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Introduction

@ In many data sets, characterizing the conditional
independencies is of great interest.

@ Gene Regulatory Networks: collection of DNA segments which
interact with each other indirectly through RNA and protein
expression.

@ Of great scientific interest to learn the structure of such
networks.

@ Authors methods allow one to infer such networks for
Gaussian data.
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Background

Graphical Models

@ A graphical model is a probabilistic model in which conditional
independencies are encoded via graphical properties.

o Formally, we have

o A Graph G = (V, E) where V is set of nodes and E C V x V
is a set of edges.

o If i,j € V, then (i,j) € E means that nodes i and j are
connected (may or may not be directed edge).

o One-to-one correspondence between nodes and a set of
random variables

o A graphical model describes a family of distributions p(xy)
over Xy.

o Arule r € Ris a predicate on a graph: r(p, G) € {true, false}.

e The set of distributions which a graphical model describes is

F(G,R) ={p:pis a distribution over Xy, and
r(p, G) = true,¥r € R}
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Background

Bidirected Graphs

o Bidirected graphs encode marginal independence properties.
In particular, we have the pairwise bidirected Markov property:

F(G,R) = {p X, 1L X,
for all non-adjacent pairs u,v € V(G)}
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Background

Undirected Graphical Models

@ There are many rules for undirected graphs, all equivalent for
positive distributions.
@ Authors use pairwise Markov property rule:

./—"(G, Rp) = {p ZXu iR Xv’XV\{u,v}
for all non-adjacent pairs u,v € V(G)}

e Example below has X3 1L Xy|{ X1, X2, X5},
X3 AL X5’{X1,X2,X4}, etc.
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Background

Directed Acyclic Graphical Models

e Conditional independence properties for directed acyclic
graphs (DAGs) can be stated in terms of conditioning on
parents, or directed factorization:

"T(G Rdf) = {P P H P Xv’ a(v)

vev

e Example below has X3 L Xu|{ X1, Xo}, X3 1L Xs|{X1, X2},
etc.
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Background

Chain Graphical Models

@ For each v € V, we now have a vector U(v) of variables.

@ First factorization is directed factorization over U; second
factorization is clique factorization representation of
undirected graphical model:

F(G,RE) ={p: p(xv) = ] plxuv) Xpa(v))}
veV
where for each v € V we may write:
p(xuexugpavy) < [ ¢elxe)-
ceC(v)
@ Generalizes undirected and directed graphical models — more
specificity.

@ Authors give two different versions of chain graphs which I'll
need to learn.
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Methods

Gaussian Graphical Models

@ Gaussian data can be viewed as any type of the preceeding
graphical models.

e In particular, 0's in the precision matrix ¥ ! correspond to
missing links in the undirected graphical model.

@ Taking the Cholesky decomposition of ¥~ yields U’DU,
where U is upper triangular with ones on the diagonal, and D
is diagonal.

o Let U= (/- B). Bjj =0 for j > i implies no edge from node
Jj to node J.

@ Previous methods: backwards selection starting with full
graph, controlling error at each stage.

@ Problem: Overall error rate for false edge inclusion not
controlled.
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Methods

Authors’ Method

@ Undirect Case: Authors propose testing H; : X; L X;| Xy i jy
vs. the general alternative.

@ Maximum likelihood estimate of covariance matrix in zero
mean case is S = %X’X where X € R"%P is a matrix of
observations.

@ ML estimate asymptotically normal.

@ Delta Method implies inverse is asymptotically normal. Let r;;
be the sample partial correlation corresponding to link ij, and
pij the corresponding population quantity.

@ rjj asymptotically normal, and Fisher's z-transform improves
asymptotics:
1 | 1 + r,-j
zi=—lo
iT2% 1oy
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Methods

Authors’ Method 2

@ Authors derive p-values which control overall error of false
edge inclusion at level a.

—-1)/2
mj = 1= (20(y/Aplz| - 1)7"

@ Estimation procedure for estimating presence of edge e;;:

3i(a) = 0, mj >«
v 1, mi<a.

@ Authors state estimation procedure is conservative: can be
improved with Holm's step-down procedure to form adjusted
p-values.

@ 1 — « ‘consistency’ result:
Pr(G(a) C G)>1—a
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Simulation

True (Population) Graph

@ p =16 in this case.
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Simulation

Estimated Graph: n = 128

@ Very conservative estimate for v = 0.05.
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Simulation

Error Rates

@ ‘1" is Gaussian data. ‘2" is Nonparanormal data.
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