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Logistic Mixed Effects Models

A GLMM for binary data takes the binomial exponential family, with canonical
link being logistic.

We have
Stage 1: Y;; ~inq Binomial(n;;, p;;) with
log (71% ) =xi; 8+ zi;b;
L — pij
Stage 2: b; ~;;q N(0, D).
Marginal moments are not available in closed form.

We initially consider the model with a random intercept only, b; ~ N(O, U% ).
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Parameter Interpretation

For the random intercepts model the conditional parameters 3¢ and marginal
parameters 3" are approximately linked through
exp(zB™)
1+ exp(xB8™)
_ g [ exp(xB° + b) ] N exp(xB°/[c?0? + 1]1/2)
“l1y exp(xB3° + b) 1+ exp(zB°/[c202 + 1]1/2)

E[Y] = Ep {E[Y'[b]}

where ¢ = 161/3/(157). Hence the marginal coefficients are attenuated towards
zero; Figure 21 illustrates for particular values of g, ,81,0’8.

EY 18 \ _ .
log (m) =x08° + 2b

where b ~;;q Ng11(0, D) we obtain

For the model

exp (28° | ?Dzz" + I441 |—(q+1)/2)
1+ exp (zB° | 2Dz + I, |~(a+1)/2)

E[Y] =

so that
B ~| 2 Dzz" + I, |_(q+1)/2 B¢
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The above follows from approximating the logistic CDF by that of a normal
CDF. Specifically,
G(@) = (1+e™)7!

is the CDF of a logistic random variable and
G(x) =~ ®(cx)

where ¢ = 161/3/(157) (Johnson and Kotz, 1970).
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Probabity

Figure 21: Individual-level curves (dotted lines) from random intercepts logistic
GLMM with log(E[Y | b])/(1 — E[Y | b])) = Bo + fiz, with Bop = —2,61 =
1 and b ~y;q N(0,22), along with marginal curve (solid curve). Approximate

attenuation is 1.54.
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Specifying the Parameters of a Wishart Prior

Suppose we have

BW ~ N,(0,W)
W ~ Wishart(r, S)

We derive the marginal distribution for b:
o) = [ pBW) x s(W)aw

b" 1
x /\W!l/Q exp (— ZVb) (W (rtP=1)/2 oxp (—itr(WS_1)> dW

— /‘W’(r+p+11)/2 exp <—%tr(W[bbT +Sl)) AW

— the integrand is a Wishart,{r + 1, (S~! +bbT)~1}
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We know the normalizing constant of a Wishart distribution:
p(b) = |51+t
o« |I, + SbpT|~(r+1)/2
= (1+b"Sp)~(rt)/2
which is a T,,{0,[(r —p+1)S]7',d = r — p + 1} density.

The margins of a multivariate Student’s ¢ distribution are t and so we can
specify the parameters » and S using the same technique as with the gamma,
Ga(a,b), noting that a = r/2,b = 1/[25].
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Non-linear Mixed Effects Models

We now turn to a class of models that are not GLMs — we begin with a

motivating example.
Example: Pharmacokinetics of Theophylline

Twelve subjects given an oral dose of the anti-asthmatic agent theophylline,
with 11 concentration measurements obtained from each individual over 25
hours.

Figure 22 shows the concentration-time data.

The curves follow a similar pattern but there is clearly between-subject
variability. For these data the the one-compartment model with first-order
absorption and elimination is a good starting point for analysis.

The mean concentration at time point t is often modeled as:

Dkekqy

f(n,t) = Cllka — k)

{exp(—ket) — exp(—kqt)}

where D is the initial dose.
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Figure 22: Concentration time data for Theophylline.
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Non-Linear Mixed Effects Model Structure

In a nonlinear mixed model (NLMEM) the first stage of a linear mixed model
is replaced by a nonlinear form. We describe a specific two-stage form that is
useful in many longitudinal situations.

