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Introduction

@ In many data sets, characterizing the conditional
independencies is of great interest.

@ Gene Regulatory Networks: collection of DNA segments which
interact with each other indirectly through RNA and protein
expression; wish to learn network structure.

@ Authors’ methods: infer structure for Gaussian data.

Adam Gustafson A SINful approach to Gaussian graphical model selection




Background

Graphical Models

@ A graphical model is a probabilistic model in which conditional
independencies are encoded via graphical properties.

o Formally, we have

o A Graph G = (V, E) where V is set of nodes and E C V x V
is a set of edges.

o If i,j € V, then (i,j) € E means that nodes i and j are
connected (may or may not be directed edge).

o One-to-one correspondence between nodes and a set of
random variables.

o A graphical model describes a family of distributions p(xy)
over Xy.

o Arule r € Ris a predicate on a graph: r(p, G) € {true, false}.

e The set of distributions which a graphical model describes is

F(G,R) ={p:pis a distribution over Xy, and
r(p, G) = true,¥r € R}
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Background

Undirected Graphical Models

@ Encode conditional independence properties.
@ Authors use pairwise Markov property rule:

‘F(Gv RP) = {P Xy AL XV’XV\{U,V}
for all non-adjacent pairs u, v € V(G)}
o Ex: Xy UL Xq|(X2, X3), X1 1L X3|(X2, Xa), Xo 1L X3|(X1, Xa),

etc.
O—~

o Gaussian Case: X, 1L Xy[X\\fuy <= Kuv =0, where
K = Y1 is the precision or concentration matrix.
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Background

Directed Acyclic Graphical Models

e Conditional independence properties for directed acyclic
graphs (DAGs) can be stated in terms of conditioning on
parents, or directed factorization:

F(G Rdf) = {P P H P Xv’ a(v)
veVv

o Ex: p(x14) = p(x1)p(x2|x1)p(xalx2, x3)p(x3)
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Background

Directed Acyclic Graphical Models 2

@ Partial order: renumber nodes such that u < v if u=v or
there is a directed path u — --- — v. Not all nodes
comparable.

@ Total ordering: Can show always possible to create
Well-numbered ordering from partial order. Oreder satisfies
i < j whenever i =< j — may need to renumber again. Not
unique.

@ Example from DAG on previous slide: swapping nodes 2 and 3
leads to well-numbering as well.
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Background

Directed Acyclic Graphical Models 3

@ The well-numbered pairwise directed Markov property states:

F(G,R"") = {p:V is well-numbered , X, 1L X\ [X{1, v} fuv}
<= no directed path from u to v, u < v}

@ Equivalent to directed factorization, but allows identifiability
of structure.
o Consider the following three Bayesian Networks:

o uU—V—>w
@ U VW
Q UV —>Ww

@ Can show all three are equivalent in terms of their joint
distribution under directed factorization.
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Methods

Gaussian Graphical Models

@ Gaussian data: can be represented as any type of graphical
model.

@ 0's in the precision matrix K = ¥ 1 correspond to missing
links in the undirected graphical model.

@ Cholesky decomposition: K = U'DU, where U is upper
triangular with ones on the diagonal, and D is diagonal.

o Directed factorization: Let B = (/ — U). Bjj =0 for j > i
implies no edge from node j to node i. Can be well-numbered.

@ Previous methods:

o Backwards selection starting with full graph, controlling error
at each stage.
o Example: PC algorithm.

@ Problem: Overall error rate for false edge inclusion not
controlled.
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Methods

Authors’ Method: Asymptotics

@ Gaussian Data: n samples, p-dimensional likelihood:
L(p, K) o (det K)"2 exp{—tr(KX'X /2)+u' KX'1,—np' K /2}
e Exponential Family: canonical paramter § = (K, Kpu),
canonical statistic T(X) = (=X'X/2,X'1,).
L(p, K) o< exp{(T(X),0) — [n0'K10/2 — (n/2) log det K]},
where ((51, 51), (52, 52)) = tr(5152) + 5152.
@ Maximum Likelihood: For n > p, we have

~ o 1
p=X1/n T=-(X-X®1,)X-%X®1,)
n
© Delta Method: MLE asymptotically normal implies that
K = X1 also asymptotically normal. Depends on unknown
population covariance.
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Methods

Authors’ Method: Model Selection

@ MLE is functionally invariant: MLE for the partial correlations
given by sample partial correlations, since a function of sample
covariance.

@ Sample partial correlations rj;.c(; ) asymptotically normal.
@ Fisher's Z-transform: improves asymptotics; free of
population partial correlations.

1 1+ rijcij

e Model Selection: p(p — 1)/2 testing problems:

Hi : pij.cijy =0 vs. Hij: pij.c(ijy #0

Note: Z(pjj) =0 < p; =0.
e Undirected Graphical Model: C(i,j) = V \ {i,j}.
e Directed Acyclic Graphical Model. C(i,j) ={1,...,j}\{i,j}.
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Methods

Authors’ Method: Model Selection Continued

@ Simultaneous testing: authors derive p-values to control
overall rate of false edge inclusion at level a.
@ Unadjusted p-values:

mij =2 (1= 0 (/newy =3 |zcul))-

@ Bonferroni correction:

ﬂgonf:min |:<g>7ru’ 1:|, 1<i<j<p

@ Bonferroni too conservative: improve with Holm's step-down
procedure to find adjusted p-values.

@ Estimation procedure for estimating presence of edge e;; given
adjusted p-values w,’;-:

~ 0, Tz
() = 1, <«
I ij .

