"A Significance Test for the Lasso"
 Lockhart R, Taylor J, Tibshirani R, and Tibshirani R

Ashley Petersen

June 6, 2013

Motivation

- Problem: Many clinical covariates - which are important to a certain medical outcome?
- Want to choose the important variables and say how important these variables are
- Bad solution: Forward stepwise regression \rightarrow very anti-conservative p-values
- Better solution: Lasso with p-values from newly proposed covariance test statistic

Forward stepwise regression

- Enter covariates into the model one at a time
- At each step choose the covariate with the largest F-statistic (smallest p-value)

$$
F_{k}=\frac{R S S_{n u l l}-R S S}{R S S /(n-k)}
$$

- Compare to F distribution with 1 and $n-k$ df to obtain p-value

Evidence against taking those p-values seriously...

- Simulation of distribution of F -statistic for first covariate to enter model under global null $(\boldsymbol{\beta}=0)$
- $n=100, p=10$
- Type I error of 42%

Why does this matter?

- Just look at the literature - abundance of incorrect p-values
- Much desire to do adaptively fit a model and produce valid p-values

Explaining variations in prescribing costs across England

Tony Morton-Jones, Mike Pringle

TABLE II-Regression coefficients, significances, and percentage contributions of factors used in net ingredient cost per patient multiple regression model

	List inflation	Standardised mortality ratio	$\%$ Pensioners	\% Prepayment certificates	Constant-
Regression detail	-0.307	0.175	0.877	0.0254	33.81
Regression coefficient	-8.09	9.07	6.84	4.62	5.86
t	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Significance	44.7	65.0	75.8	80.7	0
\%Variation explained					

Framework

Consider regression setup with outcome vector $y \in \mathbb{R}^{n}$ with covariate matrix $X \in \mathbb{R}^{n \times p}$ and

$$
y=\boldsymbol{\beta} X+\boldsymbol{\epsilon} \text { with } \boldsymbol{\epsilon} \sim N\left(0, \sigma^{2} l\right) .
$$

The lasso estimator is obtained by finding $\boldsymbol{\beta}$ that minimizes

$$
\frac{1}{2}\|y-X \beta\|^{2}+\lambda \sum_{i=1}^{p}\left|\beta_{i}\right|,
$$

where λ is the lasso penalty.

Lasso solution path $\left(\lambda_{1}>\lambda_{2}>\lambda_{3}>\lambda_{4}>\ldots\right)$

$$
\hat{\boldsymbol{\beta}}_{\text {lasso }}=\arg \min _{\boldsymbol{\beta}} \frac{1}{2}\|y-X \boldsymbol{\beta}\|^{2}+\lambda \sum_{i=1}^{p}\left|\beta_{i}\right|
$$

Obtain p-value for covariate entering the model

Covariance test statistic

The covariance test statistic for testing the predictor that enters at the k th step is

$$
\begin{aligned}
T_{k} & =\frac{y^{\top} \hat{y}-y^{\top} \hat{y}_{\text {null }}}{\sigma^{2}} \\
& =\frac{y^{\top} X \hat{\boldsymbol{\beta}}\left(\lambda_{k+1}\right)-y^{\top} X_{\text {null }} \hat{\beta}_{\text {null }}\left(\lambda_{k+1}\right)}{\sigma^{2}}
\end{aligned}
$$

We assume σ^{2} is known for now...

What is \hat{y} ?

- testing that variable that enters at λ_{3} has $\beta=0$
- $\hat{y}=\boldsymbol{X} \hat{\boldsymbol{\beta}}\left(\lambda_{4}\right)$

What about $\hat{y}_{\text {null }}$?

- testing that variable that enters at λ_{3} has $\beta=0$
- $\hat{y}=X \hat{\boldsymbol{\beta}}\left(\lambda_{4}\right)$
- $\hat{y}_{\text {null }}=X_{\text {null }} \hat{\beta}_{\text {null }}\left(\lambda_{4}\right)$

Asymptotic distribution

Under the null where there are k_{0} truly active covariates (and they have entered the model), then

$$
\begin{array}{lll}
T_{k_{0}+1} & \rightarrow_{d} & \operatorname{Exp}(1) \\
T_{k_{0}+2} & \rightarrow_{d} & \operatorname{Exp}(1 / 2) \\
T_{k_{0}+3} & \rightarrow_{d} & \operatorname{Exp}(1 / 3)
\end{array}
$$

for orthogonal predictor matrix X.

What to do when σ^{2} is unknown?

When $p<n$:

- Estimate in the usual way:

$$
\hat{\sigma}^{2}=\frac{R S S}{n-p}=\frac{\left\|y-X \hat{\boldsymbol{\beta}}_{L S}\right\|^{2}}{n-p}
$$

- Asymptotic distribution is now $F_{2, n-p}$

When $p \geq n$:

- Estimate from least squares fit from model selected by cross-validation
- No rigorous theory here (fingers crossed!)