Stage 1: Response model, conditional on random effects, b;:
Y; = fij(ijs tig) + €ij (48)
where f;; is a nonlinear function and
nij = ®i; B+ zi;bi,
where
e a (k+ 1) x 1 vector of fixed effects, 3,

e a (¢4 1) x 1 vector of random effects, b;, with ¢ < k.

o x; = (T;1,...,Tin,; )", the design matrix for the fixed effect with
xij = (1, z451,...,Ti%) ", and

® z; = (Zi1,...,Zin,;) ", and design matrix for the random effects with
zij = (1, 2i51, .., 2ijq) "
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Stage 2: Model for random terms:

Ele;] = 0, var(g) = E;j(av),
E[b;] = 0, var(b;) = D(),
cov(b;,€;) =

where « is the vector of variance-covariance parameters.

A common model assumes
€ ~ind N(0,021,,), b; ~iiq N(0, D).

Let a represent 062 and the parameters of D and N =}, n;.
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Likelihood Inference for the Nonlinear Mixed Effects Model

As with the linear mixed and generalized linear mixed models already
considered the likelihood is defined with respect to fixed effects 3 and variance

components o:
p(y|B, ) = H/b p(y;|bi, B, 02) x p(b;| D) db;
=1 %

The first difficulty is how to calculate the required integrals, which for
non-linear models are analytically intractable, recall for linear models they were
available in closed form. For nonlinear models even the first two moments are

not available in closed form in general:

E[Y;j | B, = Ey,plfij(®:i;B+ zi;bi, tij)] # (8,0, x5)
var(Yij | B,a) = ‘752 + varb”D[fij (ij B+ zijbi, tij)]
cov(Yij, Yijr | Bo) = covy, p(fij(®i;B+ zijbi, tij), fijr (@ij B+ 2ij1bi, tijr)]
cov(Yij, Yojr | By) = 0, i#d

The data do not in general have a closed-form marginal distribution.

288

2009 Jon Wakefield, Stat/Biostat 571

As with the GLMM there are two issues with respect to implementation:
e How do we evaluate the integrals, and
e how do we maximize the resultant likelihood?

As with the LMEM empirical Bayes estimates for the random effects are
available, but caution should be given to using these for checking assumptions

since they are strongly influenced by the assumption of normality being correct.

If n; is large then this will be less of a problem.
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Identifiabiity Issues

With many nonlinear models care must be taken to ensure the model is
identifiability in the sense that if @ # 0’, f(0) # f(0). If there is
non-identiability then one may either reparameterize the model, or enforce
identifiability through the prior. We illustrate the problems with an example.

Example: Pharmacokinetics of Theophylline
The mean concentration at time point t is

Dkekq

f(n,t):m

{exp(—ket) — exp(—kat)}

where D is the initial dose.

This model is known as the “flip-flop” model because there is
non-identifiability; the parameters (kq, ke, Cl) give the same curve as the
parameters (ke, kq, Cl).

To enforce identifiability it is typical to assume that kg, > ke > 0. We may or
may not enforce this constraint in our parameterization, as we discuss later.

We first fit the above model to each individual, using non-linear least squares,
Figure 23 gives the resultant 95% asymptotic confidence intervals, the
between-individual variability is evident.

290

2009 Jon Wakefield, Stat/Biostat 571

T T T
—4.0 —3.5 —3.0
IKe Ka

Subject

T T T T T T T
-3.0 —2.5 -2.0 -1 o 1 2 3

Figure 23: 95% confidence intervals for each of the three parameters and 12

individuals.
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NLMEM for Theophylline
The mean concentration at time point t is

Dikeikai

f(ni,tiy) =

Cli(kqi —

where D is the initial dose and

with b; = [bli, b, bgi]T ~ N3 (0, D)

logk@i
log kei
log C1;

Exploratory Plots/Analyses

> library(nlme); data(Theoph); (Theoph)
> TheoSTS.nls <- nlsList(conc”SSfol(Dose, Time, 1lKe, 1Ka, 1Cl),data=Theoph)

> TheoSTS.nls
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{exp(—keitij) — exp(—kaitij)}

81 + bis
B2 + ba;
B3 + b3
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Model: conc ~ SSfol(Dose, Time, 1Ke, 1Ka, 1Cl) | Subject

Coefficients:

1Ke
-2.307332 O.
-2.280370 -0.
-2.386437
.321530
.508073
-2.286108
-2.436494
-2.446088
12 -2.248326 -0.
10 -2.604148 -0.
1 -2.919614 O.
5 -2.425486 O.

