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CHAPTER 14: MISSING DATA

A serious problem in data analysis is the existence of missing data. We

concentrate on missing responses in a dependent data situation.

Implications of missing data:

1. Data are unbalanced – not a problem given modern regression techniques.

2. Information loss.

3. Depending on the mechanism of missingness, bias in estimation may result.

Missing data can arise in numerous ways, and understanding the mechanism is

crucial to appropriate modeling assumptions.

In a longitudinal study, if drop-out occurs at a certain time then no additional

data are observed after that point.
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Examples:

1. In a health-air pollution study an individual may be unavailable for

measurement because he/she took a job in another area.

2. In a clinical trial, patients may be removed from the study if their

longitudinal measurements are below/above some limit.

3. Censoring – measurement instruments may be inaccurate below a lower

limit of detection, this limit is then reported.

4. The value of the outcome may itself determine the missingness, but the

outcome is unobserved.

In 1, the missingness will not be a problem unless the person moved area

because of health problems. In 2, the missingness will be a function of the

responses on previous occasions, while in 3 and 4 it depends on the actual

measurement that would have been recorded.
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Example: Simulated Data

Data were simulated in which the data (m = 200, ni = 10, i = 1, ..., m) were

generated from a linear mixed model in which intercepts and slopes are random

(and independent), with measurement error and β0 = 100, β1 = −5.

Figure 40 shows the resultant data.

We then simulated drop-out by a mechanism in which if the outcome falls below

65, the subsequent observations are lost (but we retain the initial one below 65).

Figure 41 shows the data that we actually observe (509 data points were lost).
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Figure 40: Full simulated data set: solid line is truth and dashed the LS line.
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Figure 41: Simulated data set with drop-out: solid line is truth and dashed the

LS line.
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Mechanisms of Missingness

The impact of missing data depends crucially on the mechanism of missingness,

that is the probability model for missingness.

We let Ri be a vector of response indicators for the i-th units so that

Rij =

8
<
:

1 if Yij is observed

0 if Yij is missing

We partition the complete data vector Y i = (Y O
i , Y M

i ) into those components

that are observed, Y O
i , and those that are missing Y M

i .

There are two ways of factoring the data:

p(Y , R | x) = p(Y | x) × p(R | Y , x)

p(Y , R | x) = p(Y | R, x) × p(R | x)

The first is known as a selection model (individuals are selected according to

their outcome), and the second as a pattern mixture model (we “mix” pattern

specific models). We concentrate on the former.
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Three situations are distinguished:

1. Missing completely at random (MCAR).

2. Missing at random (MAR).

3. Not missing at random (NMAR).

each of which we now discuss in detail.

Unfortunately the terminology is confusing!
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Missing Completely at Random (MCAR)

Data are MCAR if

Pr(Rij = 1 | Y O, Y M , x) = Pr(Rij | x),

so that the missingness does not depend on the response data, observed or

unobserved. Can depend on x, e.g. design in linear regression.

This implies that

E[Yij |Rij = 1, xi] = E[Yij |xi]

No selection bias.

Missing at Random (MAR)

Data are MCAR if

Pr(Rij = 1 | Y O , Y M , x) = Pr(Rij | Y O, x),

so that the missingness may depend on observed values.

This implies that

E[Yij |Rij = 1, xi] 6= E[Yij |xi]

which suggests that the GEE approach might be in trouble in terms of biased

parameter estimates.
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Not Missing at Random (NMAR)

If the missingness depends on Y M , i.e.

Pr(Rij = 1 | Y O, Y M , x) = Pr(Rij | Y O , Y M , x).

In this case the mechanism is also sometimes referred to as non-ignorable.

This selection bias is not fixable, since we don’t know the outcomes that caused

the problems. Models can be postulated, but are not checkable from the

observed data alone.

In general it is obviously best if we know why the data are missing.
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Approaches

Complete-case analysis

A simple approach is to exclude units that did not provide data at all intended

occasions. Clearly there is a loss of information in this process, and bias will

result unless the data are MCAR. Not to be recommended.

Available-case analysis

This approach uses the largest set of available data for estimating parameters.

Will provide biased estimates unless the data are MCAR.

Last observation carried forward

In a longitudinal setting we could simply “fill-in” the missing values,

extrapolating from the last observed value. As a general method not to be

recommended.

Imputation

An appealing approach is to “fill-in”, or impute, the missing values and then

carry out a conventional analysis. Complex models for the missingness can be

incorporated (closely related to data augmentation which we describe later).
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Likelihood-based approach

Let θ be the parameters of the model for Y , and φ the parameters for R.

