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Scientific Motivation

Learn about the evolutionary history of Human, Chimpanzee, Gorilla and
Orangutan by comparing their DNA sequences. J

>human
ACATTTTTGTTTAAATGATACTGACATTTCCTGGGTTGTCCATTTGGAGT. . .
>chimp
AGATTTTTGTTTAAATGATACTGACATTTCCTGGGTTGTCCATTTGGAGT. . .
>gorilla
ACATTTTTGTTTGAATGATACTGACATTTCCTGGGTTGTCCATTTGGAGT. . .
>orangutan
ACATTTTTGTTTAAGTGATACTGACATTTCCTGGGTTGTCCATTTGGATT. . .
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Scientific Motivation

Given some aligned DNA sequences, “bread and butter’ phylogenetic

techniques tell us
@ The species tree
@ DNA mutation rates
@ Estimates of Branch lengths

—————chimp

————————human

L goila
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Scientific Motivation

Want to know finer scale information about the evolutionary history.
@ Every locus has a different genealogy

@ All these genealogies are consistent with the species tree
Putting them all together would give us the Ancestral Recombination
Graph (ARG).

@ Every coalescent and recombination event

@ Large and complex

@ Not Markov when viewed as a process along the DNA sequence
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Scientific Motivation

We want to approximate the ARG, with a Coalescent Hidden Markov
Model.
@ Make a lot of simplifying assumptions
@ More information than standard phylogenetic tree, but not as good as
the ARG.
@ There are other methods, all balance complexity and scalability
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Coal-HMM

All Hidden Markov Models have:
o Hidden States
@ Transitions between Hidden States
@ Emission Probabilities
@ Observed Data
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Coal-HMM

@ Hidden States

> There are 4 hidden states.
» They represent topologies of genealogies found in the ARG

State HC1 State HC2 State HG State CG

A A AN

human  chimp  gorilla human  chimp  gorilla human  chimp  gori chimp
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Coal-HMM

@ Transition's between Hidden States
» As we move along the genome, genealogies and hence topological state

changes.
» Transitions are a discrete time Markov Chain with the following
probabilities:
1-3s s s s
p— u 1—u—-2v v v
u % 1—u—2v v
u % % 1—u—2v

» We expect to be in State 1 most of the time
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Coal-HMM

@ Emission Probabilities

» What data we see depends on the hidden state: its shape and its

branch lengths. a, b, c, 3, b, ¢

» Starting from the common ancestor, DNA mutates down the branches

of the tree as a CTMC

» There are many models for mutation rates, and it probably doesn’t

matter which one we choose?

Model df logLik AlIC BIC
JC 5.00 -2099529.43 4199068.87 4199129.08
F81 8.00 -2066269.20 4132554.41 4132650.75
SYM 10.00 -2085391.69 4170803.37 4170923.80
GTR 13.00 -2050333.00 4100692.01 4100848.57
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Coal-HMM

@ Observed Data

» The aligned DNA sequences
» The data at some loci are more informative than others

Pattern Evidence For State

1100 Strong lor?2
1010 Strong 3
0110 Strong 4
110x Some lor2
101x Some 3
011x Some 4
other None

» 98% of loci are uninformative.
» 0.007% are strongly informative
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Analysis

© Set initial parameters
@ Till the likelihood converges:

@ Propose a likely path through the hidden states, given parameters
@ Maximum likelihood emission parameters, given the path
@ Maximum likelihood transition parameters, given the path
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Results

Posterior Probabilities of States
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Results

Transition Parameters
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Results

Divergence Times
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Results

Whats the problem?
The estimates of the transition probabilities are too small.

Why?

TRUE DATA
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Results
What about the posterior distribution?

TRUE DATA
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Results

@ How to solve this problem?
» More Constraints on the parameters?
» Try more initial conditions, convergence criteria
@ Still To Do:
> Results for the other three data sets
» Simulation Study using data simulated from model
» Simulation Study using data simulated from better model
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Conclusions and Criticisms

@ Method probably works
> A lot of the details are left out

o Makes significant simplifying assumptions
» How much do we trust the conclusions from genetics point of view?
» Trust methods that are slower, but better approximate the ARG.

@ Can be generalised, but...

» Not easy to add species
» This will increase model complexity quickly
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