© PN WEHE 0O NO®
[
I
NN
N © O O = O

1Ka
1516234
3860511

.3188339
.3478239
.8975422
.6640568
.1582638
.1821879

1828442
3631216
5751612
3862853

Degrees of freedom: 132

Residual standard error:

-2.
-2.
-3.
-2.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
total; 96 residual
0.7001921

1C1
973242
964335
069111
860397
229965
106317
286087
420774
170158
428271
915857
132600

> plot(intervals(TheoSTS.nls))
> pairs(coef (TheoSTS.nls))
> plot(augPred(TheoSTS.nls))
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Figure 24: Non-linear LS estimates for 12 individuals.
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Figure 25: Fitted curves from non-linear LS.
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Likelihood Inference for the NLMEM
See Pinheiro and Bates (2000, Chapter 7).

The likelihood is, as usual, obtained by integrating out the random effects:

L(B,a) = (2n02)~N/2(2m)~™/2|D|~™/2
s (y; — F)"(y; — f) b D 'b;
X Z'_1_[1/exp [— 202 — 5 db;.

where f; is made up of terms f(n;;,ti;), i =1,....m, j=1,...,n;.
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Laplace Approximation in the NLMEM
See Pinheiro and Bates, Chapter 7.

We wish to evaluate
p(y: | B0 = (2m0%) /2 (2m) "D/ | D2 [ explnig(bi)} db,
where
—2n,9(bi) = [y; — £;(B,bi, )] [y; — £i(B,bi, )] /o? + b D™ 'b;.
A Laplace approximation is a second-order Taylor series expansion of g about

b; = arg min —g(b;)

K2

which will not be available in closed form for a non-linear model.
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The nlme algorithm

Within nlme an algorithm, introduced by Lindstrom and Bates (1990) is used.
The algorithm alternates between two steps:

Penalized Non-linear Least Squares (PNLS)

Condition on the current estimates of D and 52 and then minimize

o

ig Z(yz —F) (v — fi) + biﬁ_lbi,
1

€ ;—

to obtain estimates B, 31, ...,Em, which may be viewed as finding the posterior
mode for B and by, ..., by, .
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Linear Mized Effects (LME)
Carry out a first-order Taylor series of f; about ,/B\,BZ

This results in a linear mixed effects model which can be maximized to obtain

estimates of D and o2.

We have likelihood
_ _ 1 _
L(B,a) =| D |7™/? o] N/GXP{—§ Z(yz ~f) "y, — f;) b/ D 1bi} db;
i=1
where f, = f(B,b;,x;),i=1,...,m.

Carry out a first-order Taylor series expansion of f, about the estimates,

~(k ~(k
obtained in the PNLS step at iteration k, of 3 and b;, call these ,8( ) and bz(- ).
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Specifically
FiB.6) ~ £ (BY.87) 43P (8-8") +2 (b - 6:")

where
z0 _ 9%
‘ 0BT B(k)755k)
sk 9
3 ™| N
This gives
y, — fi(B,bi) = yl(,k) — 5Ek)ﬂ _ Egk)bi
where

(k) o(k ~ ~(k —~ ~(k
v = oy -5 (B 8") + 2B + 2V
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The integral can now be evaluated in closed-form to give the log-likelihood

1 & ~ 1 & . 1 ~
o) =—3 > log Vil = 2> (w") — 2V BTV (Vi —2:0)
i=1 =1

where

V=2 DM 021,
which may be maximized to give ML estimates. REML estimates are obtained
by adding the term

1 & ~(B)TS ~(k

—§Zlog ] :135 ) Vz-(a)arzz(. ) ]
=1

The Laplace approximation is generally more accurate than the LB algorithm,

it is, however, more computationally expensive.
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Asymptotic Inference

Under the LB algorithm, the asymptotic distribution of the REML estimator ,@

1S
m 1/2
ro—1 ~
<Zi1’3ZTVZ wz) (B—=B) —a Npt1(0,Ip41),
i=1

where &; = ﬁgk) with k the final iteration, 1 = 1,...,m

Similarly, the asymptotic distribution of « is based on the information as

calculated from the linear approximation to the likelihood.
The LB estimator is inconsistent if the n;’s are fixed and m — oo.

