"A Significance Test for the Lasso"
 Lockhart R, Taylor J, Tibshirani R, and Tibshirani R

Ashley Petersen

May 14, 2013

Last time

- Problem: Many clinical covariates - which are important to a certain medical outcome?
- Want to choose the important variables and say how important these variables are
- Bad solution: Forward stepwise regression \rightarrow very anti-conservative p-values
- Better solution: Lasso with p-values from newly proposed covariance test statistic

Framework

Consider regression setup with outcome vector $y \in \mathbb{R}^{n}$ with covariate matrix $X \in \mathbb{R}^{n \times p}$ and

$$
y=\boldsymbol{\beta} X+\boldsymbol{\epsilon} \text { with } \boldsymbol{\epsilon} \sim N\left(0, \sigma^{2} l\right) .
$$

The lasso estimator is obtained by finding $\boldsymbol{\beta}$ that minimizes

$$
\frac{1}{2}\|y-X \beta\|^{2}+\lambda \sum_{i=1}^{p}\left|\beta_{i}\right|,
$$

where λ is the lasso penalty.

Lasso solution path $\left(\lambda_{1}>\lambda_{2}>\lambda_{3}>\lambda_{4}>\ldots\right)$

$$
\hat{\boldsymbol{\beta}}_{\text {lasso }}=\arg \min _{\boldsymbol{\beta}} \frac{1}{2}\|y-X \boldsymbol{\beta}\|^{2}+\lambda \sum_{i=1}^{p}\left|\beta_{i}\right|
$$

Obtain p-value for covariate entering the model

Form of test statistic ${ }^{1}$

Forward stepwise regression:

$$
\begin{aligned}
\frac{R S S_{n u l l}-R S S}{\sigma^{2}} & =\frac{\left\|y-\hat{y}_{n u l l}\right\|^{2}-\|y-\hat{y}\|^{2}}{\sigma^{2}} \\
& =2\left[\frac{y^{T} \hat{y}-y^{T} \hat{y}_{n u l l}}{\sigma^{2}}\right]+\frac{\left\|\hat{y}_{n u l l}\right\|^{2}-\|\hat{y}\|^{2}}{\sigma^{2}}
\end{aligned}
$$

Lasso:

$$
T_{k}=\frac{y^{\top} \hat{y}-y^{\top} \hat{y}_{\text {null }}}{\sigma^{2}}
$$

${ }^{1}$ Taking σ^{2} as known (for now)

What is \hat{y} ?

- testing that variable that enters at λ_{3} has $\beta=0$
- $\hat{y}=X \hat{\boldsymbol{\beta}}\left(\lambda_{4}\right)$

What about $\hat{y}_{\text {null }}$?

- testing that variable that enters at λ_{3} has $\beta=0$
- $\hat{y}=\boldsymbol{X} \hat{\boldsymbol{\beta}}\left(\lambda_{4}\right)$
- $\hat{y}_{\text {null }}=X_{\text {null }} \hat{\beta}_{\text {null }}\left(\lambda_{4}\right)$

What about $\hat{y}_{\text {null }}$?

- testing that variable that enters at λ_{3} has $\beta=0$
- $\hat{y}=X \hat{\boldsymbol{\beta}}\left(\lambda_{4}\right)$
- $\hat{y}_{\text {null }}=X_{\text {null }} \hat{\beta}_{\text {null }}\left(\lambda_{4}\right)$

Putting this together

The covariance test statistic for testing the predictor that enters at the k th step is

$$
\begin{aligned}
T_{k} & =\frac{y^{\top} \hat{y}-y^{\top} \hat{y}_{\text {null }}}{\sigma^{2}} \\
& =\frac{y^{\top} X \hat{\boldsymbol{\beta}}\left(\lambda_{k+1}\right)-y^{\top} X_{\text {null }} \hat{\boldsymbol{\beta}}_{\text {null }}\left(\lambda_{k+1}\right)}{\sigma^{2}}
\end{aligned}
$$

What exactly is the null?

