Proportional Hazards Models With Continuous Marks

Yanqing Sun, Peter B. Gilbert, and Ian W. McKeague

Presented by Jason Shao

University of Washington Biostatistics Stat/Biost 572

April 23, 2013

Scientific Motivation

- Randomized vaccine efficacy trials against HIV
- Five major trials (beyond Phase II-A) since 1998
- Major difficulty: Differential vaccine efficacy (VE)
- Genetic diversity of HIV between and within infected individuals
- Vaccines less effective against differing infecting forms

Image: Science Photo Library

Differential vaccine efficacy: a huge problem

• The problem: Evaluating the possibility of broad protection

Image: International Aids Vaccine Initiative Report: August 2003 [Francine McCutchan, Henry M. Jackson Foundation]

Characterizing genetic diversity

Sequence HIV from infected:

Use discrete categories:

Mismatches at sequence loci:

Substitution matrix (weights):

Methodology for continuous measures is the focus of this study

Statistical methods

- Goal: Evaluate VE in presence of competing risks, defined by a mark (covariate observed only in cases of failure).
- Mark-specific VE in time-to-event data:

$$VE(t, v) = 1 - \frac{\lambda(t, v|X=1)}{\lambda(t, v|X=0)}$$

$$\lambda(t, v|X = x) = \lim_{\Delta t \to 0} \frac{\Pr(T \in [t, t + \Delta t), V = v|X = x, T > t)}{\Delta t}$$

- T: failure time
- V: mark variable
- X: Vaccine (1) or placebo(0). Could be a vector, including other covariates of interest.

Discrete competing risks

Prentice et al. (1978) proposed model for finite risk categories (v = 1,...,m) under the proportional hazards model:

$$\lambda(t, v|X) = \lambda_0(t, v) \exp(\beta(v)^T X)$$

• Baseline hazard λ_0 factors out in partial likelihood:

$$\mathcal{L}_{v}(\beta_{v}) = \prod_{i=1}^{d_{v}} \frac{e^{\beta_{v}^{T} X_{v(i)}(t)}}{\sum_{j=1}^{n} Y_{v(j)}(t_{v(i)}) e^{\beta_{v}^{T} X_{v(j)}(t)}}$$

- $t_{v(1)} < ... < t_{v(d_v)}$: uncensored failure times with cause v
- $X_{v(i)}(t)$: covariate vector for v(i)th individual (possibly t-dependent)
- $Y_{v(i)}(t)$: indicator of v(i)th individual being at risk for v at t.

Continuous competing risks

- The authors extend this model to continuous (bounded) marks $(w.l.o.g., assume \ v \in (0,1))$
- Address a bivariate mark-specific hazard function:

$$\lambda(t, v|X = x) = \lim_{\Delta t, \Delta v \to 0} \frac{\Pr(T \in [t, t + \Delta t), V \in [v, v + \Delta v)|X = x, T > t)}{\Delta t \Delta v}$$

Continuous competing risks

Localized log partial likelihood contains a kernel function K:

$$\ell_{\nu}(\beta_{\nu}) = \sum_{i=1}^{n} \int_{0}^{1} \int_{0}^{\tau} K_{h}(u - \nu)$$

$$\times \left[\beta^{T}(\nu) X_{i}(t) - \log \left(\sum_{j=1}^{n} Y_{j}(t) e^{\beta^{T}(\nu) X_{j}(t)} \right) \right] \times N_{i}(dt, du)$$

- $K_h(\cdot)$: Kernel function with bandwidth h
- $t \in (0, \tau)$: Follow-up period
- $N_i(t, v) = I(X_i \le t, \delta_i = 1, V_i \le v)$ is a marked point counting process, with δ_i being a failure indicator
- Kernel function "borrows" from observations with mark near v

Point estimation and asymptotic results

- Estimation of $\beta(v)$ (log hazard ratio).
 - ullet $\hat{eta}(v)$ solves score equations derived from localized partial likelihood
 - Find solution using Newton-Raphson algorithms
- Authors show asymptotic consistency and normality of $\hat{\beta}(v)$ as well as the cumulative vaccine efficacy, $\widehat{CV}(v) = \int_0^v 1 \exp(\hat{\beta}(u)) du$.
- Also find a tractable estimator $\hat{\rho}^2(v)$ of the asymptotic variance of $\widehat{CV}(v)$

Hypothesis testing

• Test for overall vaccine efficacy:

```
H_{10}: VE(v) = 0 for all v \in [a, b] vs.
```

- H_{1a} (general): $VE(v) \neq 0$ for some v
- H_{1m} (monotone): $VE(v) \ge 0$ (> 0 for some v)
- Test for differences in vaccine effect:

 $H_{20}: VE(v)$ does not depend on $v \in [a, b]$ vs.

- H_{2a} (general): VE(v) depends on $v \in [a, b]$
- H_{2m} (monotone): VE(v) decreases as v increases over [a,b]

Summary

- Problem: Vaccine development hindered by genetic diversity of HIV and differential VE.
 - Previous methods only work with discrete marks of failure
- Solution: Develop MLE and hypothesis testing approaches for failure time data with *continuous* marks of failure.
- What's next?
 - Simulation studies to assess power and size of hypothesis tests
 - Analyze results from VaxGen 004, a Phase III trial n = 5403.
 - Compare to discrete competing risk analyses: does power really increase?