ∼ind N{µi(β), σ2µi(β)r},

for i = 1, ..., n, and known r ≥ 0 to give the likelihood function

l(β, σ) = −n log σ − r

2

nX

i=1

log µi(β) − 1

2σ2

nX

i=1

{Yi − µi(β)}2

µr
i (β)

.

Differentiation with respect to β and σ yields the score equations

S1(β, σ) = − r

2

nX

i=1

∂µi

∂β
(β)

1

µi(β)
+

1

σ2

nX

i=1

{Yi − µi(β)}
µi(β)r

∂µi

∂β

− r

2σ2

nX

i=1

{Yi − µ(β)}2

µr+1
i (β)

∂µi

∂β
.

S2(β, σ) = −n

σ
+

1

σ3

nX

i=1

{Yi − µ(β)}2

µr
i (β)

.

Notice that we have a pair of quadratic estimating functions here and if the

first two moments are correctly specified then E[S1] = 0 and E[S2] = 0.
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Under the usual regularity conditions

I(θ)1/2(bθ − θ) →d Nk+1(0, I).

where θ = (β, σ) and I(θ) is Fisher’s expected information. In the case of r = 0
we obtain

l(β, σ) = −n log σ −
1

2σ2

n
X

i=1

{Yi − µi(β)}2

S1(β, σ) =
1

σ2

n
X

i=1

{Yi − µi(β)}
∂µi

∂β

S2(β, σ) = −
n

σ2
+

1

σ4

n
X

i=1

{Yi − µi(β)}
2

I11 = −E

»

∂S1

∂β

–

=
1

σ2

n
X

i=1

„

∂µi

∂β

«„

∂µi

∂β

«T

I12 = −E

»

∂S1

∂σ

–

= 0
T

I21 = −E

»

∂S2

∂β

–

= 0

I22 = −E

»

∂S2

∂σ

–

=
2n

σ2
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Identifiability

For many nonlinear models identifiability is an issue. Specifically the same

curve may be obtained with different parameter values. For example, consider

the sum-of-exponentials model

µ(x, β) = β0 exp(−xβ1) + β2 exp(−xβ3),

where β = (β0, β1, β2, β3) and βj > 0, j = 0, 1, 2, 3. The same curve results

under the parameter sets (β0, β1, β2, β3) and (β2, β3, β0, β1) and so we have

non-identifiability. A solution to this problem, and to ensure that the

parameters can only take admissible values, is to work with the set

γ = (log β0, log(β3 − β1), log β2, log β1)

which constrains β3 > β1 > 0.
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Example of a non-linear model: One compartmental open model

• Let wi(x) represent the amount of drug in compartment i, i = 0, 1, at time

x.

• Assume:

dw0

dx
= −kaw0

dw1

dx
= kaw0 − kew1

where ka is the absorption rate, and ke is the elimination rate.

• Leads to

µ(x) =
Dka

V (ka − ke)
{exp[−kex] − exp[−kax]}

Note: non-identifiability (flip-flop).

• Assume

Yi|β, σ2 = LogNorm{µi(xi), σ
2}.

Mimics assay precision ≈ constant CV.
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Pharmacokinetic Data Analysis

Concentration (y) as a function of time (x), obtained from a new-born baby

following the administration of a 1mg dose of Theophylline.

Time 1.00 1.42 3.58 5.08 6.83 9.08 12.3 23.8

Conc 60.22 73.41 63.43 56.43 48.81 30.40 20.67 7.28
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Generalized Linear Mixed Models

A GLMM is defined by

1. Random Component: Yij |θij , α ∼ p(·) where p(·) is a member of the

exponential family, that is

p(yij |θij , α) = exp[{yijθij − b(θij)})/a(α) + c(yij , α)],

for i = 1, ..., m units, and j = 1, ..., ni, measurements per unit.

2. Systematic Component: If µij = E[Yij |θij , α] then we have a link function

g(·), with

g(µij) = xijβ + zijbi,

so that we have introduced random effects into the linear predictor. The

above defines the conditional part of the model. The random effects are

then assigned a distribution, and in a GLMM this is assumed to be

bi ∼iid N(0, D).

We also have

var(Yij |θij , α) = αv(µij).
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Marginal Moments

Mean:

E[Yij ] = E{E[Yij |bi]}
= E[µij ] = Eb[g

−1(xijβ + zijbi)].

Variance:

var(Yij) = E[var(Yij |bi)] + var(E[Yij |bi])

= αEb[v{g−1(xijβ + zijbi)}] + varb[g
−1(xijβ + zijbi)].

Covariance:

cov(Yij , Yik) = E[cov(Yij , Yik|bi)] + cov(E[Yij |bi],E[Yik|bi])

= cov{g−1(xijβ + zijbi), g
−1(xikβ + zikbi)}

6= 0,

for j 6= k due to shared random effects, and

cov(Yij , Ylk) = 0,

for i 6= l, as there are no shared random effects.
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Example: Log-Linear Regression for Seizure Data

Data on seizures were collected on 59 epileptics.

For each patient the number of epileptic seizures were recorded during a

baseline period of eight weeks, after which patients were randomized to

treatment with the anti-epileptic drug progabide, or to placebo.

The number of seizures was then recorded in four consecutive two-week periods.

The age of the patient was also available.

Figures 18-20 contain summaries.
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Figure 18: Number of seizures for selected individuals over time for placebo

group.
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Figure 19: Number of seizures for selected individuals over time for progabide

group.
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Figure 20: Summaries for seizure data.
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A model for the seizure data

Let

Yij = number of seizures on patient i at occasion j

tij = observation period on patient i at occasion j

xi1 = 0/1 if patient i was assigned placebo/progabide

xij2 = 0/1 if j = 0/1, 2, 3, 4

with tij = 8 if j = 0 and tij = 2 if j = 1, 2, 3, 4, i = 1, ..., 59.

The question of primary scientific interest here is whether progabide reduces

the number of seizures.

