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Latent Gaussian Models

� Assume yi belongs to exponential family

� Let E [yi ] = µi be linked to a ηi : g(µi) = ηi

ηi : Structured Additive Predictor

ηi = α +

nf∑
j=1

f (j)(uji) +

nβ∑
k=1

βkzki + εi .

� Define x as all ηi , {f (j)}, βk , and α
such that π(x|θ) ∼ N(0,Q(θ))

� θ are hyperparameters to which we can assign priors
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Possible Applications

These models are very flexible

� Regression Models: ηi = α +
∑nβ

k=1 βkzki
e.g. [2]

� Dynamic Models: include temporal dependence by
defining f (·) and u such that f (ut) = ft
e.g. [4]

� Spatial Models: include spatial dependence by defining
f (·) and u such that f (us) = fs
e.g. [1]
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An example: London Suicides

Suicide mortality rate in 32 London boroughs (1989-1993)

yi ∼ Poisson(λi), λi = ρiEi

Linear predictor on log scale:
ηi = log(ρi) = α + µi + νi

Besag-York-Mollie [1] :
µi |µj 6=i ∼ N(mi , s

2
i )

mi =
∑

j∈N(i) µj

#N(i)
, s2

i =
σ2
µ

#N(i)

Unstructured residuals:
νi ∼ N(0, σ2

ν)

Suicides by Borough (1989−1993)
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What we want

� In terms of the original formulation, µi = f1(i) and
νi = f2(i), are two area specific effects

� We can assume priors to the hyperparameters
e.g. τµ, τν ∼ logGamma(1, .005)

We would like

� Posteriors for the parameters: π(x|y)

� Posteriors for the hyperparameters: π(θ|y)
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Possible Approaches

� Monte Carlo Markov Chains: construct a markov chain
that has the desired distribution (posteriors of the
parameters) as the equilibrium distribution

� Variational Bayes [3]: approximate the joint density of
p(x,θ) by minimizing the Kullback-Leibler contrast of
π(x,θ|y) with respect to p(x,θ)

� Expectation Propagation [5]: approximate the joint
density of p(x,θ) by minimizing the Kullback-Leibler
contrast of p(x,θ) with respect to π(x,θ|y)
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Variational Bayes & Expectation Propagation

� Both often well approximate posterior modes

� VB and EP both require constraints on p(x,θ)
e.g. p(x,θ) = px(x)pθ(θ)

� VB can significantly underestimate posterior variances.
This has been seen in latent Gaussian models.

� Similarly, EP can overestimate posterior variances
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Monte Carlo Markov Chains

� Helped to make Bayesian inference tractable

� Asymptotically correct
→ MCMC errors can be made arbitrarily small
→ characterized by additive Op(N−1/2) errors

� Often have poor performance (slow) in latent Gaussian
models

� Inferential validity assumes convergence of the chain to
the equilibrium distribution
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Integrated Nested Laplace Approximations

� Implements numerical integration and analytical
approximations to avoid simulation
→ dodges convergence issues

� Gaussian approximations are appealing for latent Gaussian
models
→ often π(x|y) looks ‘nearly’ Gaussian

� Potentially introduce errors through approximations
→ MCMC errors seem preferable

� Number of hyperparameters should be kept small
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INLA in 3 steps

Step 1

� Approximate π(θ|y) with a Laplace approximation:

π̃(θ|y) ∝ π(x,θ, y)

π̃G (x|θ, y)

∣∣∣∣
x=x∗(θ)

� Approximate π(xi |θ, y) with a Laplace approximation

� Numerically integrate out θ from π(xi |θ, y) to
approximate π(xi |y)

Example - Gaussian Approximation
π̃(xi |θ, y) = N (xi ;µi(θ), σ2

i (θ))
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INLA in 3 steps

Step 2

� Approximate π(θ|y) with a Laplace approximation

� Approximate π(xi |θ, y) with a Laplace approximation:

π̃(xi |θ, y) ∝ π(x,θ, y)

π̃GG (x−i |xi ,θ, y)

∣∣∣∣
x−i=x∗−i (θ)

� Numerically integrate out θ from π(xi |θ, y) to
approximate π(xi |y)

Example - Gaussian Approximation
π̃(xi |θ, y) = N (xi ;µi(θ), σ2

i (θ))
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INLA in 3 steps

Step 3

� Approximate π(θ|y) with a Laplace approximation

� Approximate π(xi |θ, y) with a Laplace approximation

� Numerically integrate out θ from π(xi |θ, y) to
approximate π(xi |y):

π̃(xi |y) =
∑
k

π̃(xi |θk , y)π̃(θk |y)∆k
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Conclusion

� Latent Gaussian Models are a broad and useful class of
models

� Bayesian inference on these models has been difficult,
though MCMC can do it

� INLA can provide an accurate and (often faster) solution
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