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Background (Motivation)

@ Designing an experiment or a study
@ Restrictions on sample size (due to cost, time, etc)

@ How do we design an efficient experiment with valid estimate of the
parameter?
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Previous Works

@ Chaudhuri and Mykland (1993): Sequential designs in GLMs could
lead to fully efficient designs and asymptotically efficient MLEs

@ Dixon and Mood (1948); Neyer (1994); Haines, Perevozskaya, and
Rosenberger (2003); lvanova and Wang (2004); Biedermann, Dette,
and Zhu (2006); Karvanen, Vartiainen, Timofeev, and Pekola (2007):
Sequential designs for binary data, focused on single-factor
experiments.
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Efficient Design

o Efficient experimental designs for GLMs depend on the unknown
coefficients.

@ Sequential design: next design point chosen based on current data.
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What is Efficient?

@ Optimality criterion: D-optimal

@ D-optimality criterion: maximize the determinant of the information
matrix 1(3;d)
B3 = parameters in the model; d = design

@ Bayesian D-optimality criterion (Chaloner and Larntz, 1989):

o(d) = / log(1(8; d))d(B) (1)

where 7(3) = prior distribution on 3.
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Overview of Proposed Method: Approximate Design
Criteria
@ Discretized posterior

n

d) = ruog(1(B,; d)) (2)
u=1

where r, = L(8,)/ > 01 L(B.)

@ A faster approximation

¢2(d) = log(1(5; d)) (3)
where 3 = B,y such that >-%_; r,) > 0.5 and 30 r,) > 0.5.
@ Another approximation for determlnlng augmentatlon horlzon
¢3(d) = (1/p)¢p2(d) — log(n) (4)
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Overview of Proposed Method: Algorithm

In the beginning of the experiment, define the augmentation horizon
(m).

Find a locally D-optimal m-run augmentation to the current design,
maximizing ¢, at the current parameter median.

Generate a candidate set for the augmentation consisting of the m
points found in the previous step and their coordinatewise median.

If the design points run thus far provide a nonsingular information
matrix, choose the next design point as the candidate that gives the
best ¢1 when added to the current design.

If the design thus far does not provide a nonsingular information
matrix, then choose the next design point from among the candidates
by comparing the values of ¢; for designs that consist of the points
run thus far, the m-run augmentation, and the candidate.
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Overview of Proposed Method: Augmentation Horizon

@ Proposed to avoid problems, such as singular information matrix

@ It is the number of observations (m) needed for highly efficient
D-optimal design at prior median

@ Determined at the start of the experiment
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Overview of Proposed Method: Augmentation Horizon

@ Find locally D-optimal designs at prior median for n=p, ..., P

@ Define the efficiency of d,, = exp[p3(d,) — ¢3(d*)]
where dx is the design among dj, ..., dp that maximizes ¢3(d)

@ Augmentation horizon m is the smallest value of n for which the
efficiency is at least 99%
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Finding Locally D-optimal Designs

Given in their earlier paper (Dror and Steinberg, 2006)
For linear regression, the information matrix is given by XX

For GLMs, the information matrix is given by X TWX, where W =
V=(u)(dp/dn)?. w is the vector of expected response, and 7 is the
linear predictor X3.

For example, for logistic regression, W is a diagonal matrix with
diagonal elements w;; = exp(X;3)/(1 + exp(X;3))?.
Applies a row-exchange algorithm (Federov, 1972)
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Method Comparison: Bruceton

Algorithm:
@ Described in Dixon and Mood (1948)
e Determine starting value and step size (s)

@ If current design point (x) produces positive outcome, the next design
point is chosen to be the design point one step size below the current
design point (x — s)

e If current design point (x) produces negative outcome, the next
design point is chosen to be the design point one step size above the
current design point (x + s)
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Method Comparison: Neyer

Overview
@ Described in Neyer (1994)
Three-part procedure
First part: "Close in" on the region of interest

Second part: Determine unique estimates of the parameters

Third part: Use local D-optimal design based on the MLE of the
parameters
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Explosives Testing Example

Sensitivity Experiment in June 2006 at an industrial plant.

Compare the performance of this method to Bruceton up-and-down
method (default)

Requirement: probability of detonation at 12V (or below) is < 5%
and the probability of detonation at 25V (or above) is > 95%.

Parameterization: P(y = 1|...) = F(*>#), where F is the inverse of
the link function. For example, in doing logistic regression, F is the
expit function.

The authors used the following priors: y ~ lognormal(log(17),0.5%)
and o ~ lognormal(log(0.7),0.5)

True parameters: = 19,0 = 0.7
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Explosives Testing Example: Bruceton
Simulation study. True parameter: ;x =19 and ¢ = 0.7
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Augmentation Horizon for Sensitivity Test

Efficiency
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Explosives Testing Example: Dror & Steinberg

Simulation study. True parameter: ;x =19 and ¢ = 0.7
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Explosives Testing Example: Comparison of results
Simulation study. True parameter: ;x =19 and ¢ = 0.7

Bruceton
—— Dror & Steinberg
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More Simulations: Efficiency

Bruceton: Initial point = 17, step size = 1.28
Neyer: fimin = 12, fimax = 25, Oguess — 0.7
Dror: u ~ lognormal(log(17),0.5%) and o ~ lognormal(log(0.7),0.52)

Efficency = exp(¢3(D))/exp(¢3(Dopt))
where D is the obtained design and Dopt is the optimal design points
given that we know the true parameter values.
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More Simulations: Median D-Efficiency

Case True u True o0 Bruceton Neyer Dror
1 17.00 0.07 0.002 0.19 0.26
2 35.00 0.07 0.0004 0.08 0.12
3 20.00 0.14 0.18 0.25 0.48
4 5.00 0.35 036 0.21 0.62
5 17.00 0.35 0.67 035 0.67
6 17.00 0.70 0.85 055 0.76
7 25.00 0.70 0.64 035 0.76
8 14.00 1.40 0.74 048 0.82
9 35.00 1.40 025 0.32 0.64

10 17.00 3.50 0.38 0.67 0.66
11 20.00 3.50 042 0.69 0.70
12 9.00 7.00 031 032 054
13 25.00 7.00 035 0.37 0.53
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More Simulations: Median D-Efficiency
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Summary

Advantages:
@ Allows for design of multifactor experiments
@ Allows for design of experiments for GLMs (not just binary data)

@ Less singularity problem, or cases where MLEs don't exist

@ Uses D-optimality criterion from the beginning of the experiment.

Disadvantages:
@ A bit more complicated to do, more computationally heavy

@ Augmentation horizon sensitive to parameters
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Thank You!

@ Jon and Patrick

@ Everyone in the class
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