A marginal mean model is given by

E[Yij ] = tij exp(β0 + β1xi1 + β2xij2 + β3xi1xij2)

Group j = 0 period j = 1, 2, 3, 4 period

Placebo β0 β0 + β2

Progabide β0 + β1 β0 + β1 + β2 + β3

Table 11: Parameter interpretation.
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Precise definitions:

• exp(β0) is the expected number of seizures in the placebo group in time

period 0;

• exp(β1) is the ratio of the expected seizure rate in the progabide group,

compared to the placebo group, in time period 0;

• exp(β2) is the ratio of the expected seizure rate at times j = 1, 2, 3, 4, as

compared to j = 0, in the placebo group;

• exp(β3) is the ratio of the expected seizure rates in the progabide group in

the j = 1, 2, 3, 4 period, as compared to the placebo group, in the same

period. Hence exp(β3) is the parameter of interest.

More colloquially:

• β0 INTERCEPT

• β1 BASELINE TREATMENT GROUP EFFECT

• β2 PERIOD EFFECT

• β3 TREATMENT × PERIOD EFFECT

218



2009 Jon Wakefield, Stat/Biostat 571

Mixed Effects Model for Seizure Data

Stage 1: Yij |β, bi ∼ind Poisson(µij), with

g(µij) = log µij = log tij + xijβ + bi,

where

xijβ = β0 + β1xij1 + β2xi2 + β3xij1xi2.

Hence

E[Yij |bi] = µij = tij exp(xijβ + bi), var(Yij |bi) = µij .

Stage 2: bi ∼iid N(0, σ2).

The marginal mean is given by

E[Yij ] = tij exp(xijβ + σ2/2),

and the marginal median by

tij exp(xijβ).
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The marginal variance is given by

var(Yij) = E[µij ] + var(µij)

= E[Yij ]{1 + E[Yij ](e
σ2 − 1)} = E[Yij ](1 + E[Yij ] × κ)

where κ = eσ2 − 1 > 0 illustrating excess-Poisson variation which increases as

σ2 increases.

For the marginal covariance

cov(Yij , Yik) = cov{tij exp(xijβ + bi), tij exp(xikβ + bi)}

= tijtik exp(xijβ + xikβ) × eσ2{eσ2 − 1} = E[Yij ]E[Yik]κ.

Hence for individual i we have variance-covariance matrix
2
666664

µi1 + µ2
i1κ µi1µi2κ ... µi1µini

κ

µi2µi1κ µi2 + µ2
i2κ ... µi2µini

κ

... ... ... ...

µini
µi1κ µini

µi2κ ... µini
+ µ2

ini
κ

3
777775

,

where κ = eσ2 − 1 > 0. A deficiency of this model is that we only have a single

parameter (σ2) to control both excess-Poisson variability and dependence.
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Likelihood Inference

In general there are two approaches to inference from a likelihood perspective:

1. Carry out conditional inference in order to eliminate the random effects.

2. Make a distributional assumption for bi, and then carry out likelihood

inference (using some form of approximation to evaluate the required

integrals).

We first consider the conditional likelihood approach.
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Conditional Likelihood

Recall the definition of conditional likelihood. Suppose the distribution of the

data may be factored as

p(y | β, γ) = h(y) × p(t1, t2 | β, γ) = h(y) × p(t1 | t2, β) × p(t2 | β, γ),

where we choose to ignore the second term and consider the conditional

likelihood

Lc(β) = p(t1 | t2, β) =
p(t1, t2 | β, γ)

p(t2 | β, γ)
.

Maximizing the conditional likelihood yields an estimator, bβc with the usual

properties, for example

Ic(β)1/2(bβc − β) →d N(0, I),

and Ic(β) is the expected information derived from the conditional likelihood.
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Conditional Likelihood for GLMMs

In the context of GLMMs we have

Lc(β) =
mY

i=1

p(t1i | t2i, β) =
mY

i=1

p(t1i, t2i | β, bi)

p(t2i | β, bi)

where

p(t1i, t2i | β, bi) ∝ p(yi | β, bi)

and

p(t2i | β, bi) =
X

u1i∈S2i

p(u1i, t2i | β, bi),

and S2i is the set of values of yi such that T2i = t2i, a set of disjoint events.

The different notation is to emphasize that T1i takes on values different to t1i.
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For simplicity we assume the canonical link function,

g(µij) = θij = xijβ + zijbi

and assume α = 1. Viewing bi as fixed effects we have the likelihood

L(β, b) = exp

8
<
:

mX

i=1

niX

j=1

yijxijβ + yijzijbi − b(xijβ + zijbi)

9
=
; ,

so that

t1 =
mX

i=1

t1i =
mX

i=1

niX

j=1

yijxij

and

t2i =

niX

j=1

yijzij .

We emphasize that no distribution has been specified for the bi, and they are

being viewed as fixed effects.
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Conditional Likelihood for the Poisson GLMM

Assume for simplicity that zijbi = bi, so that we have the random intercepts

only model. Also, in an obvious change in notation

xijβ + xiβ1 + bi = xijβ + γi

so that β are the regression associated with covariates that change within an

individual.

Then

p(y | β, γ) =
mY

i=1

p(yi | β, γi) =
mY

i=1

exp
“
−Pm

j=1 µij +
Pm

j=1 yij log µij

”

Qni
j=1 yij !

= c1

mY

i=1

exp

0
@−µi+ + yi+γi +

niX

j=1

yij log (tij exp(xijβ))

1
A

where c−1
1 =

Q
i

Q
j yij ! and µi+ =

Pm
j=1 tij exp(xijβ).
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In this case the distribution of the conditioning statistic is straightforward:

yi+ | β, γi ∼ Poisson(µi+)

so that

p(yi+ | β, γi) = c2

mY

i=1

exp(−µi+ + yi+ log µi+)

= c2

mY

i=1

exp

0
@−µi+ + yi+γi + yi+ log

0
@

niX

j=1

tij exp(xijβ)

1
A
1
A

where c−1
2 = yi+!