Empirical Bayes estimates for the random effects are available, but caution
should be given to using these for checking assumptions since they are strongly
influenced by the assumption of normality being correct. If n; is large then this
will be less of a problem.
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Approaches for NLMEMs

Various other approaches to likelihood inference have been suggested, we briefly

summarize.

In general we need to carry out m integrals of dimension ¢ + 1 for each
likelihood evaluation, so with large m and ¢ this can be computationally

expensive.
First-Order Approximation

Let B, = ;3 + b;, and then carry out a first-order Taylor series about
E[b;] = 0 to give
of; 9B,

y, = F:(8;) + e = fi(x:iB) + 3—131 b,

b, + €;.

In contrast to the LB algorithm which considered an expansion about the
subject-specific mean, the expansion here is about the population-averaged
mean. The first-order estimator is inconsistent and has bias even if n; and m
go to infinity, see Demidenko (2004, Chapter 8)

Adaptive Gaussian quadrature may also be used.
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Example: NLMEM for Pharmacokinetics of Theophylline

> Theo.nlme <- nlme(TheoSTS.nls,fixed=1Ke+1Ka+1Cl~1,random=1Ke+1Ka+1C1l~1,data=Theoph)
> summary (Theo.nlme)
Nonlinear mixed-effects model fit by maximum likelihood
Model: conc ~ SSfol(Dose, Time, 1Ke, 1Ka, 1Cl) Random effects:
Formula: list(lKe ~ 1, 1Ka ~ 1, 1C1 ~ 1)
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr

1Ke 0.1310435 1Ke 1Ka
1Ka 0.6377804 0.012
1C1 0.2511766 0.995 -0.089

Residual 0.6818265

Fixed effects: list(lKe ~ 1, 1Ka ~ 1, 1C1 ~ 1)
Value Std.Error DF  t-value p-value

1Ke -2.432671 0.06302415 118 -38.59903 0.0000

1Ka 0.451410 0.19624487 118 2.30024 0.0232

1C1 -3.214452 0.08059540 118 -39.88382 0.0000

Correlation:

1Ke 1Ka

1Ka -0.143

1C1 0.854 -0.131

Number of Observations: 132 Number of Groups: 12

> plot(augPred(Theo.nlme))

> plot(compareFits(coef (Theo.nlme), coef(TheoSTS.nls)))
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Figure 26: Fitted curves from NLMEM fit.
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Figure 27: Comparison of non-linear LS and NLMEM estimates.
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The following commands produced Figures 28—-31.

* V V V ® H V
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plot(Theo.nlme,resid(.,type="n") "fitted(.),id=0.05,adj=-1) # id=0.05 gives
outliers outside of 95/, of distn, adj=-1 adjusts the text which

labels these outliers

plot(Theo.nlme,resid(.,type="n") "Time,id=0.05,adj=-1)

qggnorm(Theo.nlme)

plot(augPred(Theo.nlme,level=0:1)) # Obtain predictions at population and

individual level of hierarchy

The population curves differ here because of the different doses.

There appears to be problems with the assumed mean-variance relationship

here.
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Figure 28: Standardized residuals versus fitted values.
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Figure 29: Standardized residuals versus time.
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Figure 30: QQ plot of normalized residuals.
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Theophylline Data

We now fit the model
Dikgikes

Gl (s — bog) (P heatia) = exp(—haitiy)} | + i

log yij = log

with €;; ~ N(0,02), to attempt to stabilize the variance.

