"A Significance Test for the Lasso" Lockhart R, Taylor J, Tibshirani R, and Tibshirani R

Ashley Petersen

April 25, 2013

The Tibshirani's

Motivation

- Many clinical covariates which are important to a certain medical outcome?
- Problems with fitting model with all covariates
- \blacktriangleright Instead, choose the important variables \rightarrow variable selection
- Say how important these variables are \rightarrow use p-values!

Motivation

Possible variable selection techniques:

- Forward stepwise regression
- Lasso

Ways to obtain p-values:

- Forward stepwise regression: p-values from F-test used to obtain model
- Lasso: p-values from newly proposed covariance test

Being able to do proper significance testing with lasso: "bring the lasso into the mainstream" – Rob Tibshirani $^{\rm 1}$

¹via Andrew Gelman's blog

Forward stepwise regression

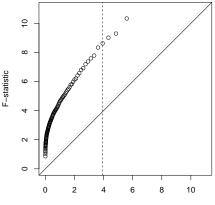
- Enter covariates into the model one at a time
- At each step choose the covariate with the largest F-statistic (smallest p-value)

$$F_k = \frac{RSS_{null} - RSS}{RSS/(n-k)}$$

► Compare to F distribution with 1 and n - k df to obtain p-value

Prostate Cancer Data

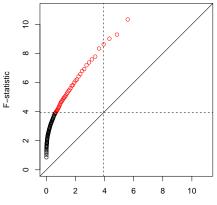
- Outcome: log PSA
- 8 covariates
- ▶ 67 observations


Example of forward stepwise regression

- F-test result from each step for covariate that enters the model
- Should we trust the p-values?

```
Model 1: outcome ~ 0
Model 2: outcome \sim 0 + lcavol
  Res.Df RSS Df Sum of Sq F Pr(>F)
     67 1,00000
2
     66 0.46248 1 0.53752 76.708 1.17e-12 ***
Model 1: outcome \sim 0 + |cavol
Model 2: outcome \sim 0 + |cavol + |weight
  Res.Df RSS Df Sum of Sq F Pr(>F)
     66 0.46248
1
     65 0.38524 1 0.07724 13.032 0.0005961 ***
2
Model 1: outcome \sim 0 + lcavol + lweight
Model 2: outcome \sim 0 + |cavol + |weight + svi
  Res.Df RSS Df Sum of Sa F Pr(>F)
     65 0.38524
1
     64 0.36256 1 0.022684 4.0043 0.04963 *
2
Model 1: outcome \sim 0 + |cavol + |weight + svi
Model 2: outcome \sim 0 + |cavol + |weight + svi + |bph
  Res.Df RSS Df Sum of Sa F Pr(>F)
     64 0.36256
1
2
     63 0.34082 1 0.021736 4.0178 0.04933 *
```

Evidence against taking those p-values seriously...


- Simulation of distribution of F-statistic for first covariate to enter model under global null (β = 0)
- ▶ n = 100, p = 10
- Type I error of 42%

F with 1 and 99 df

Evidence against taking those p-values seriously...

- Simulation of distribution of F-statistic for first covariate to enter model under global null (β = 0)
- ▶ n = 100, p = 10
- Type I error of 42%

F with 1 and 99 df

Why does this matter?

- Just look at the literature abundance of incorrect p-values
- Much desire to do an adaptive variable selection technique and produce valid p-values

Explaining variations in prescribing costs across England

Tony Morton-Jones, Mike Pringle

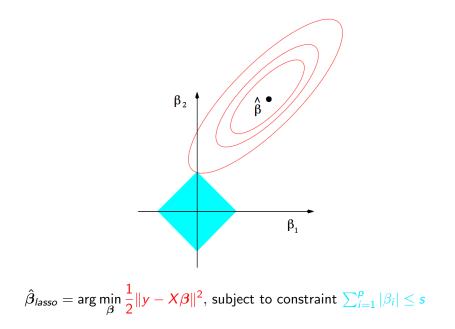
TABLE II—Regression coefficients, significances, and percentage contributions of factors used in net ingredient cost per patient multiple regression model

Regression detail	List inflation	Standardised mortality ratio	% Pensioners	% Prepayment certificates	Constant-
Regression coefficient	-0·307	0·175	0·877	0·0254	33-81
	-8·09	9·07	6·84	4·62	5-86
Significance	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
% Variation explained	44.7	65.0	75.8	80.7	0

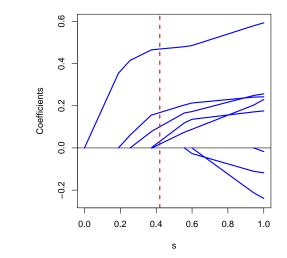
Lasso framework

The lasso estimator is obtained by finding eta that minimizes

$$\frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{i=1}^{p} |\beta_i|,$$

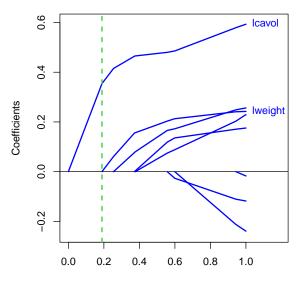

where λ is the lasso penalty. Equivalently, find $oldsymbol{eta}$ that minimizes

$$rac{1}{2}\|y-Xoldsymbol{eta}\|^2$$
 subject to constraint $\sum_{i=1}^p |eta_i| \leq s$,

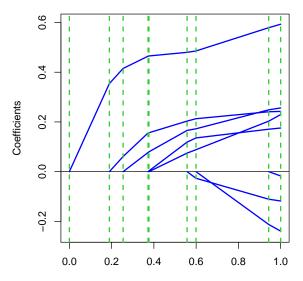

where s is the shrinkage factor.

Shrinkage and variable selection

Variable selection with lasso



Lasso path

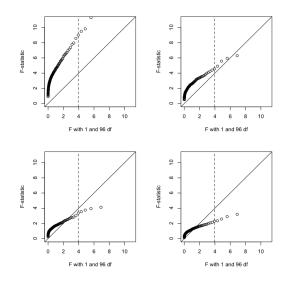


 $\hat{oldsymbol{\beta}}_{lasso} = \arg\min_{oldsymbol{eta}} rac{1}{2} \|y - Xoldsymbol{eta}\|^2$, subject to constraint $\sum_{i=1}^p |eta_i| \leq s$

Obtaining p-values

Obtaining p-values

Looking back (and forward)


In summary:

- Working toward being able to make inferential statements in the lasso setting
- Obtain p-value for variable when it enters the lasso model
- Analogous to F-test in forward stepwise selection, but produces valid p-values

Next time:

- The test statistic and its asymptotic distribution
- Performance in finite samples using simulation

Additional simulation

Approximate type I error rates of 42%, 9%, 2%, and 0%