Adam Gustafson A SINful approach to Gaussian graphical model selection



Methods

Authors’ Method: Guarantees

@ Distribution faithful to graph if all of its conditional
independencies encoded by the graph. In general, distributions
encode more conditional independencies than the graph.

e Undirected (pairwise) Gaussian case: minimal number of
edges.

@ Directed Acyclic Graph case: well-numbering guarantees
faithfulness.

@ 1 — « ‘consistency’ result:

lim inf Pr(G(a) = Gaithful) = 1 — o

e False edge inclusion result (not necessarily tight):

o~

Iirr;n_>soL<|>p Pr(G(a) € G)) < a.

@ Asymptotic result: for finite n, may have low power, may not
control rate of false edge inclusion, or both.
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Simulation

Experiment: Undirected case

@ Simulate random undirected graph with various expected
probabilities and various p

@ Sample from multivariate normal or nonparanormal (random
sign transformation) with various n

@ Record the true positive rate and false positive rate
@ Compare with graphical lasso and three parameter selection
criteria:

e ), in Banerjee et. al. (2008) such that estimated graph
satisfies: R
limsup Pr(G(a) € G)) < a.
n—oo
o "Extended” Bayesian Information Criterion from HUGE package.
e Rotation Information Criterion from HUGE package.
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Simulation

Experiment: Undirected case

True Pos Rate: p = 10; edge.deg = 2; nonparanormal = FALSE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 20; edge.deg = 2; nonparanormal = FALSE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 40; edge.deg = 2; nonparanormal = FALSE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 80; edge.deg = 2; nonparanormal = FALSE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 10; edge.deg = 5; nonparanormal = FALSE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 20; edge.deg = 5; nonparanormal = FALSE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 40; edge.deg = 5; nonparanormal = FALSE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 80; edge.deg = 5; nonparanormal = FALSE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 10; edge.deg = 2; nonparanormal = TRUE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 20; edge.deg = 2; nonparanormal = TRUE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 40; edge.deg = 2; nonparanormal = TRUE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 80; edge.deg = 2; nonparanormal = TRUE
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Experiment:

Simulation

Undirected case

True Pos Rate: p = 10; edge.deg = 5; nonparanormal = TRUE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 20; edge.deg = 5; nonparanormal = TRUE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 40; edge.deg = 5; nonparanormal = TRUE
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Simulation

Experiment: Undirected case

True Pos Rate: p = 80; edge.deg = 5; nonparanormal = TRUE
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Simulation

Experiment: Directed case

@ Simulate a random DAG as follows:

e The p nodes are arbitrarily well-ordered. Let number of nodes
with higher order be K.
e For each node, number of neighboring nodes is Bin(K, prob.).

@ Simulate random graph with various expected probabilities
and various p

e Sample from multivariate normal or nonparanormal (random
sign transformation) with various n

@ Record the true positive rate and false positive rate of the
skeleton (graph with edges dropped).

e Compare with the PC algorithm with parameters (1) 0.005
and (2) 0.01
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Simulation

Experiment: Directed case

True Pos Rate: p = 5; edge.prob = 0.2; nonparanormal = FALSE
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Simulation

Experiment: Directed case

True Pos Rate: p =10; edge.prob = 0.2; nonparanormal = FALSE
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Simulation

Experiment: Directed case

True Pos Rate: p = 20; edge.prob = 0.2; nonparanormal = FALSE
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Simulation

Experiment: Directed case

True Pos Rate: p = 5; edge.prob = 0.5; nonparanormal = FALSE
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Simulation

Experiment: Directed case

True Pos Rate: p = 10; edge.prob = 0.5; nonparanormal = FALSE

o oped
c=- pc2

00 02 04 08 08 10

15 20 25 3.0 35 4.0
10g4o(n)

False Pos Rate: p = 10; edge.prob = 0.5; nonparanormal = FALSE

— s05
—— s25
©c oped
- c=cope2

02 03 04 05

00 01

logio(n)
A S|

| approach to Gaussian graphical model selection




Simulation

Experiment: Directed case

True Pos Rate: p = 20; edge.prob = 0.5; nonparanormal = FALSE
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Simulation

Experiment: Directed case

True Pos Rate: p = 5; edge.prob = 0.2; nonparanormal = TRUE
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Simulation

Experiment: Directed case

True Pos Rate: p = 10; edge.prob = 0.2; nonparanormal = TRUE

c=- pc2

00 02 04 08 08 10

1.5 20 25 30 35 40

10g4o(n)

False Pos Rate: p = 10; edge.prob = 0.2; nonparanormal = TRUE

— s05
- - s25
© pel
b c=cope2

02 03 04 05

00 01

logio(n)
A S|

| approach to Gaussian graphical model selection




Simulation

Experiment: Directed case

True Pos Rate: p = 20; edge.prob = 0.2; nonparanormal = TRUE
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Simulation

Experiment: Directed case

True Pos Rate: p = 5; edge.prob = 0.5; nonparanormal = TRUE
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Simulation

Experiment: Directed case

True Pos Rate: p = 10; edge.prob = 0.5; nonparanormal = TRUE
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Simulation

Experiment: Directed case

True Pos Rate: p = 20; edge.prob = 0.5; nonparanormal = TRUE
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Simulation

Comments and Conclusions

Method is simple in terms of derivation and implementation.

Method performs as well or nearly as well as other methods |
tried.

Method is robust to non-Guassian data with same conditional
independence structure.

Method does not extend to n < p case.

@ Method requires a priori knowledge of the well-numbering for
directed graphs.
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