Summary of *Extending the Rank Likelihood for Semiparametric Copula Estimation*, by Peter Hoff

David Gerard

Department of Statistics University of Washington gerard2@uw.edu

April 16, 2013

Setup

- Modeling conditional associations are very important.
- General Social Survey
- Standard practice is to use regression models.
- If the regression coefficient is not significantly non-zero, standard practice is to conclude the two variables are conditionally independent, given all the other variables.
 - INC Respondent's Income
 - DEG Highest degree obtained
 - CHILD Number of children
 - PINC Parent's income when respondent was 16
 - PDEG Max(mother's degree, father's degree, na.rm = T)
 - PCHILD Number of siblings + 1
 - AGE Age of respondent

$INC_{i} = \beta_{0} + \beta_{1}CHILD_{i} + \beta_{2}DEG_{i} + \beta_{3}AGE_{i} + \beta_{4}PCHILD_{i} + \beta_{5}PINC_{i} + \beta_{6}PDEG_{i} + \epsilon_{i}$

or

 $CHILD_i \sim Pois(exp\{\beta_0 + \beta_1 INC_i + \beta_2 DEG_i + \beta_3 AGE_i + \beta_4 PCHILD_i + \beta_5 PINC_i + \beta_6 PDEG_i\})$

Response	INC	CHILD	DEG	AGE
INC	NA	1.103(0.112)	7.025(<0.001)	0.335(<0.001)
CHILD	0.005(<mark>0.009</mark>)	NA	-0.068(0.056)	0.037(<0.001)

Response	PCHILD	PINC	PDEG
INC	0.284(0.407)	4.070(0.001)	1.399(0.115)
CHILD	0.021(0.080)	-0.063(0.195)	-0.051(0.204)

Which variable you choose as the response can lead to different conclusions!

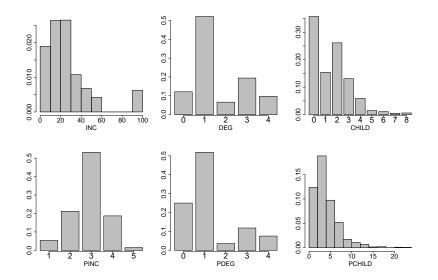
Jointly modeling the variables of interest helps.

(日) (同) (三) (三)

- A copula is any multivariate distribution with uniform marginals.
- Sklar's Theorem: Any multivariate c.d.f. $H(x_1, \ldots, x_p) = Pr(X_1 \le x_1, \ldots, X_p \le x_p)$ of a random vector (X_1, \ldots, X_p) with marginals $F_i(x_i) = Pr(X_i \le x_i)$ can be written as $H(x_i, \ldots, x_p) = C(F_1(x_1), \ldots, F_p(x_p))$, where C is a copula. (C is unique if all marginals are continuous)

- Univariate marginals hard to estimate (i.e. don't belong to standard families).
- Still want to describe dependence structure.
- General Social Survey Example

Marginal Distributions of Variables in G.S.S.



- Genest, Ghoudi, and Rivest (1995) semiparametric approach where they just plugged in empirical cdf's as the marginals
- Olsson (1979) latent gaussian variables for ordinal data
- Both semi-parametric approaches (parametric in the copula, non-parametric in the marginals).

Gaussian Copula Sampling Model

 $f z_1,\ldots,f z_n|f C\sim {\it i.i.d.}$ multivariate normal(f 0,f C) $y_{i,j}=F_j^{-1}[\phi(z_{i,j})]$

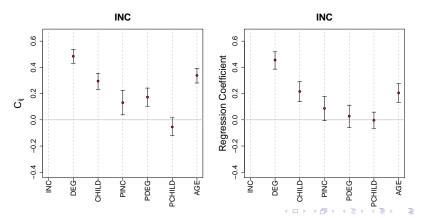
• Use only the partial ordering of the z's induced by the observed values of the y's. I.e., given $\mathbf{Y} = (\mathbf{y}_i, \ldots, \mathbf{y}_n)^T$, $\mathbf{Z} = (\mathbf{z}_1, \ldots, \mathbf{z}_n)^T$ is in the set

$$D := \left\{ \mathbf{Z} \in \mathbb{R}^{n \times p} : \max\{z_{k,j} : y_{k,j} < y_{i,j}\} < z_{i,j} < \min\{z_{k,j} : y_{i,j} < y_{k,j}\} \right\}$$

- And use the likelihood P(Z ∈ D|C), which depends only on the association parameters.
- Can use, e.g., maximum likelihood or Bayesian approaches using this likelihood.

Analysis

- Using a Gibbs sampler, we can do inference on the z level about the correlation parameters.
- Or we can do inference on the "regression parameters", $C_{[j,-j]}C_{[-j,-j]}^{-1}$.

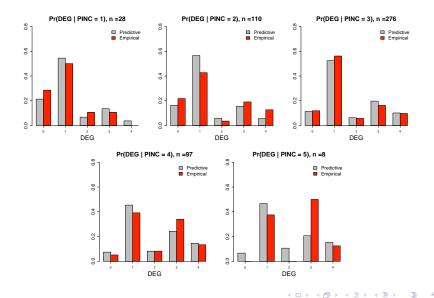


- We can also sample from a posterior predictive distribution to do inference on y's.
- Compare to empirical distributions.

• sample
$$\mathbf{C} \sim p(\mathbf{C} | \mathbf{Z} \in D)$$
;

- **2** sample $z \sim multivariate normal(0, C);$
- 3 set $y_j = \hat{F}_j^{-1}(\Phi(z_j))$.

Posterior Predictive



• Sort of like a marginal likelihood (c.f. Wakefield pp46-47).

$$P(\mathbf{Y}|\mathbf{C}, F_i, \dots, F_p) = P(\mathbf{Z} \in D, \mathbf{Y}|\mathbf{C}, F_i, \dots, F_p)$$

= $P(\mathbf{Z} \in D|\mathbf{C}) \times P(\mathbf{Y}|\mathbf{Z} \in D, \mathbf{C}, F_i, \dots, F_p)$

- Using this "marginal likelihood" means we don't have to estimate the nuisance parameters.
- Is there a cost? (Not using all of the data)
- The partial ordering is not sufficient, but perhaps "partially" sufficient.

Genest, C., Ghoudi, K., and Rivest, L.-P. (1995).

A semiparametric estimation procedure of dependence parameters in multivariate families of distributions.

Biometrika, 82(3):543-552.

Hoff, P. D. (2007).

Extending the rank likelihood for semiparametric copula estimation. *The Annals of Applied Statistics*, pages 265–283.

Olsson, U. (1979).

Maximum likelihood estimation of the polychoric correlation coefficient.

Psychometrika, 44(4):443-460.