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Recall: General Social Survey data

INC Respondent’s Income
DEG Highest degree obtained
CHILD Number of children
PINC Parent’s income when respondent was 16
PDEG Max(mother’s degree, father’s degree, na.rm = T)
PCHILD Number of siblings + 1
AGE Age of respondent
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Recall: Which do we choose?

INCi =β0 + β1CHILDi + β2DEGi + β3AGEi

+ β4PCHILDi + β5PINCi + β6PDEGi + εi

or

CHILDi ∼Pois(exp{β0 + β1INCi + β2DEGi + β3AGEi

+ β4PCHILDi + β5PINCi + β6PDEGi})
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Will Sandwich Help?

Response INC CHILD DEG

INC NA 1.103(0.112) 7.025(<0.001)
CHILD 0.005(0.00922) NA -0.068(0.056)

Response AGE PCHILD PINC PDEG

INC 0.335(<0.001) 0.284(0.407) 4.070(0.001) 1.399(0.115)
CHILD 0.037(<0.001) 0.021(0.080) -0.063(0.195) -0.051(0.204)

Using a sandwich estimator we have:

Response INC CHILD ...

INC NA 1.103(0.108) ...
CHILD 0.005(0.00939) NA ...
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Recall: Setup

Let yi ,j be the value of the j th variable taken on by the i th observational
unit.

Gaussian Copula Sampling Model

z1, . . . , zn|C ∼ i.i.d. multivariate normal(0,C)

yi ,j = F−1
j [Φ(zi ,j)]

Estimate association parameters without having to estimate
marginals.

Do this by only using the partial ordering induced by the data:
yk,j < yi ,j ⇒ zk,j < zi ,j .

A partial ordering is a total ordering without the totality condition
(i.e., some elements may be incomparable).
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The Extended Rank Likelihood

Let D be the set of Z := (zi ,j)’s that satisfy the partial ordering. Use the
following “marginal likelihood” for inference:

Pr(Z ∈ D|C,F1, . . . ,Fp) =

∫
D
p(Z|C)dZ = Pr(Z ∈ D)
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Gibbs Sampler

Full conditionals of the zi ,j ’s are easy to derive, so we can implement a
Gibb’s sampler (using covariance matrix rather than correlation matrix,
but doesn’t matter for estimation).

1 Sample zi ,j |Z[−i ,−j],V from a truncated normal with the bounds set
by the partial ordering and the conditional mean and variance found
in the usual way: σ2

j = V[j ,j] − V[j ,−j]V
−1
[−j ,−j]V[−j ,j] and

µ = V[j ,−j]V[−j ,−j]Z
T
[i ,−j].

2 Sample V from an inverse-Wishart distribution (if you use the
conjugate prior).

3 Let C[i ,j] = V[i ,j]/
√

V[i ,i ]V[j ,j]
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Some Trace Plots
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

CHILD

scan

C
ij

0 5000 10000 15000 20000 25000

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

INC

scan

C
ij

0 5000 10000 15000 20000 25000

David Gerard (UW) May 2013 8/4



95% Posterior Credible Intervals
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Visualizing Conditional Dependencies of GSS data.
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Figure: Reduced conditional dependence graph for the General Social Survey data.
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Posterior Predictive

We can also sample from a posterior predictive distribution to do
inference on y’s.

Compare to empirical distributions for model checking.

1 sample C ∼ p(C|Z ∈ D);

2 sample z ∼ multivariate normal(0,C);

3 set yj = F̂−1
j (Φ(zj)).
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Posterior Predictive and Empirical distributions of DEG
given PINC
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Posterior Predictive and Empirical distributions of INC
given DEG and PINC
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Partial Sufficiency

The paper proves that ranks are “G-sufficient” and “L-Sufficient”
when we have continuous marginals.

However, when the data are discrete the partial ordering does not
have either of these properties.
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Groups

Definition

A collection G of 1-1 transformations of X (the sample space) is a group if

1 For all g1, g2 ∈ G, g1g2 ∈ G
2 For all g ∈ G, g−1 ∈ G.

Definition

Two points x1, x2 ∈ X are equivalent if there exists a g ∈ G such that
x1 = gx2. The sets of equivalent points are the orbits of G.

Definition

A function M is said to be maximally invariant if it is in 1-1
correspondence with the orbits of G. i.e. M(gx) = M(x) for all g ∈ G and
M(x1) = M(x2)⇒ x2 = gx1 for some g ∈ G.
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Groups

G induces a group Ḡ over the parameter space.

Let Ḡ = {ḡ : Ω→ Ω s.t. ḡθ = θ′ if X ∼ Pθ and gX ∼ Pθ′}.
There are also maximally invariant parameters for Ḡ.
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G-Sufficiency

Under a group of transformations, G, the maximally invariant statistic
is called “G-sufficient” for the maximally invariant parameter.

The ranks are the maximally invariant statistics under the group of
continuous strictly increasing functions [Lehmann and Romano, 2005,
pp 215 - 216]. You can also put the correlation matrix in a 1-1
correspondence with the induced group Ḡ’s orbits (but only if the
marginals are continuous).

Hence, the ranks are “G-sufficient” for the correlation matrix.

Intuition: if we assume the marginals are unknown, then applying
strictly increasing continuous functions to the data should not change
the estimation problem
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Simple Example

Let X1, . . . ,Xn ∼ i .i .d .N(µ, σ2), Ω = {(µ, σ) : µ ∈ R, σ2 > 0} and
X = R.

Let G = {g : g(x) = x + a1, a ∈ R}
Then g(X) = (X1 + a, . . . ,Xn + a) s.t. Xi ∼ i.i.d. N(µ+ a, σ2) and

Ḡ =

{
ḡ : ḡ

(
µ
σ

)
=

(
µ+ a
σ

)}
.

Orbits of Ω under Ḡ are defined by σ. So σ is the maximally invariant
parameter.

Orbits of X under G are defined by the differences from the mean
(X1 − X̄ , . . . ,Xn − X̄ ), so the differences are G-sufficient for σ and
inference should only be based on the differences.

Can extend these ideas to minimal G-sufficient (“maximal invariant
reduction of minimal sufficient statistics”) [Barnard, 1963]. Here, s2.
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L-Sufficiency

For {F1, . . . ,Fp} ∈ F the marginal distributions, a statistic t(Y) is
L-sufficient for C if

1 t(Y0) = t(Y1)⇒ sup{F1,...,Fp}∈F p(Y0|C,F1, . . . ,Fp) =
sup{F1,...,Fp}∈F p(Y1|C,F1, . . . ,Fp); and

2 p(t(Y)|C,F1, . . . ,Fp) = p(t(Y)|C)

If there are no nuisance parameters, L-sufficiency becomes “full
sufficiency”.

Intuition: partition generated by L-sufficient statistic is “at least as
fine” as the partition generated by the M.L.E. of C [Rémon, 1984]
(i.e. MLE is function of ranks alone).
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Future Work

Develop maximum likelihood approach using the extended rank
likelihood.

Lots of trouble with this. [Pettitt, 1982] used an approximation for the
rank likelihood in the standard multivariate normal setting.

Run simulation study against the competitors [Genest et al., 1995]
(just plugged in ECDF); [Olsson, 1979] (estimate threshholding
values when number of categories is known)

Develop technique for other copulas, then simulate and see what info
is lost by using the wrong copula.
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