Hence

p(y | y1+, ..., yni+, β) =
p(y | β, γ)

p(y1+, ..., yni+ | β, γ)

which is given by

c1
Q

i exp
“
−µi+ + yi+γi +

Pni
j=1 yij log(tij exp(xijβ)

”

c2
Qm

i=1 exp
“
−µi+ + yi+γi + yi+ log

“Pni

j=1 tij exp(xijβ)
””
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After simplification:

p(y | y1+, ..., yni+, β) =
c1
Qm

i=1

Qni
j=1 (tij exp(xijβ))yij

c2
Qm

i=1

“Pni
j=1 tij exp(xijβ)

”yi+

=

0
@ yi+

yi1...yini

1
A

mY

i=1

niY

j=1

 
tij exp(xijβ)Pni

l=1 til exp(xilβ)

!yij

which is a multinomial likelihood (we have conditioned a set of Poisson counts

on their total so obvious!):

yij | yi+, β ∼ Multni
(yi+, πi)

where πT
i = (πi1, ..., πini

) and

πij =
tij exp(xijβ)Pni

l=1 til exp(xilβ)
.
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Conditional Likelihood for the Seizure Data

Recall

Yij = number of seizures on patient i at occasion j

tij = observation period on patient i at occasion j

xi1 = 0/1 if patient i was assigned placebo/progabide

xij2 = 0/1 if j = 0/1, 2, 3, 4

with tij = 8 if j = 0 and tij = 2 if j = 1, 2, 3, 4, i = 1, ..., 59.

A log-linear random intercept model is given by

log E[Yij | bi] = log tij + β0 + β1xi1 + β2xij2 + β3xi1xij2 + bi
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Precise definitions:

• exp(β0) is the expected number of seizures for a typical individual in the

placebo group in time period 0;

• exp(β1) is the ratio of the expected seizure rate in the progabide group,

compared to the placebo group, for a typical individual, i.e. one with

bi = 0, in time period 0;

• exp(β2) is the ratio of the expected seizure rate at times j = 1, 2, 3, 4, as

compared to j = 0, for a typical individual in the placebo group;

• exp(β3) is the ratio of the expected seizure rates in the progabide group in

the j = 1, 2, 3, 4 period, as compared to the placebo group, in the same

period for a typical individual. Hence exp(β3) is the parameter of interest.
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In the conditional likelihood notation:

log E[Yij | γi] = log tij + γi + β2xij2 + β3xi1xij2

where γi = β0 + β1xi1 + bi so that we cannot estimate β1, which is not a

parameter of primary interest.

Since xi1 = xi2 = xi3 = xi4 and ti0 = 8 =
P4

j=1 tij , we effectively have two

observation periods which we label (slightly abusing our previous notation),

j = 0, 1. Let Yi1 =
P4

j=1 Yij .

For the placebo group:

Yi1 ∼ind Binomial(Yi+, πi1)

for i = 1, ..., 29, with

πi1 =
exp(β2)

1 + exp(β2)
.

For the progabide group:

Yi1 ∼ind Binomial(Yi+, πi1)

for i = 30, ..., 59, where

πi1 =
exp(β2 + β3)

1 + exp(β2 + β3)
.

.
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This model is straightforward to fit in R:

> xcond <- c(rep(0,28),rep(1,31))

> condmod <- glm(cbind(y1,y0)~xcond,family=binomial)

> summary(condmod)

Call:

glm(formula = cbind(y1, y0) ~ xcond, family = binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.11080 0.04689 2.363 0.0181 *

xcond -0.10368 0.06505 -1.594 0.1110

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 306.50 on 58 degrees of freedom

Residual deviance: 303.96 on 57 degrees of freedom

Hence the treatment effect is exp(−.10) = 0.90 so that the rate of seizures is

estimated as 10% less in the progabide group, though this change is not

statistically significant.

231

2009 Jon Wakefield, Stat/Biostat 571

Conditional Likelihood for the Seizure Data

The overall fit of the random intercept model is poor (304 on 57 degrees of

freedom).

Once possibility is to extend the model to allow a random slope for the effect of

treatment xij2, i.e. β2i = β2 + b2i, but a conditional likelihood approach for

this model will condition away the information relevant for estimation of β3.

We will examine such a model using a mixed effects approach.
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Likelihood Inference in the Mixed Effects Model

As with the linear mixed effects model (LMEM) we maximize L(β, α) where α

denote the variance components in D, and

L(β, α) =

mY

i=1

Z
p(yi|β, bi) × p(bi|α) dbi.

As with the NLMEM the required integrals are not available in closed form and

so some sort of analytical or numerical approximation is required.
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Example: Log-linear Poisson regression GLMM

With a single random effect we have α = σ2.

L(β, α) =
mY

i=1

Z niY

j=1

exp(−µij)µ
yij

ij

yij !
× (2πσ2)−1/2 exp

„
− 1

2σ2
b2i

«
dbi

=
mY

i=1

(2πσ2)−1/2 exp

 
niX

i=1

yijxijβ

!

×
Z

exp

0
@−ebi

niX

j=1

exijβ +

niX

j=1

yijbi −
1

2σ2
b2i

1
A dbi

=
mY

i=1

exp

 
niX

i=1

yijxijβ

!
×
Z

h(bi)
exp{−b2i /(2σ2)}

(2πσ2)−1/2
dbi,

an integral with respect to a normal random variable (which is analytically

intractable).
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Integration in the GLMM

As with the NLMEM there are a number of possible approaches for integrating

out the random effects including:

• Analytical approximations, including Laplace, and the closely-related

penalized quasi-likelihood approach.

• Gaussian quadrature.

• Importance sampling Monte Carlo
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Overview of Integration Techniques

We describe a number of generic integration techniques, in particular:

• Laplace approximation (an analytical approximation).

• Quadrature (numerical integration).

• Importance sampling (a Monte Carlo method).

Before the MCMC revolution these techniques were used in a Bayesian context.

236



2009 Jon Wakefield, Stat/Biostat 571

Laplace Approximation

Let

I =

Z
exp{ng(θ)}dθ,

denote a generic integral of interest and suppose m is the maximum of g(·).
We have

ng(θ) = n
∞X

k=0

(θ − m)k

k!
g(k)(m),

where g(k)(m) represents the k−th derivative of g evaluated at m. Hence

I =

Z
exp

(
n

∞X

k=0

(θ − m)k

k!
g(k)(m)

)
dθ

≈ eng(m)

Z
exp


(θ − m)2

2/[ng(2)(m)]

ff
dθ

= eng(m)(2πv)1/2n−1/2

where v = −1/[g(2)(m)], and we have ignored terms in cubics or greater in the

Taylor series.
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Gaussian Quadrature

A general method of integration is provided by quadrature (numerical

integration) in which an integral

I =

Z
f(u) du,

is approximated by

bI =

nwX

i=1

f(ui)wi,

for design points u1, ..., unw and weights w1, ..., wnw . Different choices of

(ui, wi) lead to different integration rules.

