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Setup

Modeling conditional associations are very important.

General Social Survey

Standard practice is to use regression models.

If the regression coefficient is not significantly non-zero, standard
practice is to conclude the two variables are conditionally
independent, given all the other variables.

INC Respondent’s Income
DEG Highest degree obtained
CHILD Number of children
PINC Parent’s income when respondent was 16
PDEG Max(mother’s degree, father’s degree, na.rm = T)
PCHILD Number of siblings + 1
AGE Age of respondent
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Which do we choose?

INCi =β0 + β1CHILDi + β2DEGi + β3AGEi

+ β4PCHILDi + β5PINCi + β6PDEGi + εi

or

CHILDi ∼Pois(exp{β0 + β1INCi + β2DEGi + β3AGEi

+ β4PCHILDi + β5PINCi + β6PDEGi})
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It matters

Response INC CHILD DEG AGE

INC NA 1.103(0.112) 7.025(<0.001) 0.335(<0.001)
CHILD 0.005(0.009) NA -0.068(0.056) 0.037(<0.001)

Response PCHILD PINC PDEG

INC 0.284(0.407) 4.070(0.001) 1.399(0.115)
CHILD 0.021(0.080) -0.063(0.195) -0.051(0.204)

Which variable you choose as the response can lead to different
conclusions!
Jointly modeling the variables of interest helps.
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Copulas (Copulae)

A copula is any multivariate distribution with uniform marginals.

Sklar’s Theorem: Any multivariate c.d.f.
H(x1, . . . , xp) = Pr(X1 ≤ x1, . . . ,Xp ≤ xp) of a random vector
(X1, . . . ,Xp) with marginals Fi (xi ) = Pr(Xi ≤ xi ) can be written as
H(xi , . . . , xp) = C (F1(x1), . . . ,Fp(xp)), where C is a copula. (C is
unique if all marginals are continuous)
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Problem

Univariate marginals hard to estimate (i.e. don’t belong to standard
families).

Still want to describe dependence structure.

General Social Survey Example

David Gerard (UW) April 2013 6/72



Marginal Distributions of Variables in G.S.S.
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Previous Work

Genest, Ghoudi, and Rivest (1995) – semiparametric approach where
they just plugged in empirical cdf’s as the marginals

Olsson (1979) – latent gaussian variables for ordinal data

Both semi-parametric approaches (parametric in the copula,
non-parametric in the marginals).
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New Approach

Gaussian Copula Sampling Model

z1, . . . , zn|C ∼ i.i.d. multivariate normal(0,C)

yi ,j = F−1
j [φ(zi ,j)]

Use only the partial ordering of the z’s induced by the observed values
of the y’s. I.e., given Y = (yi, . . . , yn)T , Z = (z1, . . . , zn)T is in the
set

D :=
{
Z ∈ Rn×p : max{zk,j : yk,j < yi ,j} < zi ,j < min{zk,j : yi ,j < yk,j}

}
And use the likelihood P(Z ∈ D|C), which depends only on the
association parameters.

Can use, e.g., maximum likelihood or Bayesian approaches using this
likelihood.
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Analysis

Using a Gibbs sampler, we can do inference on the z level about the
correlation parameters.
Or we can do inference on the “regression parameters”,
C[j ,−j]C

−1
[−j ,−j].
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Posterior Predicitive

We can also sample from a posterior predictive distribution to do
inference on y’s.

Compare to empirical distributions.

1 sample C ∼ p(C|Z ∈ D);

2 sample z ∼ multivariate normal(0,C);

3 set yj = F̂−1
j (Φ(zj)).
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Posterior Predictive
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Notes on the “Likelihood”

Sort of like a marginal likelihood (c.f. Wakefield pp46-47).

P(Y|C,Fi , . . . ,Fp) = P(Z ∈ D,Y|C,Fi , . . . ,Fp)

= P(Z ∈ D|C)× P(Y|Z ∈ D,C,Fi , . . . ,Fp)

Using this “marginal likelihood” means we don’t have to estimate the
nuisance parameters.

Is there a cost? (Not using all of the data)

The partial ordering is not sufficient, but perhaps “partially” sufficient.
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