In general, a natural way to decompose the data is

p(Y O , Y M , R | θ, φ) = p(Y O, Y M | θ, φ) × Pr(R | Y O, Y M , θ, φ)

= p(Y O, Y M | θ) × Pr(R | Y O, Y M , φ)

where we have also assumed that the data and missingness models have

distinct parameters.

We require a distribution for the observed data, Y O , R:

p(Y O, R | θ, φ) =

Z
p(Y O , Y M | θ) × Pr(R | Y O, Y M , φ) dY M .

This is an example of a selection model.
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Suppose we are in the MAR situation so that

Pr(R | Y O , Y M , φ) = Pr(R | Y O , φ).

In this situation the likelihood is given by

p(Y O, R | θ, φ) =

Z
p(Y O , Y M | θ) dY M × Pr(R | Y O, φ)

= p(Y 0 | θ) × Pr(R | Y O, φ)

Hence we have the log-likelihood

log p(Y 0 | θ) + log Pr(R | Y O, φ)

and can ignore the second term and don’t have to model the missingness

mechanism.

Important Point: We need to get the model right!!!
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Models for Drop-out

If the missingness is monotone, in the sense that if Rij = 0 then Rik = 0 for all

k > j, then we define the drop-out time as

Di = min
k

{Rik = 0}.

Hence 2 ≤ Di ≤ ni + 1, with Di = ni + 1 for an individual that does not drop

out.

The reason for drop-out may be that the individual was not responding well,

and their outcomes reflect this.

To examine this possibility we could fit logistic models of the form:

log

„
Pr(Di = k|Di ≥ k, Yi1, ...., Yik)

Pr(Di > k|Di ≥ k, Yi1, ...., Yik)

«
= φ0 + φ1Yik−1

and look for evidence that φ1 6= 0.
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GEE Approaches

Suppose that if the full data had been observed there would have been ni

observations on each individual, i = 1, ..., m.

We write the usual estimating equation as

G(β) =
mX

i=1

DT
i W−1

i Ri(Y i − µi)

where Ri is the diagonal matrix with elements Rij , j = 1, ..., ni.

For the estimator, bβ to be consistent we require G to be unbiased. The random

variables are now Y , R and so we have

EY,R[G(β)] = ER{EY |R[G(β)]}

=
mX

i=1

ERi
{EYi|Ri

[DT
i W−1

i Ri(Y i − µi)]}

=
mX

i=1

ERi
{DT

i W−1

i RiEYi|Ri
[Y i − µi]}

=

mX

i=1

ERi
{DT

i W−1

i Ri

`
EYi|Ri

[Y i] − µi

´
}
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Hence, to obtain an unbiased estimating equation we require

E[Y i | Ri, xi] = E[Y i | xi] = µi

so that we are fine under MCAR but not under MAR, since the distribution of

Y i | xi, Ri is different from that of Y i | xi under MAR.

To rectify the situation we need to modify the usual estimating equation.
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Let the probability of non-dropout given history be given by

πij = E[Rij | xi, Hi,j−1]

where Hi,j−1 = (Yi1, ..., Yi,j−1) contains the “history” of responses.

Consider the estimating equation:

mX

i=1

DT
i W−1

i P i(Y i − µi)

where P i is a diagonal matrix which contains terms Rij/πij , for j = 1, ..., ni.

We have

EY

(
mX

i=1

ER|Y

h
DT

i W−1

i P i(Y i − µi)
i)

= EY

(
mX

i=1

DT
i W−1

i ER|Y [P i](Y i − µi)

)
= 0

since E[P i] = I if πij is correctly specified.

In both GEE and likelihood we are basically accounting for the biased sampling

scheme of MAR; likelihood does this by assuming a model, while GEE adjusts

by modeling the probabilities of seeing the data.
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Simulation Study: True Model is random intercepts and slopes

Model bβ1 (s.e.) bβ2 (s.e.)

Full GEE ind 101.0 0.715 −5.084 0.109

Full GEE exch 101.0 0.715 −5.084 0.109

Full LMEM1 101.0 0.981 −5.084 0.037

Full LMEM2 101.0 0.720 −5.084 0.109

MAR GEE ind 95.0 0.894 −2.796 0.134

MAR GEED exch 98.8 0.787 −4.304 0.114

MAR LMEM1 98.8 0.837 −4.282 0.041

MAR LMEM2 100.1 0.722 −5.097 0.112

Table 15: Results of GEE and LMEM analyses of full and drop-out simulated

data, LMEM1 is random intercepts only, LMEM2 is random intercepts and

slopes. First four rows: full data, last four rows: reduced dataset under MAR.

• Bias for GEE is bad (particularly working independence).

• Bias for LMEM if we only assume random intercepts (terrible se on bβ2).

• LMEM with random intercepts and slopes recovers the truth.
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