In mixed model applications we have integrals with respect to a normal density,

Gauss-Hermite quadrature is designed for problems of this type.

Specifically, it provides exact integration of
Z ∞

−∞
g(u)e−u2

du,

where g(·) is a polynomial of degree 2nw − 1.
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The design points are the zeroes of the so-called Hermite polynomials.

Specifically, for a rule of nw points, ui is the i−th zero of Hnw (u), the Hermite

polynomial of degree nw, and

wi =
wnw−1nw!

√
π

n2
w[Hnw−1(ui)]2

.

Now suppose θ is two-dimensional and we wish to evaluate

I =

Z
f(θ)dθ =

Z Z
f(θ1, θ2)dθ2dθ1 =

Z
f∗(θ1)dθ1,

where

f∗(θ1) =

Z
f(θ1, θ2)dθ2.

Now form

bI =

m1X

i=1

wi
bf∗(θ1i),

where

bf∗(θ1i) =

m2X

j=1

ujf(θ1i, θ2j).
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Then we have

bI =

m1X

i=1

m2X

j=1

wiujf(θ1i, θ2j),

which is known as the Cartesian Product.

Scaling and reparameterization

To implement this method the function must be centered and scaled in some

way, for example we could center and scale by the current estimates of the

mean, m, and variance-covariance matrix, V – known as adaptive quadrature.

We then form

X = L(θ − m)

where L′L = V −1 and carry out integation in the space of X.

There is no guarantee that the most efficient rule is obtained by scaling in

terms of the posterior mean and variance, but we note that the ‘best’ normal

approximation to a density (in terms of Kullbach-Leibler divergence) has the

same mean and variance.
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Gauss-Hermite Code in R

Nodes and weights for n = 4:

> n <- 4

> quad <- gauss.quad(n,kind="hermite")

> quad$nodes

[1] -1.6506801 -0.5246476 0.5246476 1.6506801

> quad$weights

[1] 0.08131284 0.80491409 0.80491409 0.08131284

Nodes and weights for n = 5:

> n <- 5

> quad <- gauss.quad(n,kind="hermite")

> quad$nodes

[1] -2.0201829 -0.9585725 0.0000000 0.9585725 2.0201829

> quad$weights

[1] 0.01995324 0.39361932 0.94530872 0.39361932 0.01995324
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Importance Sampling

Rather than deterministically selecting points we may randomly generate

points from some density h(θ).

We have

I =

Z
f(θ)dθ =

Z
f(θ)

h(θ)
h(θ)dθ = E[w(θ)],

where w(θ) = f(θ)/h(θ).

Hence we have the obvious estimator

bI =
mX

i=1

w(θi),

where θi ∼iid h(·). We have E[bI] = I and

V = var(bI) =
1

m
var{w(θ)}.

From this expression it is clear that a good h(·) produces an approximately

constant w(θ).
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We may estimate V via

bV =
1

m

mX

i=1

f2(θi)

h2(θi)
− 1

m
bI2,

and (appealing to the central limit theorem) Î is asymptotically normal and so

a 100(1 − α)% confidence interval is given by

Î ± Zα/2V̂ 1/2

where Zα/2 is the α/2 point of an N(0, 1) random variable.

Hence the accuracy of the approximation may be directly assessed, providing

an advantage over analytical approximations and quadrature methods.

Notes on Importance Sampling

• We require an h(·) with heavier tails than the integrand. We can carry out

importance sampling with any h but if the tails are lighter we will have an

estimator with infinite variance (and hence an inconsistent procedure).

Many suggestions for h have been made including Student t distributions

and mixtures of Student t distributions.

• Iteration may again be used to obtain an estimator with good properties.
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Notes on Implementation

• If the number of parameters is small then numerical integration techniques

(e.g. quadrature) are highly efficient in terms of the number of function

evaluations required. Hence if, for example, obtaining a point on the

likelihood surface is computationally expensive (as occurs if a large

simulation is required) then such techniques are preferable to Monte Carlo

methods.

• The method employed will depend on whether it is for a one-off

application, in which case ease-of-implementation is a consideration, or for

a great deal of use, in which case an efficient method may be required.

• In general it is difficult to assess the accuracy of Laplace/numerical

integration techniques.

• For simulation methods we note that independent samples are ideal for

assessing Monte Carlo error since standard errors on expectations of

interest may be simply calculated.

• Evans and Swartz (1995, Statistical Science) provide a good review of

integration techniques.
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Penalized Quasi-Likelihood

Breslow and Clayton (1993) introduced the method of Penalized

Quasi-Likelihood (PQL) which was an attempt to extend quasi-likelihood to

GLMMs. One justification of the method is a first-order Laplace

approximation.

PQL is very poor for binary data but may be OK for binomial and Poisson

data (as long as the counts are not too small).

Within the lme4 package the lmer function may be used to fit GLMMs using

MLE/REML; the required integrals can be approximated using penalized

quasi-likelihood, Laplace, or adaptive Gaussian quadrature.
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GLMMs for the Seizure Data

PQL standard error for β1 looks off here (doesn’t tie in with later analyses).

Adaptive quadrature option is not available for this model.

> library(lme4) # Need Matrix package version 0.995-5

> lmermod1 <- lmer(y ~ x1+x2+x3+(1|ID)+offset(log(time)),family=poisson,

data=seiz,method="PQL")

> summary(lmermod1)

Generalized linear mixed model fit using PQL

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.20035 0.44761

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.076279 0.092852 11.5914 < 2e-16 ***

x1 -0.019602 0.128149 -0.1530 0.87843

x2 0.110798 0.046888 2.3630 0.01813 *

x3 -0.103681 0.065055 -1.5937 0.11099

> lmermod2 <- lmer(y ~ x1+x2+x3+(1|ID)+offset(log(time)),family=poisson,

data=seiz,method="Laplace")

> summary(lmermod2)

Generalized linear mixed model fit using Laplace
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Formula: y ~ x1 + x2 + x3 + (1 | ID) + offset(log(time))

Data: seiz

Family: poisson(log link)

AIC BIC logLik deviance

970.2882 988.7231 -480.1441 960.2882

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.60832 0.77995

# of obs: 295, groups: ID, 59

Estimated scale (compare to 1) 1.671041

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.032640 0.152524 6.7703 1.285e-11 ***

x1 -0.023848 0.210494 -0.1133 0.90980

x2 0.110798 0.046895 2.3627 0.01814 *

x3 -0.103681 0.065065 -1.5935 0.11105

The Laplace approach gives significantly different (and more reliable estimates).
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Random intercepts and slopes

We may also allow the treatment effect to vary between individuals.