Simulation setup

Generate data where

$$
y=\boldsymbol{\beta} X+\boldsymbol{\epsilon} \text { with } \boldsymbol{\epsilon} \sim N(0, I)
$$

Goal: See how well $\operatorname{Exp}(1)$ approximates empirical distribution

- We'll use the mean, variance, and tail probability to summarize the empirical distribution

Simulation setup

Simulation 1:

- Correlated, multivariate normal predictors where $\boldsymbol{\beta}=0$
- Consider distribution of T_{1}

Simulation 2:

- Correlated, multivariate normal predictors where $\boldsymbol{\beta}$ has k non-zero elements
- Consider distribution of T_{k+1}

Simulation 3:

- Non-normal predictors where $\boldsymbol{\beta}=0$
- Consider distribution of T_{1}

Simulation 1

- $n=100$ and $p \in(10,50,200)$
- Correlated, multivariate normal predictors
- Varying correlation structure of predictors with $\rho \in(0,0.2,0.4,0.6,0.8)$
- Exchangeable
- $\operatorname{AR}(1)$
- Block diagonal
- $\boldsymbol{\beta}=0$
- Consider distribution of T_{1}

Simulation 1 results - mean

Block diagonal correlation

Simulation 1 results - variance

Block diagonal correlation

Simulation 1 results - tail probability

Block diagonal correlation

Simulation 2

- $n=100$ and $p=50$
- Correlated, multivariate normal predictors
- Varying correlation structure of predictors with $\rho \in(0,0.2,0.4,0.6,0.8)$
- Exchangeable
- AR(1)
- Block diagonal
- $\boldsymbol{\beta}$ has k non-zero elements
- Consider distribution of T_{k+1} for $k \in(1,2,3)$

Simulation 2 results - mean

Exchangeable correlation

ρ

Block diagonal correlation

Simulation 2 results - variance

Simulation 2 results - tail probability

Exchangeable correlation

ρ

Block diagonal correlation

Simulation 2 results - explanation

- With high correlation, effective number of active covariates is reduced
- Test statistic does not have a distribution like that for first inactive predictor

$$
\begin{array}{lll}
T_{k_{0}+1} & \rightarrow_{d} & \operatorname{Exp}(1) \\
T_{k_{0}+2} & \rightarrow_{d} & \operatorname{Exp}(1 / 2) \\
T_{k_{0}+3} & \rightarrow_{d} & \operatorname{Exp}(1 / 3)
\end{array}
$$

Simulation 2 results - explanation

- $n=100$ and $p=50$ with k active covariates and correlation of ρ between predictors

Simulation 3

- $n=100$ and $p \in(10,50,200)$
- Non-normal predictors
- Gamma(1,2)
- Uniform(0,1)
- Bernoulli(0.3)
- Mixture
- $\boldsymbol{\beta}=0$
- Consider distribution of T_{1}

Simulation 3 results

Prostate Cancer Data

- Outcome of log PSA, 8 clinical covariates
- 67 observations

Step Number	Predictor Entered	Forward Stepwise	Predictor Entered	Lasso
1	Icavol	<0.001	Icavol	<0.001
2	Iweight	<0.001	Iweight	0.051
3	svi	0.040	svi	0.173
4	lbph	0.045	Ibph	0.929
5	pgg45	0.226	pgg45	0.352
6	Icp	0.085	age	0.650
7	age	0.142	Icp	0.050
8	gleason	0.883	gleason	0.978

Wine Quality Data

- Outcome of wine quality, 11 covariates
- 1599 observations

Step Number	Predictor Entered	Forward Stepwise	Predictor Entered	Lasso
1	alcohol	<0.001	alcohol	<0.001
2	volatile.acidity	<0.001	volatile.acidity	<0.001
3	sulphates	<0.001	sulphates	0.001
4	total.sulfur.dioxide	0.008	total.sulfur.dioxide	0.286
5	chlorides	0.008	fixed.acidity	0.711
6	pH	0.036	chlorides	0.016
7	free.sulfur.dioxide	0.172	pH	0.568
8	fixed.acidity	0.443	free.sulfur.dioxide	0.566
9	density	0.502	density	0.824
10	residual.sugar	0.552	residual.sugar	0.848
11	citric.acid	0.952	citric.acid	0.996

Wine Quality Data

Critique

Implementation:

- More simulations needed to obtain accurate estimates
- Better to display simulation results as graphs than tables

Methods:

- Motivation: "practitioner will undoubtedly seek some sort of inferential guarantees for his or her computed lasso model"
- But...actually want inference for all coefficients from a model for a specific lasso penalty

What's the big idea?

- Use covariance test statistic to obtain p-value for covariate as it enters the lasso model
- Compare to asymptotic distribution - $\operatorname{Exp}(1)$ - to obtain p -values
- Reasonable performance in finite samples
- Using same data set to adaptively fit model and do inference

