Genomic Relationships and Speciation Times of Human, Chimpanzee and Gorilla Inferred from a Coalescent Hidden Markov Model Asger Hobolth, Ole F. Christensen, Thomas Mailund, Mikkel H. Schierup.


Fiona Grimson

16 April 2013

INTRODUCTION

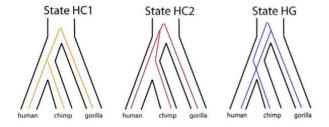
Objective

Comparative analysis of Human, Chimpanzee, Gorilla and Orangutan genomes

INTRODUCTION

Observed: Alignment of modern-day genome sequences

н	aactggtacg	tggtcg	tacgaactgg
С	aaccggttcg	cggtcg	ttcgaaccgg
G	aacctgttcg	ctgtcg	ttcgaacctg
0	atctggtacg	tggtcg	tacgatctgg


Not Observed: Evolutionary history/gene genealogy at each locus

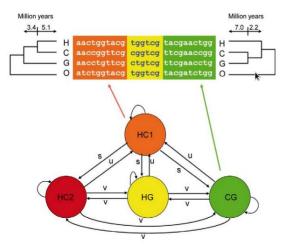
INTRODUCTION

Observed: Alignment of modern-day genome sequences

н	aactggtacg	tggtcg	tacgaactgg
С	aaccggttcg	cggtcg	ttcgaaccgg
G	aacctgttcg	ctgtcg	ttcgaacctg
0	atctggtacg	tggtcg	tacgatctgg

Not Observed: Evolutionary history/gene genealogy at each locus Complication:

Many genealogies fit within the species tree

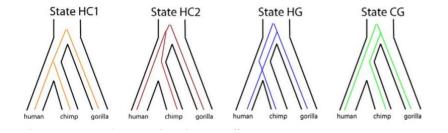

• Genealogy changes by locus - recombination

Fiona Grimson

Coalescent Hidden Markov Model

COALESCENT HIDDEN MARKOV MODEL

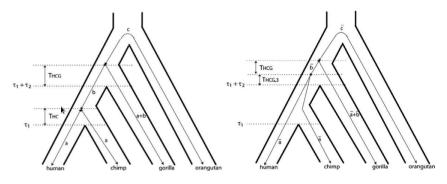
- Hidden Markov Model
- Geanealogy is the hidden state at each locus.


At the time of publication (2007):

- Information from fossil record, analysis of short chunks of DNA.
- Recent availablility of LONG sequences
- Need to model dependence between loci

HIDDEN STATES

Transition Probabilities between hidden states:


$$P = \begin{bmatrix} . & s & s & s \\ u & . & v & v \\ u & v & . & v \\ u & v & v & . \end{bmatrix}$$

EMISSIONS

The gene genealogy is also known as the coalescent:

- Coalescents are CTMCs
- Model molecular substitutions as events in continuous evolutionary time. Different species "coalesce" into common ancestor.
- Restrictions on CTMC process from species tree and which of the four states.

EMISSIONS

Emission Probabilities from hidden states depend on rate matrix Q, branch lengths and hidden state.

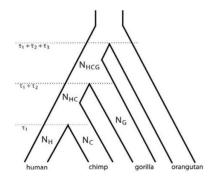
$$Q = \begin{bmatrix} \cdot & \pi_G & \beta \pi_C & \gamma \pi_T \\ \pi_A & \cdot & \delta \pi_C & \beta \pi_T \\ \beta \pi_A & \delta \pi_G & \cdot & \pi_T \\ \gamma \pi_A & \beta \pi_G & \pi_C & \cdot \end{bmatrix}$$

Assume Q has a reversible, strand symmetric form.

EMISSIONS

Emission Probabilities from hidden states depend on rate matrix Q, branch lengths and hidden state.

$$Q = \begin{bmatrix} \cdot & \pi_G & \beta \pi_C & \gamma \pi_T \\ \pi_A & \cdot & \delta \pi_C & \beta \pi_T \\ \beta \pi_A & \delta \pi_G & \cdot & \pi_T \\ \gamma \pi_A & \beta \pi_G & \pi_C & \cdot \end{bmatrix}$$


Assume Q has a reversible, strand symmetric form.

- The branch lengths are the free parameters in the HMM.
- Q parameters are set by calibrating with branch lengths

SOLVE THE HMM

Transitions + Emissions \rightarrow likelihood of alignment.

- Baum-Welch Algorithm \rightarrow MLEs
- Fisher Information (numerical derivative) \rightarrow SEs
- Speciation times and ancestral population sizes functions of these parameters.

Thank You!