> lmermod4 <- lmer(y ~ x1+x2+x3+(1+x2|ID)+offset(log(time)),

family=poisson,data=seiz,method="Laplace")

> summary(lmermod4)

Generalized linear mixed model fit using Laplace

802.2693 828.0782 -394.1347 788.2693

Random effects:

Groups Name Variance Std.Dev. Corr

ID (Intercept) 0.49990 0.70704

x2 0.23189 0.48155 0.166

# of obs: 295, groups: ID, 59

Estimated scale (compare to 1) 1.403177

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0712501 0.1398516 7.6599 1.861e-14 ***

x1 0.0494975 0.1927053 0.2569 0.79729

x2 -0.0023708 0.1078657 -0.0220 0.98246

x3 -0.3072281 0.1501527 -2.0461 0.04075 *
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Bayesian Inference for GLMMs

A Bayesian approach to inference for a GLMM adds a prior distribution for

β, α, to the likelihood L(β, α). Again a proper prior is required for the matrix

D. In general a proper prior is not required for β – the exponential family and

linear link lead to a likelihood that is well-behaved.
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Priors for β and α in the GLMM

Lognormal Priors

It is convenient to specify lognormal priors for positive parameters θ, since one

may specify two quantiles of the distribution, and directly solve for the two

parameters of the prior. In a GLMM we can often specify priors for more

meaningful parameters than elements of β. For example, eβ1 is the relative

risk/rate in a log linear model, and is the odds ratio in a logistic model.

Suppose we wish to specify a lognormal prior for a generic parameter θ.

Denote by LN(µ, σ) the lognormal distribution with E[log θ] = µ and

var(log θ) = σ2, and let θ1 and θ2 be the q1 and q2 quantiles of this prior.

Then

µ = log(θ1)

„
zq2

zq2 − zq1

«
− log(θ2)

„
zq1

zq2 − zq1

«
, σ =

log(θ1) − log(θ2)

zq1 − zq2

. (43)

As an example, suppose that for θ we believe there is a 50% chance that the

relative risk is less than 1 and a 95% chance that it is less than 5; with

q1 = 0.5, θ1 = 1.0 and q2 = 0.95, θ2 = 5.0, we obtain lognormal parameters

µ = 0 and σ = log 5/1.96 = 0.98.

250



2009 Jon Wakefield, Stat/Biostat 571

Gamma Priors

Consider the random intercepts model with bi ∼iid N(0, σ2).

It is not straightforward to specify a prior for σ, which represents the standard

deviation of the residuals on the linear predictor scale, and is consequently not

easy to interpret.

We specify a gamma prior Ga(a, b) for the precision τ = 1/σ2, with parameters

a, b specified a priori. The choice of a gamma distribution is convenient since it

produces a marginal distribution for the residuals in closed form.

Specifically the two-stage model

bi|σ ∼iid N(0, σ2), τ = σ−2 ∼ Ga(a, b)

produces a marginal distribution for bi which is td(0, λ2), a Student’s t

distribution with d = 2a degrees of freedom, location zero, and scale λ2 = b/a.

We now consider a log link, in which case the above is equivalent to the

residual relative risks following a log t distribution.

We specify the range exp(±R) within which the residual relative risks will lie

with probability q, and use the relationship ±td
q/2

λ = ±R, where tdq is the q-th

quantile of a Student t random variable with d degrees of freedom, to give

a = d/2, b = R2d/2(td
q/2

)2.
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For example, if we assume a priori that the residual relative risks follow a log

Student t distribution with 2 degrees of freedom, and that 95% of these risks

fall in the interval (0.5,2.0) then we obtain the prior, Ga(1, 0.0260).

In terms of σ this results in (2.5%, 97.5%) quantiles of (0.084,1.01) with

posterior median 0.19.

It is important to assess whether the prior allows all reasonable levels of

variability in the residual relative risks, in particular small values should not be

excluded.

The prior Ga(0.001,0.001) which has previously been used (e.g. in the WinBUGS

manual) should be avoided for this very reason (this corresponds to relative

risks which follow a log Student t distribution with 0.002 degrees of freedom).
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Implementation

Closed-form inference is unavailable, but MCMC is almost as straightforward

as in the linear mixed model case. The joint posterior is

p(β, W , b | y) ∝
mY

i=1

{p(yi | β, bi)p(bi | W)}π(β)π(W).

Suppose we have priors:

β ∼ Nq+1(β0, V 0)

W ∼ Wq+1(r, R
−1)

The conditional distributions for β, τ , W are unchanged from the linear case.

There is no closed form conditional distribution for β, or for bi, but

Metropolis-Hastings step can be used (or adaptive rejection sampling can be

utilized, the conditional is log concave).
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Integrated Nested Laplace Approximation (INLA)

Recently an approach has emerged that combines Laplace approximations and

numerical integration in a very efficient manner, see Rue, Martino and Chopin

(2008) for more detail.

The method is designed for “latent Gaussian model” — we describe in the

context of a GLMM.

Suppose Yij is of exponential family form: Yij |θij , α ∼ p(·) where p(·) is a

member of the exponential family, that is

p(yij |θij , α) = exp[{yijθij − b(θij)})/a(α) + c(yij , α)],

for i = 1, ..., m units, and j = 1, ..., ni, measurements per unit.

Lwt µij = E[Yij |θij , α] with

g(µij) = ηij = xijβ + zijbi,

where bi ∼ N(0, D), and β is assigned a normal prior.

We also have priors for α (if not a constant) and D — these priors are

non-normal.
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Let γ = (b, β) denote the p × 1 vector of Gaussian parameters with

π(γ | θ1) ∼ N{0, Q(D)} and α = (α, D) be the hyperparameters which are not

Gaussian.

