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Background (Motivation)

Designing an experiment or a study

Restrictions on sample size (due to cost, time, etc)

How do we design an efficient experiment with valid estimate of the
parameter?
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Previous Works

Chaudhuri and Mykland (1993): Sequential designs in GLMs could
lead to fully efficient designs and asymptotically efficient MLEs

Dixon and Mood (1948); Neyer (1994); Haines, Perevozskaya, and
Rosenberger (2003); Ivanova and Wang (2004); Biedermann, Dette,
and Zhu (2006); Karvanen, Vartiainen, Timofeev, and Pekola (2007):
Sequential designs for binary data, focused on single-factor
experiments.
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Efficient Design

Efficient experimental designs for GLMs depend on the unknown
coefficients.

Sequential design: next design point chosen based on current data.
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What is Efficient?

Optimality criterion: D-optimal

D-optimality criterion: maximize the determinant of the information
matrix I(β;d)
β = parameters in the model; d = design

Bayesian D-optimality criterion (Chaloner and Larntz, 1989):

φ(d) =

∫
log(I(β; d))dπ(β) (1)

where π(β) = prior distribution on β.
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Overview of Proposed Method: Approximate Design
Criteria

Discretized posterior

φ1(d) =
n∑

u=1

ru log(I(βu; d)) (2)

where ru = L(βu)/
∑n

u=1 L(βu)

A faster approximation

φ2(d) = log(I(β̃; d)) (3)

where β̃ = β(g) such that
∑g

u=1 r(u) ≥ 0.5 and
∑n

u=g r(u) ≥ 0.5.

Another approximation for determining augmentation horizon

φ3(d) = (1/p)φ2(d)− log(n) (4)
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Overview of Proposed Method: Algorithm

In the beginning of the experiment, define the augmentation horizon
(m).

Find a locally D-optimal m-run augmentation to the current design,
maximizing φ2 at the current parameter median.

Generate a candidate set for the augmentation consisting of the m
points found in the previous step and their coordinatewise median.

If the design points run thus far provide a nonsingular information
matrix, choose the next design point as the candidate that gives the
best φ1 when added to the current design.

If the design thus far does not provide a nonsingular information
matrix, then choose the next design point from among the candidates
by comparing the values of φ1 for designs that consist of the points
run thus far, the m-run augmentation, and the candidate.
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Overview of Proposed Method: Augmentation Horizon

Proposed to avoid problems, such as singular information matrix

It is the number of observations (m) needed for highly efficient
D-optimal design at prior median

Determined at the start of the experiment
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Overview of Proposed Method: Augmentation Horizon

Find locally D-optimal designs at prior median for n = p, ...,P

Define the efficiency of dn = exp[φ3(dn)− φ3(d∗)]
where d∗ is the design among dp, ..., dP that maximizes φ3(d)

Augmentation horizon m is the smallest value of n for which the
efficiency is at least 99%
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Finding Locally D-optimal Designs

Given in their earlier paper (Dror and Steinberg, 2006)

For linear regression, the information matrix is given by XTX

For GLMs, the information matrix is given by XTWX, where W =
V−1(µ)(dµ/dη)2. µ is the vector of expected response, and η is the
linear predictor Xβ.

For example, for logistic regression, W is a diagonal matrix with
diagonal elements wii = exp(Xiβ)/(1 + exp(Xiβ))2.

Applies a row-exchange algorithm (Federov, 1972)
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Back to the Augmentation Horizon

292 Journal of the American Statistical Association, March 2008

3.4 The Augmentation Horizon

When the number of existing design points plus the number
of augmentation sites is less than the number of parameters in
the model, the corresponding information matrices will be sin-
gular. Thus none of our criteria will provide any information
that can be used to decide which design sites will be the most
informative ones. To avoid such problems, we first determine an
augmentation horizon, m. Then, at each augmentation step, we
begin by finding an m-run augmentation. The horizon itself is
determined at the start of the experiment, as the number of ob-
servations required for a design that has high local D-efficiency
at the prior median of the parameters, β̃(0). If the prior includes
more than one linear predictor, then the horizon is determined
using the predictor with the largest number of regression func-
tions.

We now find locally D-optimal designs, maximizing φ2(d)

at the prior median for sample sizes n = p, . . . ,P , where p is
the number of terms in the linear predictor and P is about 4p.
Let d

(0)
n denote the design with n runs. These designs are found

using our earlier algorithm (Dror and Steinberg 2006), which
applies an exchange algorithm (Federov 1972) to a transformed
regression matrix, F̃ = FW1/2. This algorithm is suitable for
constructing and augmenting local D-optimal designs for mod-
els of high dimension with any GLM response.

To compare the designs, we make a standard modification to
the φ2 criterion that removes its dependence on sample size. We
regard d

(0)
n as a probability measure, with mass 1/n on each

design point. We also take the pth root of the determinant of
the information matrix, which scales its size proportional to the
number of observations. The resulting criterion is

φ3(d) = (1/p)φ2(d) − log(n), (5)

where n is the actual number of observations in d . Let d∗ denote
the design (from among d

(0)
p , . . . , d

(0)
P ) that maximizes φ3(d).

