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Further notes on GEE

• Intuitively: to restore the unbiasedness of the estimating equation for the

complete population we need to weight the contribution of Yij by the

inverse of πij .

• For unbiasedness of the estimating equation we require consistent

estimation of the dropout probabilities, given the history of responses and

covariates.

• The method can be extended to the case of informative dropout, in the

form of a sensitivity analysis.
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Bayesian Inference via Data Augmentation

Data augmentation is a auxiliary variable method that treats the missing

observations as unknown parameters – this can lead to simple MCMC schemes.

General formulation: we have posterior

p(θ, Y M | Y O) = p(θ | Y M , Y O)p(Y M | Y O)

= p(Y M | θ, Y O)p(θ | Y O)

MCMC scheme:

1. Auxiliary variables:

Y M ∼ p(Y M | Y O , θ).

2. Model parameters:

θ ∼ p(θ | Y O , Y M ).

The auxiliary variable scheme may be modified to p(Y M | Y O, θ) ∼ p(Y M | θ),

depending on the missing data model, as we now illustrate.
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Example: Censoring Model

Suppose we have data Yi measured at times ti, j = 1, ..., n, but measurements

below the lower limit of detection, D (assumed known) are not recorded. Also

suppose that the data generating model (likelihood) is:

Y | β, σ ∼ind N(η(β, t), σ2).

Clearly setting such measurements to zero or ignoring the measurements will

lead to bias in estimation.

Figure 42 illustrates for a set of simulated data in which the true slope was

-0.01; the slope estimates are -0.0099, -0.0095 and -0.0087 for the full data, set

equal to D and ignored schemes, respectively.
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Figure 42: All data (left), assigned to lower limit (middle), ignored (right).

Horizontal line is the lower limit of detection.
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Suppose that the last c measurements are censored, the remaining n − c being

uncensored. Then

p(y | θ) =

n−cY

i=1

p(yi | β, σ2)
nY

i=c+1

Pr(Yi < D | β, σ2)

=

n−cY

i=1

φ

„
yi − η(β, ti)

σ

« nY

i=c+1

Φ

„
D − η(β, ti)

σ

«

where

φ(z) = (2π)−1/2 exp(−z2/2)

and

Φ(z0) = Pr(Z < z0) =

Z z0

−∞
φ(z) dz

where Z is an N(0, 1) random variable.

To perform likelihood or Bayesian inference we need to numerically evaluate the

distribution function of a normal distribution for each likelihood calculation.
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Data Augmentation Scheme

Letting Y O = {Yi, i = 1, ..., n − c} and Y M = {Yi, i = n − c + 1, ..., n}, we

iterate between

1. yi | β, σ ∼ TruncNorm(η(β, ti), σ
2), on (−∞, D), i = n − c + 1, ..., n.

2. β | y1, ..., yn, σ2 ∝ Qn
i=1

p(yi | β, σ2)π(β). Usual (uncensored) posterior.

3. σ2 | y1, ..., yn, β ∝ Qn
i=1

p(yi | β, σ2)π(σ2). Usual (uncensored) posterior.
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CONCLUSIONS

We have looked at regression modeling for dependent data and have examined

three approaches to inference:

1. Likelihood-based:

• Likelihood inference.

• Bayesian inference.

2. Generalized Estimating Equations.

Issues:

• Assumptions for valid inference.

• Efficiency.

• Computation.

• Parameter interpretation.

• Flexibility in dealing with different types of or missing data.
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Likelihood Approach

We have examined Mixed Effects Models in which random effects are

introduced to induce dependencies.

Non-Linear Mixed-Effects Models:

yi = fi(β, bi, xij) + ǫi,

for mean function fi(·).
Generalized Linear Mixed Effects Models: Yij |β, bi, α ∼ p(·) where p(·) is a

member of the exponential family and, if µij = E[Yij |β, bi, α], then we have a

link function g(·), with

g(µij) = xijβ + zijbi,

with bi ∼iid N(0, D).
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For linear models we need an appropriate marginal mean-variance model, for

GLMM and NLMEMs it is more tricky...

In GLMMs and NLMEMs we require integration over the random effects — not

always trivial, and can be an issue — for binary data models this is still a big

problem. Asymptotics needed for inference.

Regular likelihood ratio tests are available for regression fixed effects — for

variance components the null distribution is of non-standard form. Mixtures of

χ2’s theoretical distributins are available for some null/alternatives, otherwise

simulate data under the null to determine significance.

For variance components, asymptotic interval estimates may not be accurate.

The choice of random effects is guided in part by data availability — if we have

small clusters then fewer random effects are supported.

