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In many data sets, characterizing the conditional
independencies is of great interest.
Gene Regulatory Networks: collection of DNA segments which
interact with each other indirectly through RNA and protein
expression; wish to learn network structure.

Authors’ methods: infer structure for Gaussian data.
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Graphical Models

A graphical model is a probabilistic model in which conditional
independencies are encoded via graphical properties.

Formally, we have
A Graph G = (V ,E ) where V is set of nodes and E ⊂ V × V
is a set of edges.
If i , j ∈ V , then (i , j) ∈ E means that nodes i and j are
connected (may or may not be directed edge).
One-to-one correspondence between nodes and a set of
random variables.
A graphical model describes a family of distributions p(xV )
over XV .
A rule r ∈ R is a predicate on a graph: r(p,G ) ∈ {true, false}.
The set of distributions which a graphical model describes is

F(G ,R) = {p :p is a distribution over XV and

r(p,G ) = true,∀r ∈ R}
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Undirected Graphical Models

Encode conditional independence properties.

Authors use pairwise Markov property rule:

F(G ,Rp) = {p :Xu ⊥⊥ Xv |XV \{u,v}

for all non-adjacent pairs u, v ∈ V (G )}

Ex: X1 ⊥⊥ X4|(X2,X3), X1 ⊥⊥ X3|(X2,X4), X2 ⊥⊥ X3|(X1,X4),
etc.

Gaussian Case: Xu ⊥⊥ Xv |XV \{u,v} ⇐⇒ Kuv = 0, where
K = Σ−1 is the precision or concentration matrix.
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Directed Acyclic Graphical Models

Conditional independence properties for directed acyclic
graphs (DAGs) can be stated in terms of conditioning on
parents, or directed factorization:

F(G ,Rdf ) = {p : p(x) =
∏
v∈V

p(xv |xpa(v))}

Ex: p(x1:4) = p(x1)p(x2|x1)p(x4|x2, x3)p(x3)
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Directed Acyclic Graphical Models 2

Partial order: renumber nodes such that u � v if u = v or
there is a directed path u → · · · → v . Not all nodes
comparable.

Total ordering: Can show always possible to create
Well-numbered ordering from partial order. Oreder satisfies
i ≤ j whenever i � j – may need to renumber again. Not
unique.

Example from DAG on previous slide: swapping nodes 2 and 3
leads to well-numbering as well.
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Directed Acyclic Graphical Models 3

The well-numbered pairwise directed Markov property states:

F(G ,Rwn) = {p :V is well-numbered ,Xu ⊥⊥ Xv |X{1,...,v}\{u,v}
⇐⇒ no directed path from u to v , u ≤ v}

Equivalent to directed factorization, but allows identifiability
of structure.

Consider the following three Bayesian Networks:

u → v → w
u ← v ← w
u ← v → w

Can show all three are equivalent in terms of their joint
distribution under directed factorization.
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Gaussian Graphical Models

Gaussian data: can be represented as any type of graphical
model.

0’s in the precision matrix K = Σ−1 correspond to missing
links in the undirected graphical model.

Cholesky decomposition: K = U ′DU, where U is upper
triangular with ones on the diagonal, and D is diagonal.

Directed factorization: Let B = (I − U). Bij = 0 for j > i
implies no edge from node j to node i . Can be well-numbered.

Previous methods:

Backwards selection starting with full graph, controlling error
at each stage.
Example: PC algorithm.

Problem: Overall error rate for false edge inclusion not
controlled.
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Authors’ Method: Asymptotics

Gaussian Data: n samples, p-dimensional likelihood:

L(µ,K ) ∝ (detK )n/2 exp{−tr(KX ′X/2)+µ′KX ′1p−nµ′Kµ/2}

Exponential Family: canonical paramter θ = (K ,Kµ),
canonical statistic T (X ) = (−X ′X/2,X ′1p).

L(µ,K ) ∝ exp{〈T (X ), θ〉 − [nθ′K−1θ/2− (n/2) log detK ]},

where 〈(S1, s1), (S2, s2)〉 = tr(S1S2) + s ′1s2.

