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Last time

I Problem: Many clinical covariates – which are important to a
certain medical outcome?

I Want to choose the important variables and say how
important these variables are

I Bad solution: Forward stepwise regression → very
anti-conservative p-values

I Better solution: Lasso with p-values from newly proposed
covariance test statistic
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Framework

Consider regression setup with outcome vector y ∈ Rn with
covariate matrix X ∈ Rn×p and

y = βX + ε with ε ∼ N(0, σ2I ).

The lasso estimator is obtained by finding β that minimizes

1

2
‖y − Xβ‖2 + λ

p∑
i=1

|βi |,

where λ is the lasso penalty.
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Lasso solution path (λ1 > λ2 > λ3 > λ4 > . . .)
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Obtain p-value for covariate entering the model
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Form of test statistic 1

Forward stepwise regression:

RSSnull − RSS

σ2
=
‖y − ŷnull‖2 − ‖y − ŷ‖2

σ2

= 2

[
yT ŷ − yT ŷnull

σ2

]
+
‖ŷnull‖2 − ‖ŷ‖2

σ2

Lasso:

Tk =
yT ŷ − yT ŷnull

σ2

1Taking σ2 as known (for now)
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What is ŷ?

I testing that variable that enters at λ3 has β = 0
I ŷ = X β̂(λ4)
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What about ŷ null?

I testing that variable that enters at λ3 has β = 0
I ŷ = X β̂(λ4)
I ŷnull = X null β̂null(λ4)
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What about ŷ null?

I testing that variable that enters at λ3 has β = 0
I ŷ = X β̂(λ4)
I ŷnull = X null β̂null(λ4)
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Putting this together

The covariance test statistic for testing the predictor that enters at
the kth step is

Tk =
yT ŷ − yT ŷnull

σ2

=
yTX β̂(λk+1)− yTX null β̂null(λk+1)

σ2
.
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What exactly is the null?

Under the global null (β = 0), then

T1 →d Exp(1)

T2 →d Exp(1/2)

T3 →d Exp(1/3)
...

for orthogonal predictor matrix X . Asymptotic distributions are
stochastically smaller for general X .
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Does it work for finite samples?
I Simulation of distribution of test statistics for first covariate

to enter model under global null (β = 0)
I n = 100, p = 10
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Does it work for finite samples?
I Simulation of distribution of test statistics for first covariate

to enter model under global null (β = 0)
I n = 100, p = 10
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What exactly is the null?

Under the weaker null where there are k0 truly active covariates
(and they have entered the model), then

Tk0+1 →d Exp(1)

Tk0+2 →d Exp(1/2)

Tk0+3 →d Exp(1/3)

...

for orthogonal predictor matrix X . Asymptotic distributions are
stochastically smaller for general X .
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See, it works...

I Simulation of distribution of test statistics when true β has
three non-zero components

I n = 100, p = 10

I F−1(p) = −θ log(1− p) for Exp(θ)
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Simulation setup

I Distribution of T1 under global null (β = 0)

I n = 100 and p ∈ (10, 50, 200)
I Varying correlation structure of predictors with
ρ ∈ (0, 0.2, 0.4, 0.6, 0.8)

I Exchangeable
I AR(1)
I Block diagonal

I Mean, variance, and tail probability of distribution
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The authors’ results
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Some commentary...

“I don’t have any applied or technical comments on the paper at
hand (except for feeling strongly that Tables 2 and 3 should really

really really be made into a graph . . . do we really care that a
certain number is 315.216?)”

–Andrew Gelman2

2via his blog
16



The authors’ results
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‘Sampling distribution’ of simulation results
I 100 replications of the simulation for given parameters
I Note large variance of each distribution
I Larger number of replications needed for accurate estimate
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Lots of sampling distributions
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My results – mean
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My results – variance
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My results – tail probability
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What to do when σ2 is unknown? (n > p)

I Estimate in the usual way:

σ̂2 =
RSS

n − p
=
‖y − X β̂LS‖2

n − p

I Asymptotic distribution is now F2,n−p

I Numerator is Exp(1) = χ2
2/2

I Denominator is χ2
n−p/(n − p)

I Numerator and denominator independent
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What to do when σ2 is unknown? (n ≤ p)

I Estimate from least squares fit from model selected by
cross-validation

I No rigorous theory here (fingers crossed!)
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What’s the big idea?

I Use covariance test statistic to obtain p-value for covariates as
they enter the lasso model

I Compare to asymptotic distribution – Exp(1) – to obtain
p-values

I Reasonable performance in finite samples

I Possibly extend this to obtaining inference for all coefficients
from a model for a specific lasso penalty
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What’s next!

To do:

I Obtain data for p > n case (HIV data)

I Finish simulations

Next time:

I ‘Real’ data examples

I More on assumptions and theory
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