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Motivation

I Problem: Many clinical covariates – which are important to a
certain medical outcome?

I Want to choose the important variables and say how
important these variables are

I Bad solution: Forward stepwise regression → very
anti-conservative p-values

I Better solution: Lasso with p-values from newly proposed
covariance test statistic
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Forward stepwise regression

I Enter covariates into the model one at a time

I At each step choose the covariate with the largest F-statistic
(smallest p-value)

Fk =
RSSnull − RSS

RSS/(n − k)

I Compare to F distribution with 1 and n − k df to obtain
p-value
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Evidence against taking those p-values seriously...
I Simulation of distribution of F-statistic for first covariate to

enter model under global null (β = 0)
I n = 100, p = 10
I Type I error of 42%
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Why does this matter?

I Just look at the literature – abundance of incorrect p-values

I Much desire to do adaptively fit a model and produce valid
p-values
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Framework

Consider regression setup with outcome vector y ∈ Rn with
covariate matrix X ∈ Rn×p and

y = βX + ε with ε ∼ N(0, σ2I ).

The lasso estimator is obtained by finding β that minimizes

1

2
‖y − Xβ‖2 + λ

p∑
i=1

|βi |,

where λ is the lasso penalty.
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Lasso solution path (λ1 > λ2 > λ3 > λ4 > . . .)

−
0.

2
0.

0
0.

2
0.

4
0.

6

constraint

C
oe

ffi
ci

en
ts

λ1 λ2 λ3 λ4

β̂lasso = arg min
β

1

2
‖y − Xβ‖2 + λ

p∑
i=1

|βi |
7



Obtain p-value for covariate entering the model
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Covariance test statistic

The covariance test statistic for testing the predictor that enters at
the kth step is

Tk =
yT ŷ − yT ŷnull

σ2

=
yTX β̂(λk+1)− yTX null β̂null(λk+1)

σ2
.

We assume σ2 is known for now...
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What is ŷ?

I testing that variable that enters at λ3 has β = 0
I ŷ = X β̂(λ4)
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What about ŷ null?

I testing that variable that enters at λ3 has β = 0
I ŷ = X β̂(λ4)
I ŷnull = X null β̂null(λ4)
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Asymptotic distribution

Under the null where there are k0 truly active covariates (and they
have entered the model), then

Tk0+1 →d Exp(1)

Tk0+2 →d Exp(1/2)

Tk0+3 →d Exp(1/3)

...

for orthogonal predictor matrix X .
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What to do when σ2 is unknown?

When p < n:

I Estimate in the usual way:

σ̂2 =
RSS

n − p
=
‖y − X β̂LS‖2

n − p

I Asymptotic distribution is now F2,n−p

When p ≥ n:

I Estimate from least squares fit from model selected by
cross-validation

I No rigorous theory here (fingers crossed!)
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Simulation setup

Generate data where

y = βX + ε with ε ∼ N(0, I ).

Goal: See how well Exp(1) approximates empirical distribution

I We’ll use the mean, variance, and tail probability to
summarize the empirical distribution
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Simulation setup

Simulation 1:

I Correlated, multivariate normal predictors where β = 0

I Consider distribution of T1

Simulation 2:

I Correlated, multivariate normal predictors where β has k
non-zero elements

I Consider distribution of Tk+1

Simulation 3:

I Non-normal predictors where β = 0

I Consider distribution of T1
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Simulation 1

I n = 100 and p ∈ (10, 50, 200)

I Correlated, multivariate normal predictors
I Varying correlation structure of predictors with
ρ ∈ (0, 0.2, 0.4, 0.6, 0.8)

I Exchangeable
I AR(1)
I Block diagonal

I β = 0

I Consider distribution of T1
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Simulation 1 results – mean
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Simulation 1 results – variance
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Simulation 1 results – tail probability
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Simulation 2

I n = 100 and p = 50

I Correlated, multivariate normal predictors
I Varying correlation structure of predictors with
ρ ∈ (0, 0.2, 0.4, 0.6, 0.8)

I Exchangeable
I AR(1)
I Block diagonal

I β has k non-zero elements

I Consider distribution of Tk+1 for k ∈ (1, 2, 3)
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Simulation 2 results – mean
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Simulation 2 results – variance
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Simulation 2 results – tail probability
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Simulation 2 results – explanation

I With high correlation, effective number of active covariates is
reduced

I Test statistic does not have a distribution like that for first
inactive predictor

Tk0+1 →d Exp(1)

Tk0+2 →d Exp(1/2)

Tk0+3 →d Exp(1/3)

...
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Simulation 2 results – explanation

I n = 100 and p = 50 with k active covariates and correlation
of ρ between predictors
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Simulation 3

I n = 100 and p ∈ (10, 50, 200)
I Non-normal predictors

I Gamma(1,2)
I Uniform(0,1)
I Bernoulli(0.3)
I Mixture

I β = 0

I Consider distribution of T1
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Simulation 3 results
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Prostate Cancer Data

I Outcome of log PSA, 8 clinical covariates

I 67 observations

Step Predictor Forward Predictor
Number Entered Stepwise Entered Lasso

1 lcavol < 0.001 lcavol < 0.001
2 lweight < 0.001 lweight 0.051
3 svi 0.040 svi 0.173
4 lbph 0.045 lbph 0.929
5 pgg45 0.226 pgg45 0.352
6 lcp 0.085 age 0.650
7 age 0.142 lcp 0.050
8 gleason 0.883 gleason 0.978
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Wine Quality Data

I Outcome of wine quality, 11 covariates

I 1599 observations

Step Predictor Forward Predictor
Number Entered Stepwise Entered Lasso

1 alcohol < 0.001 alcohol < 0.001
2 volatile.acidity < 0.001 volatile.acidity < 0.001
3 sulphates < 0.001 sulphates 0.001
4 total.sulfur.dioxide 0.008 total.sulfur.dioxide 0.286
5 chlorides 0.008 fixed.acidity 0.711
6 pH 0.036 chlorides 0.016
7 free.sulfur.dioxide 0.172 pH 0.568
8 fixed.acidity 0.443 free.sulfur.dioxide 0.566
9 density 0.502 density 0.824

10 residual.sugar 0.552 residual.sugar 0.848
11 citric.acid 0.952 citric.acid 0.996
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Wine Quality Data
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Critique

Implementation:

I More simulations needed to obtain accurate estimates

I Better to display simulation results as graphs than tables

Methods:

I Motivation:“practitioner will undoubtedly seek some sort of
inferential guarantees for his or her computed lasso model”

I But...actually want inference for all coefficients from a model
for a specific lasso penalty
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What’s the big idea?

I Use covariance test statistic to obtain p-value for covariate as
it enters the lasso model

I Compare to asymptotic distribution – Exp(1) – to obtain
p-values

I Reasonable performance in finite samples

I Using same data set to adaptively fit model and do inference
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