Bayesian Approach

Takes the likelihood and adds priors to α.

MCMC/INLA needed for inference — no dependence on asymptotics.
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Generalized Estimating Equations

Take as estimator bβ that which satisfies

G(β, bα) =

mX

i=1

DT
i W−1

i (Y i − µi) = 0,

where Di = ∂µi

∂β
, W i = W i(β, α) is the working covariance model, µi = µi(β)

and bα is a consistent estimator of α

We obtain an appropriate standard error so long as we have independence

between “units” — m is the number of independent units.
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Parameter Interpretation

In the mixed effects models the regression coefficients have a conditional

interpretation, i.e. conditional on the random effects.

In GEE the regression coefficients have a marginal interpretation, i.e. averaged

across individuals within populations with specific values of covariates.
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Parameter Interpretation for a Linear Model

Consider the random intercepts LMEM:

Yij = β0 + β1tj + bi + ǫij (49)

E[Yij |bi] = β0 + β1tj + bi (50)

E[Yij ] = β0 + β1tj (51)

with bi ∼ N(0, σ2
0
), independent of ǫij ∼ N(0, σ2

ǫ ).

The expectation in (50) is with respect to “measurement error”, and is

within-unit averaging.

The expectation in (50) is with respect to the between-unit distribution of the

random effects.

Note that in each expectation we have explicitly conditioned on tj .

In this model, from (51), we can say that β1 is the average change, across the

population from which the units were sampled, in (average) response given a

unit increase in t.

Because we have random intercepts only, we can also say that, from (50), β1 is

the change in average response given a unit increase in t, for each individual.
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Now consider the the random intercepts and slopes LMEM:

Yij = (β⋆
0 + bi0) + (β⋆

1 + bi1)tj + ǫij (52)

E[Yij |bi] = (β⋆
0 + bi0) + (β⋆

1 + bi1)tj (53)

E[Yij ] = β⋆
0 + β⋆

1 tj (54)

with bi ∼ N(0,Σ).

In this model β⋆
1

is the average change, across the study population, in average

response given a unit increase in t. Because we have random slopes, β⋆
1

+ bi1 is

the change in average response given a unit increase in t, for individual i.

Because of linearity we can say that β⋆
1

is the average of the individual changes

in (average) response for a unit increase in t.
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Consider the GEE model:

E[Yij ] = γ0 + γ1tj

where the expectation is over within- and between-unit distributions.

Note that we have not made any assumptions about these distributions.

In this model γ1 is the average change, across the study population, in

(average) response given a unit increase in t.
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Parameter Interpretation for a Non-Linear Model

For simplicity we consider a binomial GLMM with a single measurement in

each unit:

Yi|pi ∼ Binomial(Ni, pi) (55)

log

„
pi

1 − pi

«
= β0 + bi, bi ∼ N(0, σ2) (56)

We have

E[Yi|pi] = E[Yi|bi] = Nipi(bi)

where this expectation is with respect to the binomial distribution.

We have

Ey,b[Yi] = EbEy|b[Yi|pi]] = NiEb[pi(bi)] ≈ Ni
exp(β0/

√
c2σ2 + 1)

1 + exp(β0/
√

c2σ2 + 1)

where c = 16
√

3/(15π). We also have

E

»
pi

1 − pi

–
= exp(β0 + σ2/2)

Interpretation of random effects distribution: Exchangeability for a Bayesian.

Superpopulation for a frequentist, i.e. hypothetical.
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Generalized Estimating Equations

The generic estimating equation for a p × 1 parameter is:

mX

i=1

DT
i W−1

i (Y i − µi)

where

• Di is the p × ni matrix of derivaties ∂µi

∂γj
,

• µi = µi(γ) and

• W i = λi(α)1/2Ri(α)λi(α)1/2 is the ni × ni working covariance matrix

for unit i, with

• λi(α) = diag[var(Yi1), ..., var(Yini
)]T, where the variances are the

“nominal” forms suggested by the family, e.g. binomial.

• Ri is a working correlation structure, for example, independence or

exchangeable.
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Simple Example

In the “binomial” example:

E[Yi] = E[Yi|Ni] = Nip = Ni
exp(γ0)

1 + exp(γ0)

where the expectation is with respect to within-unit and between-unit sampling.

Note that we could also condition on covariates: E[Yi|xi].

Parameter interpretation: exp(γ0) is the odds of the event across the study

population.

It is not directly comparable with exp(β0 + σ2/2) since the latter is the average

of the odds.

