"A Significance Test for the Lasso" Lockhart R, Taylor J, Tibshirani R, and Tibshirani R

Ashley Petersen

June 6, 2013

Motivation

- Problem: Many clinical covariates which are important to a certain medical outcome?
- Want to choose the important variables and say how important these variables are
- ► Bad solution: Forward stepwise regression → very anti-conservative p-values
- Better solution: Lasso with p-values from newly proposed covariance test statistic

Forward stepwise regression

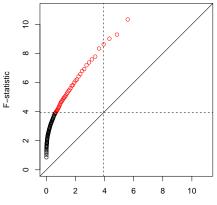
- Enter covariates into the model one at a time
- At each step choose the covariate with the largest F-statistic (smallest p-value)

$$F_k = \frac{RSS_{null} - RSS}{RSS/(n-k)}$$

► Compare to F distribution with 1 and n - k df to obtain p-value

Evidence against taking those p-values seriously...

- Simulation of distribution of F-statistic for first covariate to enter model under global null (β = 0)
- ▶ n = 100, p = 10
- Type I error of 42%



F with 1 and 99 df

Why does this matter?

- Just look at the literature abundance of incorrect p-values
- Much desire to do adaptively fit a model and produce valid p-values

Explaining variations in prescribing costs across England

Tony Morton-Jones, Mike Pringle

TABLE II—Regression coefficients, significances, and percentage contributions of factors used in net ingredient cost per patient multiple regression model

Regression detail	List inflation	Standardised mortality ratio	% Pensioners	% Prepayment certificates	Constant-
Regression coefficient	-0·307	0·175	0·877	0·0254	33-81
	-8·09	9·07	6·84	4·62	5-86
Significance	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
% Variation explained	44.7	65.0	75.8	80.7	0

Framework

Consider regression setup with outcome vector $y \in \mathbb{R}^n$ with covariate matrix $X \in \mathbb{R}^{n \times p}$ and

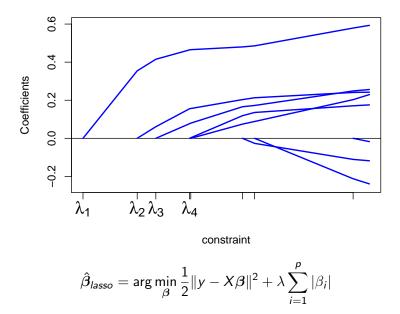
$$y = \beta X + \epsilon$$
 with $\epsilon \sim N(0, \sigma^2 I)$.

The lasso estimator is obtained by finding β that minimizes

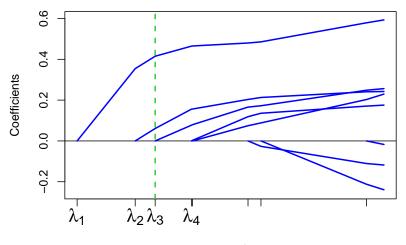
$$\frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{i=1}^p |\beta_i|,$$

where λ is the lasso penalty.

Lasso solution path $(\lambda_1 > \lambda_2 > \lambda_3 > \lambda_4 > \ldots)$



Obtain p-value for covariate entering the model



constraint

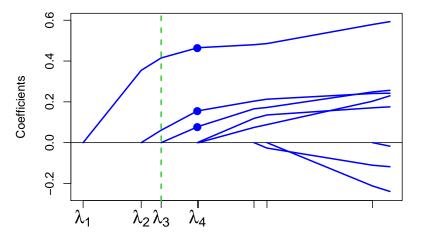
The covariance test statistic for testing the predictor that enters at the kth step is

$$T_{k} = \frac{y^{T}\hat{y} - y^{T}\hat{y}_{null}}{\sigma^{2}}$$
$$= \frac{y^{T}\chi\hat{\beta}(\lambda_{k+1}) - y^{T}\chi_{null}\hat{\beta}_{null}(\lambda_{k+1})}{\sigma^{2}}.$$

We assume σ^2 is known for now...

What is \hat{y} ?