Then

π(γ, α | y) ∝ π(α)π(γ | α)
Y

i

p(yi | γ, α)

∝ π(α) | Q(D) |p/2 exp

(
−1

2
γTQ(D)γ +

X

i

log p(yi | γ, α)

)
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The INLA Algorithm

We wish to obtain the posterior marginals π(γi | y) and π(αi | y). We have

π(γi | y) =

Z
π(γi | α, y) × π(α | y)dα

which is evaluated via the approximation

eπ(γi | y) =

Z
eπ(γi | α, y) × eπ(α | y)dα (44)

=
X

k

eπ(γi | αk, y) × eπ(αk | y) × ∆k (45)

where

• eπ(γi | α, y) is approximated by Laplace (or other analytical

approximations).

• For eπ(αk | y) the mode is located and then the Hessian is approximated,

from which a grid of points is found that cover the density.
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Pros and Cons of INLA

Advantages:

• Quite widely applicable: GLMMs including temporal and spatial error

terms.

• Very fast.

• An R package is available.

Disadvantages:

• Can’t do NLMEMs (though could in principle).

• Difficult to access when the approximation is failing.

• R package is new, and so there are wrinkles.
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Bayesian Inference for the Seizure Data

We fit various models and begin with a discussion of prior specification.

We fit four models to the seizure data.

Model 1 Random intercepts only, π(β) ∝ 1, τ ∼ Ga(1, 0.260) – corresponds to

Student t2 residuals and 95% ∈ (0.5, 2.0).

Model 2 Random intercepts only, π(β) ∝ 1, τ ∼ Ga(2, 1.376) – corresponds to

Student t4 residuals and 95% ∈ (0.1, 10.0).

Model 3 Random effects for intercept and for x2.

Model 4 We allow a bivariate Student t distribution for the pair of random effects

introduced in Model 3.

Model 5 We introduce “measurement error” into the model.
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WinBUGS for Model 1

model

{

for (i in 1:n){

for (j in 1:k){

Y[i,j] ~ dpois(mu[i,j])

log(mu[i,j]) <- log(t[j])+beta0+beta1*x1[i]+beta2*x2[j]+

beta3*x1[i]*x2[j]+b[i]

}

b[i] ~ dnorm(0,tau)

}

tau ~ dgamma(1,0.260)

sigma <- 1/tau

beta0 ~ dflat()

beta1 ~ dflat()

beta2 ~ dflat()

beta3 ~ dflat()

}
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# Data

list(k = 5, n = 59, t = c(8,2,2,2,2), x2 = c(0,1,1,1,1),

x1 = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

Y = structure(.Data = c(11,5,3,3,3,11,3,5,3,3,6,2,4,0,5,8,4,4,1,4,66,7,18,9,21,

27,5,2,8,7,12,6,4,0,2,52,40,20,23,12,23,5,6,6,5,10,14,13,6,0,52,26,12,6,22,

33,12,6,8,4,18,4,4,6,2,42,7,9,12,14,87,16,24,10,9,50,11,0,0,5,18,0,0,3,3,

111,37,29,28,29,18,3,5,2,5,20,3,0,6,7,12,3,4,3,4,9,3,4,3,4,17,2,3,3,5,

28,8,12,2,8,55,18,24,76,25,9,2,1,2,1,10,3,1,4,2,47,13,15,13,12,76,11,14,9,8,

38,8,7,9,4,19,0,4,3,0,10,3,6,1,3,19,2,6,7,4,24,4,3,1,3,31,22,17,19,16,

14,5,4,7,4,11,2,4,0,4,67,3,7,7,7,41,4,18,2,5,7,2,1,1,0,22,0,2,4,0,13,5,4,0,3,

46,11,14,25,15,36,10,5,3,8,38,19,7,6,7,7,1,1,2,3,36,6,10,8,8,11,2,1,0,0,

151,102,65,72,63,22,4,3,2,4,41,8,6,5,7,32,1,3,1,5,56,18,11,28,13,24,6,3,4,0,

16,3,5,4,3,22,1,23,19,8,25,2,3,0,1,13,0,0,0,0,12,1,4,3,2),.Dim = c(59,5)))

# Initial estimates

list(b=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

beta0=0, beta1=0, beta2=0, beta3=0, tau=1)
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Estimates (standard deviations)

Model 1 Model 2 Model 3 Model 4 Model 5

β0 1.03 (0.15) 1.03 (0.15) 1.08 (0.13) 0.92 (0.15) 1.00 (0.18)

β1 -0.024 (0.21) -0.034 (0.21) 0.042 (0.19) 0.16 (0.20) 0.091 (0.24)

β2 0.11 (0.047) 0.11 (0.047) 0.0045 (0.11) -0.030 (0.11) 0.012 (0.10)

β3 -0.11 (0.065) -0.10 (0.065) -0.31 (0.15) -0.32 (0.15) -0.30 (0.14)

σ0 0.64 (0.13) 0.66 (0.13) 0.71 (0.072) 0.71 (0.10) 0.82 (0.084)

σ1 – – 0.473 (0.062) 0.399 (0.078)

ρ – – 0.19 (0.16) 0.21 (0.21)

σe – – – – 0.39 (0.033)

Table 12: Posterior means and standard deviations for Bayesian analysis of

seizure data; σ0 is the standard deviation of the random intercepts, σ1 is the

standard deviation of the random period effect, and ρ is the correlation between

these random effects; σe is the standard deviation of the measurement error.
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Poisson Model with a “nugget” effect

Recall the model

Yij |bi ∼ Poisson(tij exp(xijβ + bi))

bi ∼ N(0, σ2
0)

has a single parameter only, σ0 to allow for excess-Poisson variability and

between-individual variability.

In the LMEM model we have

E[Yij |bi] = xijβ + bi + ǫij

bi ∼ N(0, σ2
0)

ǫij ∼ N(0, σ2
e)

with bi and ǫij independent.
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By analogy we might consider the model:

Yij |bi, bij ∼ Poisson(tij exp(xijβ + bi + bij))

bi ∼ N(0, σ2
0)

bij ∼ N(0, σ2
e)

with bi and bij independent.

We now two parameters to allow for between-individual variability, σ0, and

excess-Poisson variability, σe.

