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Motivation

» Problem: Many clinical covariates — which are important to a
certain medical outcome?

» Want to choose the important variables and say how
important these variables are

> Bad solution: Forward stepwise regression — very
anti-conservative p-values

» Better solution: Lasso with p-values from newly proposed
covariance test statistic



Forward stepwise regression

» Enter covariates into the model one at a time

> At each step choose the covariate with the largest F-statistic
(smallest p-value)

£ _ RSSwun—RSS
“ 7 "RSS/(n— k)

» Compare to F distribution with 1 and n — k df to obtain
p-value



Evidence against taking those p-values seriously...

» Simulation of distribution of F-statistic for first covariate to
enter model under global null (3 =0)

» n=100, p =10

» Type | error of 42%

F-statistic

F with 1 and 99 df



Why does this matter?

» Just look at the literature — abundance of incorrect p-values

» Much desire to do adaptively fit a model and produce valid

p-values

Explaining variations in prescribing costs across England

Tony Morton-Jones, Mike Pringle

TABLE Il—Regression coefficients, significances, and percentage comtributions of factors used in net

ingredient cost per patient multiple regression model

List Standardised
Regression detail inflation mortality ratio
Regression coefficient -0-307 0175
T -8-09 9-07
Significance <0-0001 <0-0001

% Variation explained 447 650




Framework

Consider regression setup with outcome vector y € R” with
covariate matrix X € R™P and

y = BX + € with € ~ N(0,02/).
The lasso estimator is obtained by finding 3 that minimizes

1 ) 2
Sy = XBIP+ 2> 16,

i=1

where )\ is the lasso penalty.



Lasso solution path (A1 > Ay > A3 > Ay > ...)

0.6
|

0.4

Coefficients
0.0 0.2
|

[ [ [ T T [
A1 MAs A

constraint

. 1 &
IBIBSSO = arg mﬂm EHy - Xﬁ||2 + AZ |6I|
i=1



Obtain p-value for covariate entering the model
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Covariance test statistic

The covariance test statistic for testing the predictor that enters at
the kth step is
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We assume o< is known for now...



What is y?

> testing that variable that enters at A3 has 5 =0
> § = XB(\4)
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What about y,,,?

> testing that variable that enters at A3 has 5 =0
> § = XB(As)
> Voun = Xnui
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Asymptotic distribution

Under the null where there are kg truly active covariates (and they

have entered the model), then

Tior1 —d
Tior2 —d

Tior3 —d

for orthogonal predictor matrix X.

Exp(1)
Exp(1/2)
Exp(1/3)
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What to do when &2 is unknown?

When p < n:
» Estimate in the usual way:
o RSS |y —XBusl
o = =
n—p n—p

» Asymptotic distribution is now F> ,_p

When p > n:

» Estimate from least squares fit from model selected by
cross-validation

» No rigorous theory here (fingers crossed!)
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Simulation setup

Generate data where

y = BX + € with e ~ N(0, /).

Goal: See how well Exp(1) approximates empirical distribution

> We'll use the mean, variance, and tail probability to
summarize the empirical distribution
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Simulation setup

Simulation 1:
» Correlated, multivariate normal predictors where 3 =0

» Consider distribution of Ty

Simulation 2:

» Correlated, multivariate normal predictors where 3 has k
non-zero elements

» Consider distribution of Ty

Simulation 3:
» Non-normal predictors where 3 =0
» Consider distribution of Ty
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Simulation 1

v

n =100 and p € (10,50, 200)
Correlated, multivariate normal predictors
Varying correlation structure of predictors with
p € (0,0.2,0.4,0.6,0.8)

» Exchangeable

» AR(1)

» Block diagonal
B=0

Consider distribution of T3

v

v

v
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Simulation 1 results — mean
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Simulation 1 results — variance

variance
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Simulation 1 results — tail probability

tail probability
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Simulation 2

v

n =100 and p =50
Correlated, multivariate normal predictors
Varying correlation structure of predictors with
p € (0,0.2,0.4,0.6,0.8)

» Exchangeable

» AR(1)

» Block diagonal

v

v

v

3 has k non-zero elements
Consider distribution of Tx4 for k € (1,2,3)

v
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Simulation 2 results — mean
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Simulation 2 results — variance

Exchangeable correlation AR(1) correlation Block diagonal correlation
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Simulation 2 results — tail probability

Exchangeable correlation AR(1) correlation Block diagonal correlation
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Simulation 2 results — explanation

» With high correlation, effective number of active covariates is
reduced

» Test statistic does not have a distribution like that for first
inactive predictor

Tho+1 —d Exp(1)
Tk0+2 —d EXp(1/2)
Tk0+3 —d EXp(1/3)
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Simulation 2 results — explanation

» n =100 and p = 50 with k active covariates and correlation
of p between predictors
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Simulation 3

v

v

v

v

n =100 and p € (10,50, 200)
Non-normal predictors

» Gamma(1,2)

» Uniform(0,1)

» Bernoulli(0.3)

» Mixture

B=0

Consider distribution of T3
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Simulation 3 results
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Prostate Cancer Data

» Qutcome of log PSA, 8 clinical covariates

» 67 observations

Step Predictor  Forward | Predictor
Number | Entered Stepwise | Entered Lasso
1 Icavol < 0.001 Icavol < 0.001
2 lweight < 0.001 | Iweight 0.051
3 svi 0.040 svi 0.173
4 Ibph 0.045 Ibph 0.929
5 pgg4b 0.226 pgg4b 0.352
6 lcp 0.085 age 0.650
7 age 0.142 lcp 0.050
8 gleason 0.883 | gleason 0.978
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Wine Quality Data

» Qutcome of wine quality, 11 covariates

» 1599 observations

Step Predictor  Forward Predictor
Number Entered Stepwise Entered Lasso
1 alcohol < 0.001 alcohol < 0.001
2 volatile.acidity = < 0.001 volatile.acidity < 0.001
3 sulphates < 0.001 sulphates 0.001
4 total.sulfur.dioxide 0.008 | total.sulfur.dioxide 0.286
5 chlorides 0.008 fixed.acidity 0.711
6 pH 0.036 chlorides 0.016
7 free.sulfur.dioxide 0.172 pH 0.568
8 fixed.acidity 0.443 | free.sulfur.dioxide 0.566
9 density 0.502 density 0.824
10 residual.sugar 0.552 residual.sugar 0.848
11 citric.acid 0.952 citric.acid 0.996




Wine Quality Data
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Critique

Implementation:
» More simulations needed to obtain accurate estimates

» Better to display simulation results as graphs than tables

Methods:

» Motivation: “practitioner will undoubtedly seek some sort of
inferential guarantees for his or her computed lasso model”

» But...actually want inference for all coefficients from a model
for a specific lasso penalty
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What's the big idea?

» Use covariance test statistic to obtain p-value for covariate as
it enters the lasso model

» Compare to asymptotic distribution — Exp(1) — to obtain
p-values

» Reasonable performance in finite samples

» Using same data set to adaptively fit model and do inference
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