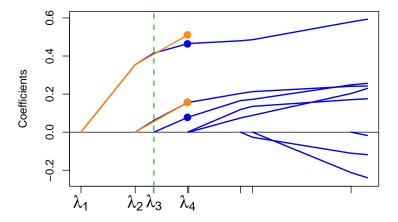
• testing that variable that enters at λ_3 has $\beta = 0$



constraint

What about \hat{y}_{null} ?

- testing that variable that enters at λ_3 has $\beta = 0$
- $\hat{y} = X \hat{\beta}(\lambda_4)$ $\hat{y}_{null} = X_{null} \hat{\beta}_{null}(\lambda_4)$



constraint

Asymptotic distribution

Under the null where there are k_0 truly active covariates (and they have entered the model), then

for orthogonal predictor matrix X.

What to do when σ^2 is unknown?

When p < n:

Estimate in the usual way:

$$\hat{\sigma}^2 = \frac{RSS}{n-p} = \frac{\|y - X\hat{\beta}_{LS}\|^2}{n-p}$$

Asymptotic distribution is now F_{2,n-p}

When $p \ge n$:

- Estimate from least squares fit from model selected by cross-validation
- No rigorous theory here (fingers crossed!)

Simulation setup

Generate data where

$$y = \beta X + \epsilon$$
 with $\epsilon \sim N(0, I)$.

Goal: See how well Exp(1) approximates empirical distribution

 We'll use the mean, variance, and tail probability to summarize the empirical distribution

Simulation setup

Simulation 1:

- Correlated, multivariate normal predictors where $oldsymbol{eta}=0$
- Consider distribution of T_1

Simulation 2:

- Correlated, multivariate normal predictors where β has k non-zero elements
- Consider distribution of T_{k+1}

Simulation 3:

- Non-normal predictors where $\beta = 0$
- Consider distribution of T_1

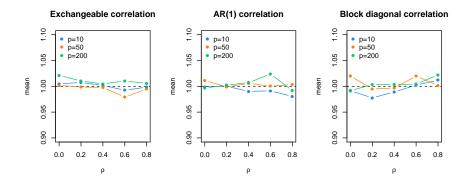
Simulation 1

• n = 100 and $p \in (10, 50, 200)$

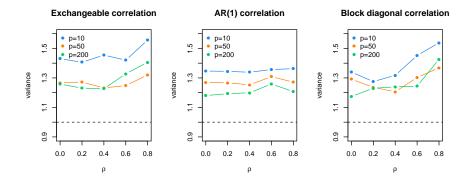
Correlated, multivariate normal predictors

- ► Varying correlation structure of predictors with $\rho \in (0, 0.2, 0.4, 0.6, 0.8)$
 - Exchangeable
 - ► AR(1)
 - Block diagonal
- ► *β* = 0
- Consider distribution of T_1

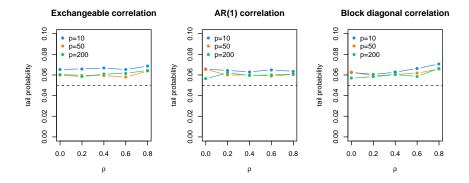
Simulation 1 results - mean



Simulation 1 results – variance



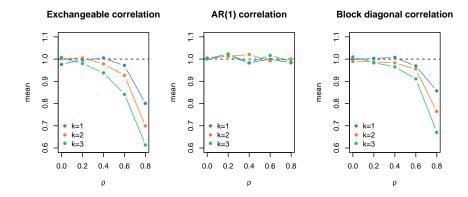
Simulation 1 results - tail probability



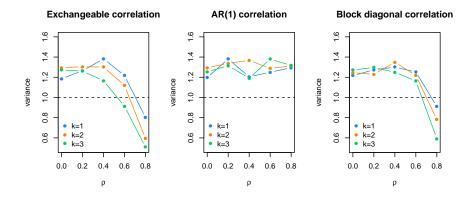
Simulation 2

- n = 100 and p = 50
- Correlated, multivariate normal predictors
- ► Varying correlation structure of predictors with $\rho \in (0, 0.2, 0.4, 0.6, 0.8)$
 - Exchangeable
 - ► AR(1)
 - Block diagonal
- β has k non-zero elements
- Consider distribution of T_{k+1} for $k \in (1, 2, 3)$