Define the efficiency of d
(0)
n as

Eff
(
d(0)
n

)
= exp

{
φ3

(
d(0)
n

)
− φ3(d

∗)
}
. (6)

We choose the horizon m as the smallest value of n for which
Eff(d(0)

n ) is at least 99%.
Figure 3 illustrates the idea of the augmentation horizon

in the context of a crystallography experiment presented by
Woods et al. (2006). The goal was to design a four-factor ex-
periment, with binary outcomes, to estimate a first-order logis-
tic regression model. The experimenters’ best guess for the in-
tercept was 0, and prior guesses for the four slopes were 7, 8,
−3, and .5. Using this parameter vector, locally D-optimal de-
signs with n = 5, . . . ,24 runs were generated. Figure 3 plots the
corresponding D-efficiencies and shows that m = 8 is a good
choice for the augmentation horizon.

3.5 One-Point Augmentations

Here we describe a fully sequential design approach, in
which new observation sites are chosen one at a time. The al-
gorithm depends on the augmentation horizon m found at the
start of the experiment. The exact determination also depends
on whether or not sufficient runs have been made to achieve a
nonsingular information matrix.

The algorithms is as follows:

1. Find a locally D-optimal m-run augmentation to the exist-
ing design, maximizing φ2 at the current parameter me-
dian. If the prior includes more than one linear predic-
tor, then use the linear predictor with the highest posterior
probability.

2. Generate a candidate set for the augmentation consisting
of the m points found in the previous step and their coor-
dinatewise median.

(a) (b)

Figure 3. Choosing the augmentation horizon for a four-factor logistic regression model. (a) The relative efficiency for design measures
corresponding to locally optimal designs with n = 5, . . . ,24 runs. (b) Results for n = 5, . . . ,16 runs highlighted by magnifying the relative
efficiency. Using eight or more runs gives very high efficiency, so we set the augmentation horizon to 8.
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Method Comparison: Bruceton

Algorithm:

Described in Dixon and Mood (1948)

Determine starting value and step size (s)

If current design point (x) produces positive outcome, the next design
point is chosen to be the design point one step size below the current
design point (x − s)

If current design point (x) produces negative outcome, the next
design point is chosen to be the design point one step size above the
current design point (x + s)
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Method Comparison: Neyer

Overview

Described in Neyer (1994)

Three-part procedure

First part: ”Close in” on the region of interest

Second part: Determine unique estimates of the parameters

Third part: Use local D-optimal design based on the MLE of the
parameters
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Explosives Testing Example

Sensitivity Experiment in June 2006 at an industrial plant.

Compare the performance of this method to Bruceton up-and-down
method (default)

Requirement: probability of detonation at 12V (or below) is < 5%
and the probability of detonation at 25V (or above) is > 95%.

Parameterization: P(y = 1|...) = F ( x−µ
σ ), where F is the inverse of

the link function. For example, in doing logistic regression, F is the
expit function.

The authors used the following priors: µ ∼ lognormal(log(17),0.52)
and σ ∼ lognormal(log(0.7),0.52)

True parameters: µ = 19, σ = 0.7
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Explosives Testing Example: Bruceton
Simulation study. True parameter: µ = 19 and σ = 0.7
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Augmentation Horizon for Sensitivity Test
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Explosives Testing Example: Dror & Steinberg
Simulation study. True parameter: µ = 19 and σ = 0.7
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Explosives Testing Example: Comparison of results
Simulation study. True parameter: µ = 19 and σ = 0.7
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More Simulations: Efficiency

Bruceton: Initial point = 17, step size = 1.28

Neyer: µmin = 12, µmax = 25, σguess = 0.7

Dror: µ ∼ lognormal(log(17),0.52) and σ ∼ lognormal(log(0.7),0.52)

Efficency = exp(φ3(D))/exp(φ3(Dopt))
where D is the obtained design and Dopt is the optimal design points
given that we know the true parameter values.
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More Simulations: Median D-Efficiency

Case True µ True σ Bruceton Neyer Dror

1 17.00 0.07 0.002 0.19 0.26
2 35.00 0.07 0.0004 0.08 0.12
3 20.00 0.14 0.18 0.25 0.48
4 5.00 0.35 0.36 0.21 0.62
5 17.00 0.35 0.67 0.35 0.67
6 17.00 0.70 0.85 0.55 0.76
7 25.00 0.70 0.64 0.35 0.76
8 14.00 1.40 0.74 0.48 0.82
9 35.00 1.40 0.25 0.32 0.64

10 17.00 3.50 0.38 0.67 0.66
11 20.00 3.50 0.42 0.69 0.70
12 9.00 7.00 0.31 0.32 0.54
13 25.00 7.00 0.35 0.37 0.53
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More Simulations: Median D-Efficiency
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Summary

Advantages:

Allows for design of multifactor experiments

Allows for design of experiments for GLMs (not just binary data)

Less singularity problem, or cases where MLEs don’t exist

Uses D-optimality criterion from the beginning of the experiment.

Disadvantages:

A bit more complicated to do, more computationally heavy

Augmentation horizon sensitive to parameters
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Thank You!

Jon and Patrick

Everyone in the class
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