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Background (Motivation)

@ Designing an experiment or a study
@ Restrictions on sample size (due to cost, time, etc)

@ How do we design an efficient experiment with valid estimate of the
parameter?
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Efficient Design

o Efficient experimental designs for GLMs depend on the unknown
coefficients.

@ Sequential design: next design point chosen based on current data.
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What is Efficient?

@ Optimality criterion: D-optimal

@ D-optimality criterion: maximize the determinant of the information
matrix 1(3;d)
B3 = parameters in the model; d = design

@ Bayesian D-optimality criterion (Chaloner and Larntz, 1989):

o(d) = / log(1(8; d))d(B) (1)

where 7(3) = prior distribution on 3.

Bob A. Salim Sequential Experimental Designs for Generalized Linear Models May 14, 2013 4/19



Overview of Proposed Method: Approximate Design
Criteria
@ Discretized posterior

n

d) = ruog(1(B,; d)) (2)
u=1

where r, = L(8,)/ > 01 L(B.)

@ A faster approximation

¢2(d) = log(1(5; d)) (3)
where 3 = B,y such that >-%_; r,) > 0.5 and 30 r,) > 0.5.
@ Another approximation for determlnlng augmentatlon horlzon
¢3(d) = (1/p)¢p2(d) — log(n) (4)
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Overview of Proposed Method: Algorithm

In the beginning of the experiment, define the augmentation horizon
(m).

Find a locally D-optimal m-run augmentation to the current design,
maximizing ¢, at the current parameter median.

Generate a candidate set for the augmentation consisting of the m
points found in the previous step and their coordinatewise median.

If the design points run thus far provide a nonsingular information
matrix, choose the next design point as the candidate that gives the
best ¢1 when added to the current design.

If the design thus far does not provide a nonsingular information
matrix, then choose the next design point from among the candidates
by comparing the values of ¢; for designs that consist of the points
run thus far, the m-run augmentation, and the candidate.
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Overview of Proposed Method: Augmentation Horizon

@ Proposed to avoid problems, such as singular information matrix

@ It is the number of observations (m) needed for highly efficient
D-optimal design at prior median

@ Determined at the start of the experiment

Bob A. Salim Sequential Experimental Designs for Generalized Linear Models May 14, 2013 7/19



Overview of Proposed Method: Augmentation Horizon

@ Find locally D-optimal designs at prior median for n=p, ..., P

@ Define the efficiency of d,, = exp[p3(d,) — ¢3(d*)]
where dx is the design among dj, ..., dp that maximizes ¢3(d)

@ Augmentation horizon m is the smallest value of n for which the
efficiency is at least 99%
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Finding Locally D-optimal Designs

Given in their earlier paper (Dror and Steinberg, 2006)
For linear regression, the information matrix is given by XX

For GLMs, the information matrix is given by X TWX, where W =
V=(u)(dp/dn)?. w is the vector of expected response, and 7 is the
linear predictor X3.

For example, for logistic regression, W is a diagonal matrix with
diagonal elements w;; = exp(X;3)/(1 + exp(X;3))?.
Applies a row-exchange algorithm (Federov, 1972)
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Back to the Augmentation Horizon
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Back to the Augmentation Horizon
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Explosives Testing Example

Sensitivity Experiment in June 2006 at an industrial plant.

Compare the performance of this method to Bruceton up-and-down
method (default)

Requirement: probability of detonation at 12V (or below) is < 5%
and the probability of detonation at 25V (or above) is > 95%.

The authors used the following priors: y ~ lognormal(log(17),0.52)
and j ~ lognormal(log(0.7),0.52)
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Explosives Testing Example
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Figure 6. Comparison of the plant format (: ) and our algorithm
(++++==++) after 20 observations from each. The lines are pointwise 95%
confidence intervals for the probability of response.
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Explosives Testing Example

Difficulties in reproducing this result:
@ Real test, actual response observed in the plant

@ Can do simulation study, but the "true” parameters, and even the
"true” response surface unknown
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Explosives Testing Example: Bruceton
Simulation study. True parameter: ;x =19 and ¢ = 0.7
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Explosives Testing Example: Dror & Steinberg
Simulation study. True parameter: ;x =19 and ¢ = 0.7
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Explosives Testing Example: Comparison of results
Simulation study. True parameter: ;x =19 and ¢ = 0.7

-1 = - Bruceton
—— Dror & Steinberg
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Next Steps

o Figure out what's different in their codes and in mine.

e Simulation studies to compare results with other methods (Neyer,
logit-MLE, Bayes-logit-MLE, etc)
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