We give an example to demonstrate.
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Numerical Example: The illiteracy data for native-born whites

As an example we consider the native-born white data across states:

mX

i=1

DiW
−1

i (Yi − µi)

We have

µi = Nip = Ni
exp(γ0)

1 + exp(γ0)

Di = Nip(1 − p) = Ni
exp(γ0)

[1 + exp(γ0)]2

Wi = αNi
exp(γ0)

[1 + exp(γ0)]2

so that α is the scale parameter that multiplies the nominal binomial variance.
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The estimating equation is:

G(γ0) =
1

α

mX

i=1

„
Yi − Ni

exp(γ0)

1 + exp(γ0)

«
= 0

so that the solution is

bγ0 = log

» P
i YiP

i(Ni − Yi)

–
.

This confirms that we are estimating the odds of illiteracy in the US.

The variance is given by

var(bγ0) = A−1BA−1

with

A = E

»
∂G

∂γ0

–
= − 1

α

mX

i=1

Ni
exp(γ0)

[1 + exp(γ0)]2
= −N+

α
p(1 − p)

B = cov(G) =
1

α2

mX

i=1

var(Yi) =
1

α2

mX

i=1

(Yi − Nip)2 =
1

α2

mX

i=1

N2
i

„
Yi

Ni
− p

«2
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Estimation of α

Various options are available for estimation of α, including the quasi-likelihood

estimator, method of moments type estimator. Since

α =
1

m
E

ˆ
(Y − µ)TV −1(Y − µ)

˜
=

1

m
E

"
mX

i=1

(Yi − µi)
2

Vi

#

(where V is the nominal variance and is diagonal), an unbiased estimator

would be

bα =
1

m

mX

i=1

(Yi − µi)
2

Vi

A “degrees of freedom” (but in general biased) estimator is:

bα =
1

m − 1

mX

i=1

(Yi − Nibp)2

Nibp(1 − bp)

=
1

m − 1

mX

i=1

Ni

“
Yi

Ni
− bp

”2

bp(1 − bp)
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Forms of Variance

Under the model, A = −B, and

var(bγ0) = −A−1 =
α

N+p(1 − p)

which is estimated by:

cvar(bγ0) =
bα

N+bp(1 − bp)

The robust sandwich estimator is given by:

var(bγ0) =
B

A2
=

Pm
i=1

N2
i

“
Yi

Ni
− p

”2

N2
+

p2(1 − p)2

which is estimated by

cvar(bγ0) =

Pm
i=1

N2
i

“
Yi

Ni
− bp

”2

N2
+

bp2(1 − bp)2
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Numerical Calculations

> illitw <- illit[race==1]

> totalw <- total[race==1]

> statew <- state[race==1]

> geemod0w <- gee(cbind(illitw,totalw-illitw)~1,id=statew,family=binomial,

corstr="exchangeable")

> summary(geemod0w)

Model:

Link: Logit

Variance to Mean Relation: Binomial

Correlation Structure: Exchangeable

gee(formula = cbind(illitw, totalw - illitw) ~ 1, id = statew,

family = binomial, corstr = "exchangeable")

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -4.202025 0.1738016 -24.17714 0.1847846 -22.74012

Estimated Scale Parameter: 32831.03

# Noe let’s construct by hand:

> Nsum <- sum(totalw)

> phat <- sum(illitw)/Nsum

> gamma0hat <- log(phat/(1-phat))

> gamma0hat

[1] -4.202025

> resid <- illitw/totalw-phat
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> alphahat <- (1/48)*sum(totalw*resid^2)/(phat*(1-phat))

> alphahat

[1] 32831.03

> Aterm <- Nsum*phat*(1-phat)/alphahat

> Bterm <- sum(totalw^2*resid^2)/alphahat^2

> robustvar <- Bterm/Aterm^2

> sqrt(robustvar)

[1] 0.1847846

> modelvar <- 1/Aterm

> sqrt(modelvar)

[1] 0.1738016
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Model Checking

For LMEMs and NLMEMs model checking can be carried out reasonably well

so long as their are some individuals with larger ni — individual fits may then

be carried out, with bβi’s being examined.

Fo GLMMs with binary data it is very difficult to diagnose problems with the

model — multiple observations within clusters are more conducive to diagnosis

of problems.

An important assumption is of a constant random effects distribution across

covariate groups.
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Final Comment

Dependent data are complex and difficult to analyze, but don’t be afraid to

apply different techniques.

Each of likelihood, Bayes and GEE have strengths and weaknesses, but can

often be used in a complementary fashion.

Care is required in interpretation of parameters, however.

The End!
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