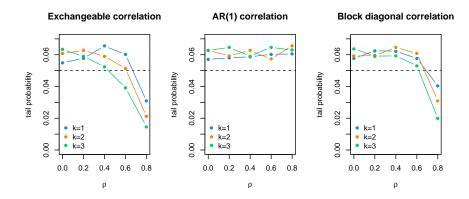
Simulation 2 results - mean



Simulation 2 results - variance



Simulation 2 results - tail probability



23

Simulation 2 results - explanation

- With high correlation, effective number of active covariates is reduced
- Test statistic does not have a distribution like that for first inactive predictor

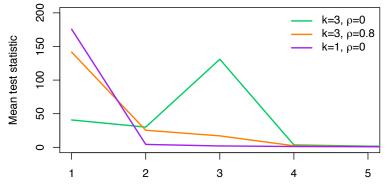
$$T_{k_0+1} \rightarrow_d \operatorname{Exp}(1)$$

$$T_{k_0+2} \rightarrow_d \operatorname{Exp}(1/2)$$

$$T_{k_0+3} \rightarrow_d \operatorname{Exp}(1/3)$$
:

Simulation 2 results - explanation

n = 100 and p = 50 with k active covariates and correlation of ρ between predictors

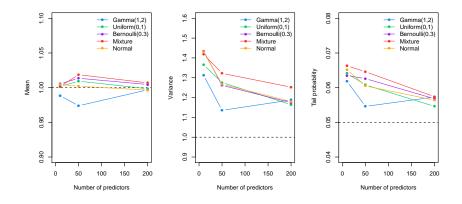


Step

Simulation 3

- ▶ n = 100 and $p \in (10, 50, 200)$
- Non-normal predictors
 - ▶ Gamma(1,2)
 - Uniform(0,1)
 - Bernoulli(0.3)
 - Mixture
- ► *β* = 0
- Consider distribution of T_1

Simulation 3 results



Prostate Cancer Data

- Outcome of log PSA, 8 clinical covariates
- 67 observations

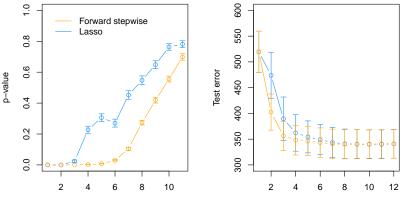
Step	Predictor	Forward	Predictor	
Number	Entered	Stepwise	Entered	Lasso
1	lcavol	< 0.001	lcavol	< 0.001
2	lweight	< 0.001	lweight	0.051
3	svi	0.040	svi	0.173
4	lbph	0.045	lbph	0.929
5	pgg45	0.226	pgg45	0.352
6	lcp	0.085	age	0.650
7	age	0.142	lcp	0.050
8	gleason	0.883	gleason	0.978

Wine Quality Data

- Outcome of wine quality, 11 covariates
- 1599 observations

Step	Predictor	Forward	Predictor	
Number	Entered	Stepwise	Entered	Lasso
1	alcohol	< 0.001	alcohol	< 0.001
2	volatile.acidity	< 0.001	volatile.acidity	< 0.001
3	sulphates	< 0.001	sulphates	0.001
4	total.sulfur.dioxide	0.008	total.sulfur.dioxide	0.286
5	chlorides	0.008	fixed.acidity	0.711
6	pН	0.036	chlorides	0.016
7	free.sulfur.dioxide	0.172	pH	0.568
8	fixed.acidity	0.443	free.sulfur.dioxide	0.566
9	density	0.502	density	0.824
10	residual.sugar	0.552	residual.sugar	0.848
11	citric.acid	0.952	citric.acid	0.996

Wine Quality Data



Critique

Implementation:

- More simulations needed to obtain accurate estimates
- Better to display simulation results as graphs than tables

Methods:

- Motivation: "practitioner will undoubtedly seek some sort of inferential guarantees for his or her computed lasso model"
- But...actually want inference for all coefficients from a model for a specific lasso penalty

What's the big idea?

- Use covariance test statistic to obtain p-value for covariate as it enters the lasso model
- Compare to asymptotic distribution Exp(1) to obtain p-values
- Reasonable performance in finite samples
- Using same data set to adaptively fit model and do inference