Under the global null $(\boldsymbol{\beta}=0)$, then

$$
\begin{array}{lll}
T_{1} & \rightarrow_{d} & \operatorname{Exp}(1) \\
T_{2} & \rightarrow_{d} & \operatorname{Exp}(1 / 2) \\
T_{3} & \rightarrow_{d} & \operatorname{Exp}(1 / 3)
\end{array}
$$

for orthogonal predictor matrix X. Asymptotic distributions are stochastically smaller for general X.

Does it work for finite samples?

- Simulation of distribution of test statistics for first covariate to enter model under global null $(\boldsymbol{\beta}=0)$
- $n=100, p=10$

Forward Stepwise

Lasso

Does it work for finite samples?

- Simulation of distribution of test statistics for first covariate to enter model under global null $(\boldsymbol{\beta}=0)$
- $n=100, p=10$

Forward Stepwise

Lasso

What exactly is the null?

Under the weaker null where there are k_{0} truly active covariates (and they have entered the model), then

$$
\begin{array}{lll}
T_{k_{0}+1} & \rightarrow_{d} & \operatorname{Exp}(1) \\
T_{k_{0}+2} & \rightarrow_{d} & \operatorname{Exp}(1 / 2) \\
T_{k_{0}+3} & \rightarrow_{d} & \operatorname{Exp}(1 / 3)
\end{array}
$$

for orthogonal predictor matrix X. Asymptotic distributions are stochastically smaller for general X.

See, it works...

- Simulation of distribution of test statistics when true $\boldsymbol{\beta}$ has three non-zero components
- $n=100, p=10$
- $F^{-1}(p)=-\theta \log (1-p)$ for $\operatorname{Exp}(\theta)$

5th predictor

6th predictor

Simulation setup

- Distribution of T_{1} under global null $(\boldsymbol{\beta}=0)$
- $n=100$ and $p \in(10,50,200)$
- Varying correlation structure of predictors with $\rho \in(0,0.2,0.4,0.6,0.8)$
- Exchangeable
- $\operatorname{AR}(1)$
- Block diagonal
- Mean, variance, and tail probability of distribution

The authors' results

$n=100, p=10$									
ρ	Equal pop'n corr		$A R(1)$			Block diagonal			
	Mean	Var	Tail pr	Mean	Var	Tail pr	Mean	Var	Tail pr
0	1.120	1.951	0.090	1.017	1.484	0.070	1.058	1.548	0.060
0.2	1.119	1.844	0.086	1.034	1.497	0.074	1.069	1.614	0.078
0.4	1.115	1.724	0.092	1.045	1.469	0.060	1.077	1.701	0.076
0.6	1.095	1.648	0.086	1.048	1.485	0.066	1.074	1.719	0.086
0.8	1.062	1.624	0.092	1.034	1.471	0.062	1.062	1.687	0.072
se	0.010	0.049	0.001	0.013	0.043	0.001	0.010	0.047	0.001

$n=100, p=50$									
0	1.078	1.721	0.074	1.039	1.415	0.070	0.999	1.578	0.048
0.2	1.090	1.476	0.074	0.998	1.391	0.054	1.064	2.062	0.052
0.4	1.079	1.382	0.068	0.985	1.373	0.060	1.076	2.168	0.062
0.6	1.057	1.312	0.060	0.978	1.425	0.054	1.060	2.138	0.060
0.8	1.035	1.346	0.056	0.973	1.439	0.060	1.046	2.066	0.068
se	0.011	0.037	0.001	0.009	0.041	0.001	0.011	0.103	0.001

$n=100, p=200$									
0	1.004	1.017	0.054	1.029	1.240	0.062	0.930	1.166	0.042
0.2	0.996	1.164	0.052	1.000	1.182	0.062	0.927	1.185	0.046
0.4	1.003	1.262	0.058	0.984	1.016	0.058	0.935	1.193	0.048
0.6	1.007	1.327	0.062	0.954	1.000	0.050	0.915	1.231	0.044
0.8	0.989	1.264	0.066	0.961	1.135	0.060	0.914	1.258	0.056
se	0.008	0.039	0.001	0.009	0.028	0.001	0.007	0.032	0.001

Some commentary...

