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In many data sets, characterizing the conditional
independencies is of great interest.
Gene Regulatory Networks: collection of DNA segments which
interact with each other indirectly through RNA and protein
expression; wish to learn network structure.

Authors’ methods: infer structure for Gaussian data.
Adam Gustafson A SINful approach to Gaussian graphical model selection



Introduction Background Methods Simulation

Graphical Models

A graphical model is a probabilistic model in which conditional
independencies are encoded via graphical properties.

Formally, we have
A Graph G = (V ,E ) where V is set of nodes and E ⊂ V × V
is a set of edges.
If i , j ∈ V , then (i , j) ∈ E means that nodes i and j are
connected (may or may not be directed edge).
One-to-one correspondence between nodes and a set of
random variables.
A graphical model describes a family of distributions p(xV )
over XV .
A rule r ∈ R is a predicate on a graph: r(p,G ) ∈ {true, false}.
The set of distributions which a graphical model describes is

F(G ,R) = {p :p is a distribution over XV and

r(p,G ) = true,∀r ∈ R}
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Bidirected Graphs

Encode marginal independence properties.
The pairwise bidirected Markov property:

F(G ,Rbg ) = {p :Xu ⊥⊥ Xv

for all non-adjacent pairs u, v ∈ V (G )}
Example: X1 ⊥⊥ X3, X1 ⊥⊥ X4, X2 ⊥⊥ X3

Gaussian Case: Xu ⊥⊥ Xv ⇐⇒ Σu,v = 0, where Σ is the
covariance matrix of XV .
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Undirected Graphical Models

Encode conditional independence properties.

Authors use pairwise Markov property rule:

F(G ,Rp) = {p :Xu ⊥⊥ Xv |XV \{u,v}

for all non-adjacent pairs u, v ∈ V (G )}

Ex: X1 ⊥⊥ X4|(X2,X3), X1 ⊥⊥ X3|(X2,X4), X2 ⊥⊥ X3|(X1,X4),
etc.

Gaussian Case: Xu ⊥⊥ Xv |XV \{u,v} ⇐⇒ Kuv = 0, where
K = Σ−1.
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Directed Acyclic Graphical Models

Conditional independence properties for directed acyclic
graphs (DAGs) can be stated in terms of conditioning on
parents, or directed factorization:

F(G ,Rdf ) = {p : p(x) =
∏
v∈V

p(xv |xpa(v))}

Ex: p(x1:4) = p(x1)p(x2|x1)p(x4|x2, x3)p(x3)
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Directed Acyclic Graphical Models 2

Create partial order: renumber nodes such that u � v if
u = v or there is a directed path u → · · · → v . Not all nodes
comparable.

Create total order: Well-number partial order by setting i ≤ j
whenever i � j – may need to renumber again. Not unique.

The well-numbered pairwise directed Markov property states:

F(G ,Rwn) = {p :V is well-numbered ,Xu ⊥⊥ Xv |X{1,...,v}\{u,v}
⇐⇒ no directed path from u to v , u ≤ v}

Equivalent to directed factorization, but allows identifiability
of structure. Simplest Markov chain:

X1 → X2 : p(x1:2) = p(x2|x1)p(x1) = p(x1|x2)p(x2) =⇒ X2 → X1

Ex: X1 ⊥⊥ X3|X2, X2 ⊥⊥ X3|X1, X1 ⊥⊥ X4|(X2,X3).

Ex: swapping nodes 2 and 3 leads to well-numbering.
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Chain Graphical Models

For each v ∈ V , we now have a vector U(v) of variables.

First factorization is directed factorization over U; second
factorization is clique factorization representation of
undirected graphical model:

F(G ,Rcg ) = {p : p(xU) =
∏
v∈V

p(xU(v)|xpa(v))}

where for each v ∈ V we may write:

p(xU(v)|xU(pa(v))) ∝
∏

c∈C(v)

φc(xc).

Generalizes undirected and directed graphical models – more
specificity.

TODO: Two different versions of chain graphs: LWF and
AMP. Reading paper on these rules.
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Gaussian Graphical Models

Gaussian data can be viewed as any type of the preceeding
graphical models.

0’s in covariance matrix Σ correspond to missing links in
bidrected graphical model.

0’s in the precision matrix K = Σ−1 correspond to missing
links in the undirected graphical model.

