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In many data sets, characterizing the conditional
independencies is of great interest.

Gene Regulatory Networks: collection of DNA segments which
interact with each other indirectly through RNA and protein
expression.

Of great scientific interest to learn the structure of such
networks.

Authors methods allow one to infer such networks for
Gaussian data.
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Graphical Models

A graphical model is a probabilistic model in which conditional
independencies are encoded via graphical properties.

Formally, we have
A Graph G = (V ,E ) where V is set of nodes and E ⊂ V × V
is a set of edges.
If i , j ∈ V , then (i , j) ∈ E means that nodes i and j are
connected (may or may not be directed edge).
One-to-one correspondence between nodes and a set of
random variables
A graphical model describes a family of distributions p(xV )
over XV .
A rule r ∈ R is a predicate on a graph: r(p,G ) ∈ {true, false}.
The set of distributions which a graphical model describes is

F(G ,R) = {p :p is a distribution over XV and

r(p,G ) = true,∀r ∈ R}
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Bidirected Graphs

Bidirected graphs encode marginal independence properties.
In particular, we have the pairwise bidirected Markov property:

F(G ,Rbg ) = {p :Xu ⊥⊥ Xv

for all non-adjacent pairs u, v ∈ V (G )}

Example below has X5 ⊥⊥ X1:4, X3 ⊥⊥ X4,5, etc.
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Undirected Graphical Models

There are many rules for undirected graphs, all equivalent for
positive distributions.

Authors use pairwise Markov property rule:

F(G ,Rp) = {p :Xu ⊥⊥ Xv |XV \{u,v}

for all non-adjacent pairs u, v ∈ V (G )}

Example below has X3 ⊥⊥ X4|{X1,X2,X5},
X3 ⊥⊥ X5|{X1,X2,X4}, etc.
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Directed Acyclic Graphical Models

Conditional independence properties for directed acyclic
graphs (DAGs) can be stated in terms of conditioning on
parents, or directed factorization:

F(G ,Rdf ) = {p : p(x) =
∏
v∈V

p(xv |xpa(v))}

Example below has X3 ⊥⊥ X4|{X1,X2}, X3 ⊥⊥ X5|{X1,X2},
etc.
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Chain Graphical Models

For each v ∈ V , we now have a vector U(v) of variables.

First factorization is directed factorization over U; second
factorization is clique factorization representation of
undirected graphical model:

F(G ,Rcg ) = {p : p(xU) =
∏
v∈V

p(xU(v)|xpa(v))}

where for each v ∈ V we may write:

p(xU(v)|xU(pa(v))) ∝
∏

c∈C(v)

φc(xc).

Generalizes undirected and directed graphical models – more
specificity.

Authors give two different versions of chain graphs which I’ll
need to learn.
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Gaussian Graphical Models

Gaussian data can be viewed as any type of the preceeding
graphical models.

In particular, 0’s in the precision matrix Σ−1 correspond to
missing links in the undirected graphical model.

Taking the Cholesky decomposition of Σ−1 yields U ′DU,
where U is upper triangular with ones on the diagonal, and D
is diagonal.

Let U = (I − B). Bij = 0 for j > i implies no edge from node
j to node i .

Previous methods: backwards selection starting with full
graph, controlling error at each stage.

Problem: Overall error rate for false edge inclusion not
controlled.
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Authors’ Method

Undirect Case: Authors propose testing Hij : Xi ⊥⊥ Xj |XV \{i ,j}
vs. the general alternative.

Maximum likelihood estimate of covariance matrix in zero
mean case is S = 1

nX
′X where X ∈ Rn×p is a matrix of

observations.

ML estimate asymptotically normal.

Delta Method implies inverse is asymptotically normal. Let rij
be the sample partial correlation corresponding to link ij , and
ρij the corresponding population quantity.

rij asymptotically normal, and Fisher’s z-transform improves
asymptotics:

zij =
1

2
log

(
1 + rij
1− rij

)
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Authors’ Method 2

Authors derive p-values which control overall error of false
edge inclusion at level α.

πij = 1−
(
2Φ(
√
np|zij | − 1

)p(p−1)/2
Estimation procedure for estimating presence of edge eij :

êij(α) =

{
0, πij ≥ α
1, πij < α.

Authors state estimation procedure is conservative: can be
improved with Holm’s step-down procedure to form adjusted
p-values.

1− α ‘consistency’ result:

Pr(Ĝ (α) ⊆ G ) ≥ 1− α
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True (Population) Graph

p = 16 in this case.
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Estimated Graph: n = 128

Very conservative estimate for α = 0.05.

Adam Gustafson A SINful approach to Gaussian graphical model selection



Introduction Background Methods Simulation

Error Rates

‘1’ is Gaussian data. ‘2’ is Nonparanormal data.
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