We reparameterize as
Eflogy;;] = logD;+ 6o; + 615 — 02; — log(e0i — e%1i)
+ loglexp(—e~1it;;) —exp(—e%0ity;)]
where

0o; = logka; = Bo + bio
01; = logke; = B1+bi1
02; = logCl; = B2 + b;2

We can no longer use the in-built model function so we build the model from
scratch. We also have to remove the observations at t = 0 and zero
concentrations. Unfortunately the fits don’t look a lot better — some model
inadequacy here.

Point estimate for E[log k] is the only parameter that changes substantively.

312

2009 Jon Wakefield, Stat/Biostat 571

nlme for Theophylline model 2

> library(nlme); data(Theoph); (Theoph); Theoph2 <- Theophl[conc>0 & Time>O0,]
> logmod <- nlme(model = log(conc) ~ log(Dose) + theta0 + thetal - theta2 -
log( exp(thetal)-exp(thetal) ) + log( exp(-exp(thetal)*Time) - exp(-exp(thetal)*Time) ),
fixed="thetaO+thetal+theta2”1,data=Theoph2,random=thetalO+thetal+theta2”1,
start=c(theta0=0.45,thetal=-2.4,theta2=-3.2) )
> summary (logmod)
Nonlinear mixed-effects model fit by maximum likelihood

Model: log(conc) ~ log(Dose) + thetaO + thetal - theta2 - log(exp(thetaO) - exp(thetal)) + log(e
Random effects:

Formula: list(thetaO0 ~ 1, thetal ~ 1, theta2 ~ 1)

Level: Subject

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
theta0 0.6552241 thetaO thetal
thetal 0.1194242 -0.190
theta2  0.2394020 -0.137 0.998
Residual 0.1714818
Fixed effects: “"theta0 + thetal + theta2 " 1
Value Std.Error DF  t-value p-value

theta0 0.231978 0.20309964 106 1.14219 0.2559
thetal -2.414752 0.04811560 106 -50.18647 0.0000
theta2 -3.211060 0.07290759 106 -44.04287 0.0000
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Figure 32: Standardized residuals versus fitted values.
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Figure 33: Standardized residuals versus time.
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Figure 34: QQ plot of normalized residuals.
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Bayesian Approach

A Bayesian approach adds a prior distribution for 3, &, to the likelihood

L(B, o). As with the linear model proper prior is required for the matrix D. In
general a proper prior is required for 3 also, to ensure the propriety of the
posterior distribution. Closed-form inference is unavailable, but MCMC is
almost as straightforward as in the LMEM case. The joint posterior is

P(B1s s By B Wb | y) o< [ [ {p(y; | By, 1p(B; | B, W)} 7(B)m(7)m(W).
=1
Suppose we have priors:
B ~ Ngt1(Bo, Vo)
T ~ Ga(ao,bo)
W ~ W(H-l (T7 R_l)

The conditional distributions for 3, 7, W are unchanged from the linear case.
There is no closed form conditional distribution for 3;, which is given by:

p(IBZ | ﬂa T, Wa y) Ocp(yz | 187;)7—) X p(ﬁz | 187 W)

but a Metropolis-Hastings step can be used.
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Example: Theophylline Prior Specification

We begin with the obvious parameterization:

logke; = B1+ b1
logksi = P2+ by
logCl; = (33 +b3;

with b; = [bh‘, ba;, bgi]T ~ N3 (0, D)

We assume independent normal priors for the elements of 3, centered at 0 and
with large variances (recall that we need proper priors).

For D we assume a Wishart(r, R) with » = 3 and zero off-diagonal elements.
We choose the diagonal elements with the following rationale.

Consider a generic “natural” parameter ¢ (for example, ke, kq or Cl) for which
¢ ~ LogNormal(u, 02).

Pharmacokinetics have insight into the coefficient of variation for 6,
ie. CV(0) =sd(0)/E[0].
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We have
E[)] = exp(u+0°/2)
var(0) = E[0]%(e” —1)
sd(d) = E[g\/eo® —1
E[0)o
CV(e) = o

Hence v/ D;; is approximately the coefficient of variation, which allows a prior
to be placed. In the Theophylline example we choose a prior guess of 20% CV,
ie. R;; =0.04,7=1,2,3.