Taking the Cholesky decomposition of K yields U ′DU, where
U is upper triangular with ones on the diagonal, and D is
diagonal.

Directed factorization: Let B = (I − U). Bij = 0 for j > i
implies no edge from node j to node i . Can well-number.

Previous methods: backwards selection starting with full
graph, controlling error at each stage.

Problem: Overall error rate for false edge inclusion not
controlled.
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Authors’ Method: Asymptotics

Gaussian Data: n samples, p-dimensional likelihood:

L(µ,K ) ∝ (detK )n/2 exp{−tr(KX ′X/2)+µ′KX ′1p−nµ′Kµ/2}

Exponential Family: canonical paramter θ = (K ,Kµ),
canonical statistic T (X ) = (−X ′X/2,X ′1p).

L(µ,K ) ∝ exp{〈T (X ), θ〉 − [nθ′K−1θ/2− (n/2) log detK ]},

where 〈(S1, s1), (S2, s2)〉 = tr(S1S2) + s ′1s2.

Maximum Likelihood: For n > p, we have

µ̂ = X ′1p/n Σ̂ =
1

n
(X − x̄ ′ ⊗ 1n)′(X − x̄ ′ ⊗ 1n)

Delta Method: MLE asymptotically normal implies that
K̂ = Σ̂−1 also asymptotically normal. Depends on unknown
population covariance.
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Authors’ Method: Model Selection

Rescale: Sample partial correlations rij ·C(i ,j) asymptotically
normal, and Fisher’s Z-transform improves asymptotics and is
free of population partial correlations. rij ·C(i ,j) includes bias
correction depending on conditioning set C (i , j).

zij ·C(i ,j) =
1

2
log

(
1 + rij ·C(i ,j)

1− rij ·C(i ,j)

)
Model Selection: p(p − 1)/2 testing problems:

Hij : ρij ·C(i ,j) = 0 vs. Hij : ρij ·C(i ,j) 6= 0

Note: Z(ρij) = 0 ⇐⇒ ρij = 0.

Bidirected Graphical Model: C (i , j) = ∅.
Undirected Graphical Model: C (i , j) = V \ {i , j}.
Directed Acyclic Graphical Model: C (i , j) = {1, . . . , j}.
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Authors’ Method: Model Selection Continued

Authors derive p-values which control overall error of false
edge inclusion at level α. Undirected case:

πij = 2
(
1− Φ(

√
np|zij ·C(i ,j)|)

)p(p−1)/2
Similar expressions for bidirected and DAG cases.

Estimation procedure for estimating presence of edge eij :

êij(α) =

{
0, πij ≥ α
1, πij < α.

Authors state estimation procedure is conservative: can be
improved with Holm’s step-down procedure to form adjusted
p-values while controlling false edge inclusion at α.
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Authors’ Method: Guarantees

1− α ‘consistency’ result:

lim inf
n→∞

Pr(Ĝ (α) = Gfaithful) ≥ 1− α

Faithful represents to distributions that are precisely encoded
by the graph. In general, we have distributions which have
additional conditional independencies than what is encoded by
the graph.

False edge inclusion result:

lim sup
n→∞

Pr(Ĝ (α) ⊆ G )) ≤ α.

Guarantees only hold asymptotically. For finite n, may have
low power, may not control rate of false edge inclusion, or
both.
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Experiment: Undirected case

Vary n and set p = 16 with fixed sparse population graph.

n ∈ 25:10.

Monotinically transform marginals to create non-paranormal
data (a Gaussian copula) to test robustness.

Show false positive and false negative rates.

’1’ is gaussian data. ’2’ is non-paranormal data.
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True (Population) Graph

p = 16 in this case.
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Estimated Graph: n = 128

Very conservative estimate for α = 0.05.
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Error Rates: n = 32
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Error Rates: n = 64
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Error Rates: n = 128
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Error Rates: n = 256
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Error Rates: n = 512
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Error Rates: n = 1024
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Comments and Conclusions

Still have to do experiments for bidirected, directed, and chain
graph cases.

Method seems low power in terms of edge selection.

Method does seem robust to non-gaussian data with same
conditional indepenence structure.

Method requires a priori knowledge of the well-numbering for
directed and chain graphs – a very strong assumption.

Method is simple in terms of derivation and implementation.
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