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Scientific Motivation

Randomized HIV vaccine trials

Major difficulty: Differential vaccine
efficacy (VE)

Vaccines don’t protect as well against
”unfamiliar” viruses

Can quantify genetic diversity using
Hamming distance (continuous)

GAG fragment alignment

Part of the Hamming substitution
matrix
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The fundamental statistical problem

Want to perform inference on vaccine efficacy, accounting for
infecting type in the model.

Measures on infecting type only observed in infected subjects -
cannot be treated as ordinary covariates!

i 1 2 3 4 5 6 7 8 ...

T 13.3 7.4 4.8 16.3 1.5 14.2 16.3 7.0 ...
δ 1 1 1 0 0 0 0 1 ...
V 0.72 0.80 0.51 0.06 ...
X 1 0 1 0 0 1 1 0 ...

...
...

...
...

...
...

...
...

...

T : follow-up time
δ: failure indicator
V : mark variable
X : Vaccine (1) or placebo(0). Could be a vector, including other
covariates of interest (possibly time-varying).
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Proportional Hazards Model

Developed by D.R. Cox [1972], allows for semiparametric inference on
treatment effects (and other covariates) on hazards:

λ(t|Xi (t)) = lim
∆t→0

Pr(T ∈ [t, t + ∆t)|Xi (t),T > t)

∆t

We care about this because under certain assumptions, vaccine
efficacy is defined as a function of hazard ratio:

VE = 1− λ(t|X1 = 1)

λ(t|X1 = 0)

Goal: Incorporate continuous marks into this model, so inference can
be performed on VE (v).

4



Partial Likelihood

Under the proportional hazards assumption:

λ(t|Xi ) = λ0(t) exp(βTXi )

Baseline hazard λ0 factors out in partial likelihood (PL):

L(β) =
n∏

i=1

(
eβ

TXi∑n
j=1 Yj(Tj)eβ

TXj

)δi

Yi (t): indicator of ith individual being at risk at time t.

Some intuition:

Each uncensored subject contributes a term to the PL.
Weighted by total risk set at subject’s failure time.
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Discrete competing risks [Prentice et al. 1978]

Define finite risk categories (V = 1,...,K):

λv (t|Xi ) = λ0v (t) exp(βTv Xi )

Baseline hazard λ0v still factors out in partial likelihood:

L(βv ) =
n∏

i=1

(
eβv

TXi∑n
j=1 Yj(Tj)eβ

T
v Xj

)δi×IVi=v

Yi (t): indicator of ith individual being at risk at time t.

Some intuition:

Only failures of type v contribute to PL for βv .
Other failures are treated as censored observations.
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Continuous competing risks [Sun et al. ’09]

Use a continuous (bounded) mark V =∈ (0, 1)):

λ(v , t|X ) = λ0(t, v) exp(β(v)TX )

Localized log partial likelihood contains a kernel smoothing function
K :

L(β(v)) =
n∏

i=1

(
Kh(Vi − v)eβ(v)TXi∑n

j=1 Yj(Tj)eβ(v)TXj

)δi

Yi (t): indicator of ith individual being at risk at time t.

Some intuition:

Can’t use IVi=v typically unique values of v
Instead, kernel function Kh(·) ”borrows” information from nearby
observations, with larger weight on marks near v
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Kernel functions

Can basically use any kernel function K (x) that has support [−1, 1]
and maximum at x = 0
Sun et al. [’09] use Epanechnikov’s kernel: K (x) = 0.75(1− x2):
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Bandwidth: Kh(x) = K (x/h)/h
Essentially a normalizing constant adjusting for how much distance is
allowed.
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Counting process notation

Another way to write the localized log partial likelihood :

`v (βv ) =
n∑

i=1

∫ 1

0

∫ τ

0
Kh(u − v)

×

[
βT (v)Xi (t)− log

( n∑
j=1

Yj(t)eβ
T (v)Xj

)]
×Ni (dt, du)

t ∈ (0, τ): Follow-up period

Ni (t, v) = I (Xi ≤ t, δi = 1,Vi ≤ v) is a counting process: basically
count each uncensored failure time, even if v ’s don’t match, as long
as kernel is nonzero.

This notation is useful for derivation of asymptotic results using
martingale theory.
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Point estimation

Possible targets of inference:
β̂1(v): log hazard ratio. V̂E (v) = 1 - exp(β̂1(v))

Calculations of score and information functions at β̂(v) (basically
follow Cox [’72]):

Helper functions S and J:

S (j)(t, β) = n−1
n∑

i=1

Yi (t)eβTZiZ⊗j
i

Jn(t, β) =
S (2)(t, β)

S (0)(t, β)
−
(
S (1)(t, β)

S (0)(t, β)

)⊗2

Information matrix for β̂(v):

῭
β(v , β(v)) = −

n∑
i=1

∫ 1

0

∫ τ

0

Kh(u − v)Jn(t, β)Ni (dt, du)
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Asymptotic variances

Asymptotic normality also follows from Cox [’72]:√
nh(β̂(v)− β(v))→d N(0, ν0Σ−1(v))

Here, ν0 = 3/5 (integral of squared kernel function)
Σ̂(v) = −n−1 ῭

β(v , β̂(v))
√
nh(V̂E (v)− VE (v))→d N(0, ν0σ

2
1(v)e2β1(v))

Results easily from delta method

These asymptotic variances can be used for pointwise confidence
bands.
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Pointwise confidence bands
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Dataset: VaxGen004: n = 5403; 2:1 randomization; 336 failures with observed marks
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Hypothesis testing

Goal: test for nonzero VE (v) or dependence on v over a range of v.

Another target of inference: cumulative vaccine efficacy

ĈV (v) =
∫ b

a
V̂E (u)du, [a, b] ∈ [0, 1]

Asymptotics are a bit trickier:√
nh(ĈV (v)− CV (v))→d N(0, ρ2(v))

ρ̂2(v) = Σ̂Â(v)(1,1)

ΣÂ(v) = n−1
∑n

i=1

∫ v

a

∫ τ
0
Â(u)Jn(t, β̂(u))Â(u)TNi (dt, du)

Â(v) = eβ̂1(v)Σ̂(v)−1

Test statistics are all functions of ĈV (v), scaled by ρ̂2(v)
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Cumulative vaccine efficacy
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What’s next?

Calculations from previous slide still result in pointwise CI’s.

How to evaluate simultaneous CI’s?

Simulate stochastic processes and evaluate quantiles
Resampling techniques such as Gaussian multiplier method

Test statistics also have null distributions that require these
techniques.

Simulations

Simulate time-to-infection data (with censoring) for simple hazard
functions
Vary linear dependence of hazards on vaccination status and v .
Evalute size and power of test statistics.
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To be continued...
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