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Latent Gaussian Models

Assume y; belongs to exponential family
Let E[y;] = p; be linked to a n;: g(ui) = n;

Structured Addltlve Predictor

—a+zf0) uji +Z/Bkzk:+€/

€;S are unstructured terms

fUs are unknown functions of the ujis

Bks are linear effects of zs

Define x as all n;, {fU)}, B«, and « such that
m(x|0) ~ N(0,Q(8))

0 are hyperparameters to which we can assign

priors
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The Laplace Approximation

e Assume we have a distribution of the following form:

py) oc e ™ Vp(y).

e We'll use the Laplace method to find expectations:

fq b _mh(Y)dy
E[q(y)]: fbye mhy)dy

Let x = v/m(y — ), where ¥ is the mode of g(y).
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The Laplace Approximation for Expectations

e We expand g, b, and h around ¥

B’ ()2 5 5 01,3
T2 @)+ DD 4 )b) + T g exp{ D g Y
E[CI(Y)] = 0’ (5)x2 L B (3
Je T2 [(b(j‘/)+L\/%)+...)exp{# + ... }dx

e So we can approximate this expectation by using a
N(0,[H(9)] ") distribution.

o After some more algebra (and expansions of ) you can
get the Laplace Approximation:

B0 o), 401

b(y) 20'(3)] W)

el ~ a0+ ()
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Density Approximations

Laplace Approx. INLA

courtesy of Dr. Cevher Rice University
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INLA in 3 steps

Step 1

o Approximate 7(8|y) with a Laplace approximation:

m(x,0,y)

~ 0 T —
7T( |y) X ﬁG(X|07Y) X:X*(e)

e Approximate 7(x;|0,y) with a Laplace approximation

e Numerically integrate out 8 from 7(x;|6,y) to
approximate m(x;|y)

Example - Gaussian Approximation
#(xil0,y) = N(x; 1i(0), 07(8))
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INLA in 3 steps

Step 2

e Approximate 7(8|y) with a Laplace approximation

o Approximate 7(x;|@,y) with a Laplace approximation:

7T(X7 07 y)
ﬁ'GG(Xfi’Xi, 97 y) x_i=x*(0)

7?(Xi‘07 y) X

e Numerically integrate out 8 from 7(x;|0,y) to
approximate 7(x;|y)
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INLA in 3 steps

Step 3

e Approximate 7(8|y) with a Laplace approximation
e Approximate 7(x;|@,y) with a Laplace approximation

e Numerically integrate out 8 from 7(x;|0,y) to
approximate 7(x;|y):

#(xly) = D #(xil0k, y)7(Orly) A



(1) Posterior Hyperparams

Obtaining 7(6\y)

Rearranging 7(x, 0,y) = 7(x|0,y) * 7(0]y) * 7 (y), yields that

7(x,0,y)
o) < T0y)

Our approximation is then:

(x,6.y)
ﬁG(x|07 y)
where x*(0) is the mode of the full conditional.

7?(9|Y) X ’x:x*(e)a

This is an application of the Laplace methods for integration.



(1) Posterior Hyperparams

Obtain 7¢(x|0,y) for 7(0|y)
By assumption, the latent field is a GMRF. As a result:

m(x|6,y) o exp (—%xTQx +) Iogﬂ(y;IXi)) :

we match the mode and the curvature at the mode to produce
the Gaussian approximation:

Felxl0.y) o exp (—5x ~x)7(Q + diag(e))(x - x) ).

where Q, ¢, and x* (the mode), are functions of 8.



(1) Posterior Hyperparams

Exploring 7(0|y)

We mainly need 7(0|y) to integrate out uncertainty with
respect to 8. We use grid exploration, nothing parametric.

¢ Locate mode of 7(@|y) via optimization of log7(@|y).
Call it 6.

e At 0" numerically compute the negative Hessian, H > 0,
and define X = H™1.

e We explore the @—space on the standardized z-axes.
0(z) = 6" + VA ?z,

where ¥ = VAV,



Laplace Approx. INLA (1) Posterior Hyperparams (2) Full Conditional Params (3) Posterior Params

Exploring 7(0]y)
Step out along the axes with step size §, until the density is
too small. We fill in the grid the same way. i.e. until

log[7(0ly)] — log[7(8(2)]y)] < 0x.

0.2 0.3 0.4
I

y.norm

0.1

0.0
I

x.f x.norm

Denote the saved grid locations as 6.



(2) Full Conditional Params

Obtaining 7(x;|0,y)

Unfortunately, the equivalent Laplace approximation

71.(X? 0k7Y)
Tee(x_ilxi, Ok, y)

ﬁ(x,-|0k,y) X

x_j=x* (x;,0)

is expensive, though it can be done. Instead, two
modifications are proposed to speed up computation.

First, we approximate the modal configuration by

X*_,-(X,'7 0) ~ Efrc [X_,'|X,'].



(2) Full Conditional Params

Obtaining 7(x;|0,y)

Second, we assume that only x; near to x; have an impact.
This eventually leads to a faster Laplace approximation:

Fra(xi|0k,y) o< N{xi, 1i(0), 77(04)} * exp(cubic spline(x;)),
where the cubic spline is fit to

log a(xi|Ok,y) — logie(xi|Ok,y).
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Putting it all together

Finally we obtain the marginals of interest for the latent field
by numerical integration.

F(xly) = > #(xi[0k y)7(Okly) A

k
will do it.



(3) Posterior Params

What's Next

¢ Now that you've suffered through the methodology, next
time there will be some examples!

e Comparison of INLA to MCMC - e.g. multimodal
situations

e Errors in INLA

Thanks everyone!
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