Unfortunately there is no simple marginal interpretation of σ0 and σe:

E[Yij ] = tij exp(xijη + σ2
e/2 + σ2

o) = µij

var(Yij) = µij + µ2
ij(e

σ2
e − 1)(eσ2

0 − 1)

cov(Yij) = tijtik exp(xijβ + xikβ)eσ2
0 (eσ2

0 − 1)

Another possibility would be to start with a negative binomial distibution, and

then introduce a random effect, bi. This reveals the “heaven and hell” of

mixed-effects models — we have a lot of flexibility in the models we can fit, but

many formulations that are similar produce different marginal mean and

covariance structures, and often there is no obvious “right” choice.
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WinBUGS for Model 1

# Model 3 - Poisson lognormal for nugget also

model

{

for (i in 1:n){

for (j in 1:k){

Y[i,j] ~ dpois(mu[i,j])

log(mu[i,j]) <- log(t[j])+beta0+beta1*x1[i]+beta2*x2[j]+

beta3*x1[i]*x2[j]+b[i]+be[i,j]

be[i,j] ~ dnorm(0,taue)

}

b[i] ~ dnorm(0,tau)

}

taue ~ dgamma(1,0.26)

tau ~ dgamma(1,0.26)

sigma <- sqrt(1/tau)

sigmae <- 1/sqrt(taue)

beta0 ~ dflat()

beta1 ~ dflat()

beta2 ~ dflat()

beta3 ~ dflat()

}
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Seizure Data

Patient 49 had counts 151,102,65,72,63 under progabide — very surprising.

In DHLZ dropping this individual gave a parameter of interest of -0.30.

Posterior medians of bij for this individual (i = 49, j = 0, 1, 2, 3, 4) are:

-0.61, 0.61, 0.18, 0.27, 0.65, 0.15

Conclusions: there is evidence of a statistically significant treatment effect,

under Model 4 the 95% credible interval on β3 is (-0.60,-028).

Under model 5 the 95% credible interval on β3 is (-0.59,-0.030).
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Seizure Data: INLA implementation

> require (glmmAK); data(epileptic)

> epileptic$Y = epileptic$seizure; epileptic$x1 = epileptic$trt

> epileptic$x2 = as.integer(epileptic$visit>0)

> epileptic$t = 8-6*epileptic$x2

> epileptic$rand = 1:nrow(epileptic)

> formula1 = Y ~ x1 + x2 + I(x1*x2) + + f(id,model="iid",param=c(1,.26)) +

f(rand,model="iid",param=c(1,.26))

> inla1 = inla (formula1, family="poisson", data=epileptic,offset=I(log(t)))

> summary(inla1)

Fixed effects:

mean sd 0.025quant 0.975quant kld dist.

x1 0.05656008 0.2435636 -0.4230038 0.535726536 0.000000e+00

x2 0.03227324 0.1009346 -0.1668694 0.229812987 0.000000e+00

i(x1*x2) -0.28425506 0.1402305 -0.5609546 -0.009858437 2.465190e-32

intercept 1.05710114 0.1767259 0.7086818 1.404250922 0.000000e+00

Model hyperparameters:

mean sd 0.025quant 0.975quant

Precision.for..id. 1.535 0.305 1.007 2.201

Precision.for..rand. 6.766 1.110 4.846 9.199
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Generalized Estimating Equations (GEEs)

Liang and Zeger (1986, Biometrika), and Zeger and Liang (1986, Biometrics)

considered GLMs with dependence within individuals (in the context of

longitudinal data).

Theorem (Liang and Zeger, 1986): the estimator bβ that satisfies

G(β, bα) =
mX

i=1

DT
i W−1

i (Y i − µi) = 0,

where Di = ∂µi

∂β
, W i = W i(β, α) is the working covariance model, µi = µi(β)

and bα is a consistent estimator of α, is such that

V
−1/2
β (bβ − β) →d N(0, I),

where V β is given by

 

m
X

i=1

D
T
i W

−1
i Di

!

−1( m
X

i=1

D
T
i W

−1
i cov(Y i)W

−1
i Di

) 

m
X

i=1

D
T
i W

−1
i Di

!

−1

.

In practice an empirical estimator of cov(Y i) is substituted to give bV β .
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Choice of Working Covariance Models

As in the linear case, various assumptions about the form of the working

covariance may be assumed (what is a natural choice?); we write

W i = ∆
1/2
i Ri(α)∆

1/2
i ,

where ∆i = diag[var(Yi1), ..., var(Yini
)]T and Ri is a working correlation

model, for example, independence, exchangeable, AR(1), unstructured.

• For small m the sandwich estimator will have high variability and so

model-based variance estimators may be preferable (but would we trust

asymptotic normality if m were small anyway?).

• Model-based estimators are more efficient if the model is correct.

Published comments:

– Liang and Zeger (1986): “little difference when correlation is moderate”.

– McDonald (1993): “The independence estimator may be reccomended

for practical purposes”.

– Zhao, Prentice and Self (1992): Assuming independence “can lead to

important losses of efficiency”.

– Fitmaurice, Laird and Rotnitsky (1993): “important to obtain a close

approximation to cov(Y i) in order to achieve high efficiency”.

268



2009 Jon Wakefield, Stat/Biostat 571

GEE for the Seizure Data

We have the log-linear model is given

log E[Yij ] = log µij = log tij + β⋆
0 + β1xi1 + β2xij2 + β3xi1xij2

and var(Yij) = αµij . Recall β1 is baseline comparison of rates, β2 is period

effect in the placebo group and β3 is treatment × period effect of interest.

Both quasi-likelihood and working independence GEE have estimating equation

G(β, bα) =

mX

i=1

xT
i (Y i − µi) = 0,

but differ in the manner in which the standard errors are calculated.
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Estimates (standard errors)

Poisson Quasi-Lhd GEE Ind GEE Exch GEE AR(1)

β⋆
0 1.35 (0.034) 1.35 (0.15) 1.35 (0.16) 1.35 (0.16) 1.31 (0.16)

β1 0.027 (0.047) 0.027 (0.21) 0.027 (0.22) 0.027 (0.22) 0.015 (0.21)

β2 0.11 (0.047) 0.11 (0.21) 0.11 (0.12) 0.11 (0.12) 0.16 (0.11)

β3 -0.10 (0.065) -0.10 (0.29) -0.10 (0.22) -0.10 (0.22) -0.13 (0.27)

α1, α2 1.0, 0 19.7, 0 19.4, 0 19.4, 0.78 20.0, 0.89

Table 13: Parameter estimates and standard errors under various models; α1 is

a variance parameter, and α2 a correlation parameter.