For inference: exp(u — o), exp(u), exp(u + 02 /2) are the mode, mean and
median of the population distribution of 6, and exp(u £+ 1.960) is a 95%
interval for 0 in the population.
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Functions of Interest
In pharamacokinetics there is interest in quantities such as the terminal half-life

log 2
ke

ty/2 =
Since log ke ~ N(B1, D11),

logt1 /2 ~ N(logllog 2] — 1, D11)

Other parameters are not simple linear combinations, e.g. time to maximum

" ]. 1 ka
X = -——— O —
max = e 8 \ I

and the maximum concentration

Dka
E[Yltmax] = m {exp(—k‘etmax) - eXP(—katmax)}

D [ ka ka/(ka—ke)
P
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WinBUGS for Theophylline

model

{

for( i in1 : N ) {

for( jin1 : T ) {

Y[i , j1 ~ dnorm(muli , j],eps.tau)

mul[i , j] <- Dose[il*exp(thetal[i,1] + thetal[i,2] - thetal[i,3]) *
(exp(-exp(thetali,1])*time[i,j]) - exp(-exp(thetali,2])*timel[i,jl) )/
(exp(thetali,2])-exp(thetali,1]))

}

thetal[i, 1:3] ~ dmnorm(beta[1:3], Dinv[1:3, 1:3])

ke[i] <- exp(thetali,1])

kal[i] <- exp(thetali,2])

C1[i] <- exp(thetali,3])

¥

eps.tau <- exp(logtau)

logtau ~ dflat()

sigma <- 1 / sqrt(eps.tau)

beta[1:3] ~ dmnorm(mean[1:3], prec[1:3, 1:3])

kemed <- exp(betall])

kamed <- exp(betal2])

Clmed <- exp(betal3])

Dinv[1:3, 1:3] ~ dwish(R[1:3, 1:3], 3)

D[1:3, 1:3] <- inverse(Dinv[1:3, 1:3])
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for (i in 1 : 3) {sdD[i] <- sqrt(D[i, il) }

}

DATA

list( N = 12, T = 11,Dose=c(4.02,4.4,4.53,4.4,5.86,4,4.95,4.53,3.1,5.5,4.92,5.3),

Y = structure(.Data = c(0.74,2.84,6.57,10.50,...,4.57,1.17),

.Dim = c(12,11)),

time = structure(.Data = ¢(0.00,0.25, ...,7.07,9.03,12.05,24.15),.Dim = c(12,11)),

mean = c(0,0,0),R = structure(.Data = ¢(0.2, 0, 0,0, 0.2, 0,0, 0, 0.2), .Dim = c(3, 3)),
prec = structure(.Data = c(1.0E-6,0,0,0,1.0E-6,0,0,0,1.0E-6),.Dim = c(3, 3)))

INITS

list(theta = structure(.Data = c¢(-2.2,0,3,-2.2,0,3,-2.2,0,3,-2.2,0,3,-2.2,0,3,-2.2,
0,3,-2.2,0,3,-2.2,0,3,-2.2,0,3,-2.2,0,3,-2.2,0,3,-2.2,0,3), .Dim = c(12, 3)),

beta = ¢c(-2, .1, -3), Dinv = structure(.Data = c(1, 0, 0,0, 1, 0,0, 0, 1), .Dim = c(3, 3)),
logtau = 0)

The first time this model was run with two chains the second chain flipped
between two non-identifiable regions in the parameter space
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Figure 35: Demonstration of flip-flop behavior.
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Bayesian analysis of Theophylline Data

Likelihood Bayes
Parameter | Estimate (s.e.) | Estimate (s.d.)

51 -2.43 (0.06) -2.45 (0.09)

Ba 0.45 (0.20) 0.47 (0.21)

B3 -3.21 (0.08) -3.22 (0.09)
VD11 0.13 (-) 0.22 (0.06)
VD2 | 0.64 () 0.69 (0.18)
VD33 0.25 (-) 0.29 (0.07)

Table 14: Comparison of likelihood and Bayesian estimation techniques. For the
likelihood summaries we report the MLEs and the asymptotic standard errors,
while for the Bayesian analysis we report the mean and standard deviation of

the posterior distribution.