"I don't have any applied or technical comments on the paper at hand (except for feeling strongly that Tables 2 and 3 should really really really be made into a graph ... do we really care that a certain number is 315.216?)"

-Andrew Gelman ${ }^{2}$

[^0]
The authors' results

$n=100, p=10$									
ρ	Equal pop'n corr		$A R(1)$			Block diagonal			
	Mean	Var	Tail pr	Mean	Var	Tail pr	Mean	Var	Tail pr
0	1.120	1.951	0.090	1.017	1.484	0.070	1.058	1.548	0.060
0.2	1.119	1.844	0.086	1.034	1.497	0.074	1.069	1.614	0.078
0.4	1.115	1.724	0.092	1.045	1.469	0.060	1.077	1.701	0.076
0.6	1.095	1.648	0.086	1.048	1.485	0.066	1.074	1.719	0.086
0.8	1.062	1.624	0.092	1.034	1.471	0.062	1.062	1.687	0.072
se	0.010	0.049	0.001	0.013	0.043	0.001	0.010	0.047	0.001

$n=100, p=50$									
0	1.078	1.721	0.074	1.039	1.415	0.070	0.999	1.578	0.048
0.2	1.090	1.476	0.074	0.998	1.391	0.054	1.064	2.062	0.052
0.4	1.079	1.382	0.068	0.985	1.373	0.060	1.076	2.168	0.062
0.6	1.057	1.312	0.060	0.978	1.425	0.054	1.060	2.138	0.060
0.8	1.035	1.346	0.056	0.973	1.439	0.060	1.046	2.066	0.068
se	0.011	0.037	0.001	0.009	0.041	0.001	0.011	0.103	0.001

$n=100, p=200$									
0	1.004	1.017	0.054	1.029	1.240	0.062	0.930	1.166	0.042
0.2	0.996	1.164	0.052	1.000	1.182	0.062	0.927	1.185	0.046
0.4	1.003	1.262	0.058	0.984	1.016	0.058	0.935	1.193	0.048
0.6	1.007	1.327	0.062	0.954	1.000	0.050	0.915	1.231	0.044
0.8	0.989	1.264	0.066	0.961	1.135	0.060	0.914	1.258	0.056
se	0.008	0.039	0.001	0.009	0.028	0.001	0.007	0.032	0.001

'Sampling distribution' of simulation results

- 100 replications of the simulation for given parameters
- Note large variance of each distribution
- Larger number of replications needed for accurate estimate

Lots of sampling distributions

My results - mean

Block diagonal correlation

My results - variance

AR(1) correlation

Block diagonal correlation

My results - tail probability

What to do when σ^{2} is unknown? $(n>p)$

- Estimate in the usual way:

$$
\hat{\sigma}^{2}=\frac{R S S}{n-p}=\frac{\left\|y-X \hat{\boldsymbol{\beta}}_{L S}\right\|^{2}}{n-p}
$$

- Asymptotic distribution is now $F_{2, n-p}$
- Numerator is $\operatorname{Exp}(1)=\chi_{2}^{2} / 2$
- Denominator is $\chi_{n-p}^{2} /(n-p)$
- Numerator and denominator independent

What to do when σ^{2} is unknown? $(n \leq p)$

- Estimate from least squares fit from model selected by cross-validation
- No rigorous theory here (fingers crossed!)

What's the big idea?

- Use covariance test statistic to obtain p-value for covariates as they enter the lasso model
- Compare to asymptotic distribution - $\operatorname{Exp}(1)$ - to obtain p -values
- Reasonable performance in finite samples
- Possibly extend this to obtaining inference for all coefficients from a model for a specific lasso penalty

What's next!

To do:

- Obtain data for $p>n$ case (HIV data)
- Finish simulations

Next time:

- 'Real' data examples
- More on assumptions and theory

[^0]: ${ }^{2}$ via his blog