The point estimates under Poisson, quasi-likelihood and GEE working

independence will always agree. The Poisson standard errors are clearly much

too small. The quasi-likelihood standard errors are increased by
√

19.7 = 4.4,

but do not acknowledge dependence on observations on the same individual (it

is as if we have 59 × 5 independent observations). The standard errors of

estimated parameters that are associated with time-varying covariates (β2 and

β3) are reduced under GEE, since within-person comparisons are being made.

The coincidence of the estimates and standard errors for independence and

exchangeability is a consequence of the balanced design.
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Interpretation of Marginal and Conditional Coefficients

In a marginal model (which we consider under GEE), we have

E[Y | x] = exp(γ0 + γ1x)

in which case eγ1 is the change in the average response when we increase x by 1

unit in the population under consideration.

Under the conditional (mixed effects) model the interpretation of regression

coefficients is conditional on the value of the random effect.

For the model

E[Y | x, b] = exp(β0 + β1x + b),

with b ∼iid N(0, σ2), the marginal mean is given by:

E[Y | x] = Eb|σ2{E[Y | x, b]} = exp(β0 + σ2/2 + β1x).

Hence for the log-linear model, eβ1 has the same marginal interpretation to eγ1

(the marginal intercept is γ0 = β0 + σ/2), though estimation of the latter via

GEE produces a consistent estimator in more general circumstances (though

there is an efficiency loss if the random effects model is correct).
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In the model

E[Y | x, b] = exp{β0 + b0i + (β1 + b1i)xi}
eβ1 is the relative risk between two populations with the same b but whose x

values differ by one unit, that is:

exp(β1) =
E[Y | x, b]

E[Y | x − 1, b]
.

An alternative interpretation is to say that it is the expected change between

two “typical individuals”, that is, individuals with random effects, b = 0.

With b ∼iid N(0, D) we have the marginal mean

E[Y | x] = exp{β0 + D00/2 + x(β1 + D01) + x2D11/2}

so that there is no marginal mean interpretation of exp(β1) (the latter is the

marginal median).
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Second Extension to GEE: Connected Estimating Equations, GEE2a

In GEE2, there are a connected set of joint estimating equations for β and α.

Such an approach was proposed by Zhao and Prentice (1990), and Prentice and

Zhao (1991).

This approach is particularly appealing if the variance-covariance model is of

interest.

To motivate such a pair, consider the following model for a single individual

with n independent observations:

Yi|β, α ∼ind N {µi(β), Σi(β, α)} ,

where, for example, we may have Σi(β, α) = αµi(β)2, i = 1, ..., n.

We have the likelihood

l(β, α) = −1

2

nX

i=1

log Σi −
1

2

nX

i=1

(Yi − µi)
2

Σi
.

aGEE1 is the method in which we have a single estimating equation, and a consistent

estimator of α.
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The score equations are given by

∂l

∂β
= −1

2

nX

i=1

„
∂Σi

∂β

«T 1

Σi
+

nX

i=1

„
∂µi

∂β

«T (Yi − µi)

Σi
+

1

2

nX

i=1

„
∂Σi

∂β

«T (Yi − µi)
2

Σ2
i

=
nX

i=1

„
∂µi

∂β

«T (Yi − µi)

Σi
+

nX

i=1

„
∂Σi

∂β

«T
ˆ
(Yi − µi)

2 − Σi

˜

2Σ2
i

(46)

and

∂l

∂α
= −1

2

nX

i=1

„
∂Σi

∂α

«T 1

Σi
+

1

2

nX

i=1

„
∂Σi

∂α

«T (Yi − µi)
2

Σ2
i

=
nX

i=1

„
∂Σi

∂α

«T
ˆ
(Yi − µi)

2 − Σi

˜

2Σ2
i

(47)

This pair of quadratic estimating functions, are unbiased given correct

specification of the first two moments – so note that if the variance model is

wrong, we are no longer guaranteed a consistent estimator of β.

If it’s correct, however, there will be a gain in efficiency.
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Let

Si = (Yi − µi)
2

with, under the model,

E[Si] = Σi

var(Si) = E[S2
i ] − E[Si]

2 = 3Σ2
i − Σ2

i = 2Σ2
i

Hence we can rewrite (46) and (47)

∂l

∂β
=

n
X

i=1

D
T
i V

−1
i (Yi − µi) +

n
X

i=1

EiW
−1
i (Si − Σi)

∂l

∂α
=

n
X

i=1

F iW
−1
i (Si − Σi)

where Di = ∂µi/∂β, Ei = ∂Σi/∂β and F i = ∂Σi/∂α.

This can be compared with the usual estimating equation specification:

∂l

∂β
=

nX

i=1

DT
i V −1

i (Yi − µi).
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GEE2 Continued

The general form of estimating equations, in the dependent data setting, is

given by

mX

i=1

2
4 Di 0

Ei F i

3
5

T 2
4 V i Ci

CT
i W i

3
5
−1 2
4 Y i − µi

Si − Σi

3
5 =

2
4 0

0

3
5

where Di = ∂µi/∂β, Ei = ∂Σi/∂β and F i = ∂Σi/∂α, and we have “working”

variance-covariance structure

V i = var(Y i)

Ci = cov(Y i, Si)

W i = var(Si)
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When Ci = 0 we obtain

G1(β, α) =
mX

i=1

DT
i V −1

i (Y i − µi) +
mX

i=1

EiW
−1
i (Si − Σi)

G2(β, α) =
mX

i=1

F iW
−1
i (Si − Σi)

which are the dependent data version of the normal score equations we

obtained earlier.

Prentice and Zhao show that these equations arise from a so-called quadratic

exponential model:

p(Y i|θi, λi) = k−1
i exp[Y T

i θi + ST
i λi + ci(Y i)].

For example, ci = 0 gives the multivariate normal.

For consistency of bβ we require models for both Y i and Si to be correct —

increased eficiency if models are correct.
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