Inference is very similar between the two approaches (the Bayesian summaries

are based on a second run that did not flip-flop).
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Theopylline: A Second Model

We now constrain the parameters so that k,; > ke; > 0 via the

parameterization:
01; = logke; = 81+ by;
O2; = log(kai — kei) = B2 + ba;
03; = logCl; = B3+ bz;

with b; = [b14, bai, b3i]T ~ N3(0, D). Note this is a different model since the
prior is different.

Hence
kei = exp(bhi)
kai = exp(01:) + exp(02i)
Cl; = exp(0s:)

Note that:

Elka] = E[exp(61) + exp(62)] = /1 TVD11/2 4 of1+VD11/2
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WinBUGS code for second model

model

{

for( i in1 : N ) {

for( jin1 : T ) {

Y[i , j]l ~ dnorm(muli , jl,eps.tau)

mul[i , j] <- Dose[il*exp(thetal[i,1])*(exp(thetali,1])+exp(thetali,2]))*
exp(- thetal[i,3]) * (exp(-exp(thetali,1])*time[i,j]) - exp(-(exp(thetali,1])+
exp(thetal[i,2]))*time[i,j]) )/exp(thetali,2])

}

thetal[i, 1:3] ~ dmnorm(beta[1:3], Dinv[1:3, 1:3])

ke[i] <- exp(thetali,1])

kal[i] <- exp(thetali,1])+exp(thetali,2])

C1[i] <- exp(thetali,3])

}

eps.tau <- exp(logtau)

logtau ~ dflat()

sigma <- 1 / sqrt(eps.tau)

beta[1:3] ~ dmnorm(mean[1:3], prec[1:3, 1:3])

kemean <- exp(beta[1]+sqrt(sdD[1,1]))

kamean <- exp(beta[1]+sqrt(sdD[1,1]))+exp(betal[2]+sqrt(sdD[2,2]))

Clmean <- exp(betal[3]+sqrt(sdD[2,2]))

kemed <- exp(betall])

Clmed <- exp(betal[3])
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Dinv[1:3, 1:3] ~ dwish(R[1:3, 1:3], 3)

D[1:3, 1:3] <- inverse(Dinv[1:3, 1:3])

for (i in 1 : 3) {sdD[i] <- sqrt(D[i, il) }

}

Results:

node mean sd MC error 2.5% median 97.5), start sample
beta[1] -2.461 0.08436 0.003582 -2.629 -2.461 -2.296 5000 15001
beta[2] 0.413 0.2266 0.003567 -0.037 0.4132 0.868 5000 15001
beta[3] -3.229 0.09176 0.002393 -3.41 -3.23 -3.047 5000 15001
sdD[1] 0.2243 0.06038 0.002094 0.1367 0.2142 0.3687 5000 15001
sdD[2] 0.7277 0.1853 0.004157 0.4518 0.6993 1.168 5000 15001
sdD[3] 0.2839 0.07131 0.002151 0.1779 0.2726 0.457 5000 15001
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Generalized Estimating Equations

If interest lies in population parameters then we may use the estimator B that
satisfies

G(B o) = ZD;FWzil(Yl — ;) =0,
=1

where D; = %‘g, W, = W,(83, &) is the working covariance model, p; = u;(3)

and & is a consistent estimator of . Sandwich estimation may be used to
obtain an empirical estimate of the variance, V g:

m -1 m m
(ZD?W;lDz) {ZD;-FW;lcov(Yi)Wi_lDi} (Z DiTWZ._lD,L->
=1 =1 =1

We then have

—1

-1/2,%
V2B~ B) —a N(0,I).
In practice an empirical estimator of cov(Y;) is substituted to give Vﬁ.

GEE has not been extensively used in a non-linear (non-GLM) setting. This is
probably because in many settings (e.g. pharmacokinetic/pharmacodynamic)
interest focuses on understanding between individual-variability, and explaining

this in terms of individual-specific covariates.

328



