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Scientific Motivation

@ Randomized HIV vaccine trials
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e Major difficulty: Differential vaccine
efficacy (VE)

@ Vaccines don't protect as well against
"unfamiliar” viruses
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o Can quantify genetic diversity using
Hamming distance (continuous)
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The fundamental statistical problem

@ Want to perform inference on vaccine efficacy, accounting for
infecting type in the model.

@ Measures on infecting type only observed in infected subjects -
cannot be treated as ordinary covariates!

1 2 3 4 5 6 7 8

i

T|133 74 48 163 15 142 163 7.0
0] 1 1 1 0 0 0 0 1
vV |0.72 080 0.51 0.06
X 1 0 1 0 0 1 1 0

T: follow-up time

d: failure indicator

V. mark variable

X: Vaccine (1) or placebo(0). Could be a vector, including other
covariates of interest (possibly time-varying).
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Proportional Hazards Model

@ Developed by D.R. Cox [1972], allows for semiparametric inference on
treatment effects (and other covariates) on hazards:

AelXi(e) = Jim Pr(T elt,t+ 2:>|x,-(t), T>t)

@ We care about this because under certain assumptions, vaccine
efficacy is defined as a function of hazard ratio:

)\(t|X1 = 1)
VE=1—- ——=
)\(t|X1 = 0)

@ Goal: Incorporate continuous marks into this model, so inference can
be performed on VE(v).
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Partial Likelihood

@ Under the proportional hazards assumption:
A(t|X:) = Mo(t) exp(BTX;)
@ Baseline hazard \g factors out in partial likelihood (PL):
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o Y(t): indicator of ith individual being at risk at time t.
@ Some intuition:

e Each uncensored subject contributes a term to the PL.
o Weighted by total risk set at subject’s failure time.
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Discrete competing risks [Prentice et al. 1978]

o Define finite risk categories (V = 1,...,K):
A (X)) = Xow(t) exp(8) X;)

@ Baseline hazard \g, still factors out in partial likelihood:

n eﬁv TX,‘ 6i ><]IVI-:\/
L(3,) =

i=1

e Yj(t): indicator of ith individual being at risk at time t¢.
@ Some intuition:

e Only failures of type v contribute to PL for 3, .
o Other failures are treated as censored observations.
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Continuous competing risks [Sun et al. '09]

@ Use a continuous (bounded) mark V =€ (0,1)):
AV, £1X) = Ao(t, v) exp(3(v) T X)
@ Localized log partial likelihood contains a kernel smoothing function

K:
n KV = v)eP)TX N
L(B(v)) = H (22_1 yj('['J.)eB(V)T)Q>

i=1 J

o Y;(t): indicator of ith individual being at risk at time t.
@ Some intuition:

o Can't use Ily,—, typically unique values of v
o Instead, kernel function Kjx(-) "borrows” information from nearby
observations, with larger weight on marks near v
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Kernel functions
e Can basically use any kernel function K(x) that has support [—1, 1]

and maximum at x =0
@ Sun et al. ['09] use Epanechnikov’s kernel: K(x) = 0.75(1 — x?):
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e Bandwidth: Kp(x) = K(x/h)/h
e Essentially a normalizing constant adjusting for how much distance is
allowed.



Counting process notation

@ Another way to write the localized log partial likelihood :

ev(ﬁv)_é/:/; Kn(u — v)

x [ﬁT(v)Xi(t) — log (Z Yj(t)eﬁ””xf)

j=1

X N,’(dt, du)

e t € (0,7): Follow-up period
o Ni(t,v)=1(X; <t,6;=1,V; <v)is a counting process: basically
count each uncensored failure time, even if v's don't match, as long
as kernel is nonzero.
@ This notation is useful for derivation of asymptotic results using

martingale theory.
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Point estimation

@ Possible targets of inference:
o (1(v): log hazard ratio. VE(v)=1- exp(ﬁl(v))
e Calculations of score and information functions at 3(v) (basically
follow Cox ['72]):
e Helper functions S and J:

5(])(1-75) =n! Z Y’.(t)eﬂTZiZ’@j
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SA(,8)  (SW(t,8)\*?
Jn(talé)) = S(O)(t’ﬂ) B (S(O)(ta5)>

~

o Information matrix for 5(v):
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Asymptotic variances

e Asymptotic normality also follows from Cox ['72]:
o Vnh(B(v) = B(v)) =g N(O, 0= (v))
o Here, 19 = 3/5 (integral of squared kernel function)
o 2(v)=—n""s(v,B(v))
o Vnh(VE(v) — VE(v)) =4 N(0, voo2(v)e2h ()
@ Results easily from delta method

@ These asymptotic variances can be used for pointwise confidence
bands.
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Pointwise confidence bands
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Dataset: VaxGen004: n = 5403; 2:1 randomization; 336 failures with observed marks
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Hypothesis testing

@ Goal: test for nonzero VE(v) or dependence on v over a range of v.
@ Another target of inference: cumulative vaccine efficacy
o CV(v) = [7 VE(u)du, [a, b] € [0,1]
° Asymptot|cs are a bit tr|ckier'
° \ﬁcvgv v)) —a N(O, p2(v))
o P(v) =1, (V)(ll)
o (v )—”*12, LS5 o Alu)da(t, B(u))A(u) T Ni(dt, du)
o A(v) = ehv > (v) !
o Test statistics are all functions of EV(V) scaled by p?(v)
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Cumulative vaccine efficacy
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What's next?

@ Calculations from previous slide still result in pointwise Cl's.
@ How to evaluate simultaneous Cl's?
e Simulate stochastic processes and evaluate quantiles
o Resampling techniques such as Gaussian multiplier method
@ Test statistics also have null distributions that require these
techniques.
@ Simulations

o Simulate time-to-infection data (with censoring) for simple hazard
functions

e Vary linear dependence of hazards on vaccination status and v.

o Evalute size and power of test statistics.
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To be continued...
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