Maximum Likelihood: For n > p, we have

µ̂ = X ′1p/n Σ̂ =
1

n
(X − x̄ ′ ⊗ 1n)′(X − x̄ ′ ⊗ 1n)

Delta Method: MLE asymptotically normal implies that
K̂ = Σ̂−1 also asymptotically normal. Depends on unknown
population covariance.

Adam Gustafson A SINful approach to Gaussian graphical model selection



Introduction Background Methods Simulation

Authors’ Method: Model Selection

MLE is functionally invariant: MLE for the partial correlations
given by sample partial correlations, since a function of sample
covariance.

Sample partial correlations rij ·C(i ,j) asymptotically normal.

Fisher’s Z-transform: improves asymptotics; free of
population partial correlations.

zij ·C(i ,j) =
1

2
log

(
1 + rij ·C(i ,j)

1− rij ·C(i ,j)

)
Model Selection: p(p − 1)/2 testing problems:

Hij : ρij ·C(i ,j) = 0 vs. Hij : ρij ·C(i ,j) 6= 0

Note: Z(ρij) = 0 ⇐⇒ ρij = 0.

Undirected Graphical Model: C (i , j) = V \ {i , j}.
Directed Acyclic Graphical Model: C (i , j) = {1, . . . , j} \ {i , j}.
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Authors’ Method: Model Selection Continued

Simultaneous testing: authors derive p-values to control
overall rate of false edge inclusion at level α.
Unadjusted p-values:

πij = 2
(

1− Φ
(√

nC(i ,j) − 3 ·
∣∣zij ·C(i ,j)

∣∣)) .
Bonferroni correction:

πBonfij = min

[(
p

2

)
πij , 1

]
, 1 ≤ i < j ≤ p

Bonferroni too conservative: improve with Holm’s step-down
procedure to find adjusted p-values.
Estimation procedure for estimating presence of edge eij given
adjusted p-values π∗ij :

êij(α) =

{
0, π∗ij ≥ α
1, π∗ij < α.
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Authors’ Method: Guarantees

Distribution faithful to graph if all of its conditional
independencies encoded by the graph. In general, distributions
encode more conditional independencies than the graph.

Undirected (pairwise) Gaussian case: minimal number of
edges.

Directed Acyclic Graph case: well-numbering guarantees
faithfulness.

1− α ‘consistency’ result:

lim inf
n→∞

Pr(Ĝ (α) = Gfaithful) ≥ 1− α

False edge inclusion result (not necessarily tight):

lim sup
n→∞

Pr(Ĝ (α) 6⊆ G )) ≤ α.

Asymptotic result: for finite n, may have low power, may not
control rate of false edge inclusion, or both.
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Experiment: Undirected case

Simulate random undirected graph with various expected
probabilities and various p

Sample from multivariate normal or nonparanormal (random
sign transformation) with various n

Record the true positive rate and false positive rate

Compare with graphical lasso and three parameter selection
criteria:

λα in Banerjee et. al. (2008) such that estimated graph
satisfies:

lim sup
n→∞

Pr(Ĝ (α) 6⊆ G )) ≤ α.

“Extended” Bayesian Information Criterion from HUGE package.
Rotation Information Criterion from HUGE package.
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Experiment: Undirected case
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Experiment: Directed case

Simulate a random DAG as follows:

The p nodes are arbitrarily well-ordered. Let number of nodes
with higher order be K .
For each node, number of neighboring nodes is Bin(K , prob.).

Simulate random graph with various expected probabilities
and various p

Sample from multivariate normal or nonparanormal (random
sign transformation) with various n

Record the true positive rate and false positive rate of the
skeleton (graph with edges dropped).

Compare with the PC algorithm with parameters (1) 0.005
and (2) 0.01
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Comments and Conclusions

Method is simple in terms of derivation and implementation.

Method performs as well or nearly as well as other methods I
tried.

Method is robust to non-Guassian data with same conditional
independence structure.

Method does not extend to n < p case.

Method requires a priori knowledge of the well-numbering for
directed graphs.
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