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Scientific Motivation

Randomized HIV vaccine trials

Major difficulty: Differential vaccine
efficacy (VE)

Vaccines don’t protect as well against
unfamiliar viruses

Can quantify genetic diversity using
Hamming distance (continuous)

GAG fragment alignment

Part of the Hamming substitution
matrix
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Statistical Motivation

Want to perform inference on vaccine efficacy, accounting for
infecting type in the model.

Measures on infecting type only observed in infected subjects -
cannot be treated as ordinary covariates!

i 1 2 3 4 5 6 7 8 ...

T 13.3 7.4 4.8 16.3 1.5 14.2 16.3 7.0 ...
δ 1 1 1 0 0 0 0 1 ...
V 0.72 0.80 0.51 0.06 ...
X 1 0 1 0 0 1 1 0 ...

...
...

...
...

...
...

...
...

...

T : follow-up time
δ: failure indicator
V : mark variable
X : Vaccine (1) or placebo(0). Could be a vector, including other
covariates of interest (possibly time-varying).
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Parameter of interest...sort of

We are interested in the strain-specific vaccine efficacy:

VE (v) = 1− λ(t, v |X1 = 1)

λ(t, v |X1 = 0)

λ(t, v |X ) is a conditional strain-specific hazard.

Interpretable as instantaneous failure rate due to type v at time t,
conditional on having survived up to t.
Also conditional on X , which includes vaccination status.

Gilbert (2000) demonstrates the above, based on two assumptions:

A.1) Vaccination reduces strain-specific transmission probability per
exposure uniformly.
A.2) Risk behavior and exposure equal among participants regardless of
vaccination status.
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Estimation of β(v) using partial likelihood

Proportional hazards assumption (Cox [1972]):

λ(v , t|X ) = λ0(t, v) exp(β(v)TX )

Localized log partial likelihood:

`v (βv ) =
n∑

i=1

∫ 1

0

∫ τ

0
Kh(u − v)

×

[
βT (v)Xi (t)− log

( n∑
j=1

Yj(t)eβ
T (v)Xj

)]
× Ni (dt, du)

Counting process Ni = I (Xi ≤ t, δi = 1,Vi ≤ v): jumps from 0 to 1 at
u = Vi and t = Ti if ith subject is uncensored.
Weighted by risk set of all subjects at time Ti [”At risk” Yj(t)].
...and by Vi being close to v of interest [Kernel function Kh(·)].

For v ∈ [0, 1], the MPLE is β̂(v) = arg maxβ(v)L(β(v))
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Other quantities of interest based on the MPLE

In the PH model, β1(v) is the hazard ratio for vaccinees vs.
non-vaccinees

Thus, V̂E (v) = 1 - exp(β̂1(v))

Calculations of asymptotic variance: (similar to Cox [’72]):

S (j)(t, β) = n−1
n∑

i=1

Yi (t)eβTZiZ⊗ji

Jn(t, β) =
S (2)(t, β)

S (0)(t, β)
−
(
S (1)(t, β)

S (0)(t, β)

)⊗2

῭
β(v , β(v)) = −

n∑
i=1

∫ 1

0

∫ τ

0
Kh(u − v)Jn(t, β)Ni (dt, du)
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More asymptotic properties of the MPLE

√
nh(β̂(v)− β(v))→d N(0, ν0Σ−1(v))

ν0 = 3/5 (integral of squared kernel function)

√
nh(V̂E (v)− VE (v))→d N(0, ν0σ

2
1(v)e2β1(v))
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Pointwise estimates and confidence bands for VaxGen004 dataset:
n = 5403; 2:1 randomization; 336 failures with observed marks
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The real quantity of interest

Cumulative vaccine efficacy

ĈV (v) =

∫ b

a
V̂E (u)du, [a, b] ∈ [0, 1]

√
n(ĈV (v)− CV (v)) converges to a mean-zero Gaussian process.

Naive variance estimate:
∫ b
a Σ̂2(u)(1,1)e

2β̂1(u)du

Ignores correlations at discrete values of v in finite samples.

Instead use ρ̂2(v) = Σ̂Â(v)(1,1), where

ΣÂ(v) = n−1
n∑

i=1

∫ v

a

∫ τ

0
Â(u)Jn(t, β̂(u))Â(u)TNi (dt, du)

Â(v) = e β̂1(v)Σ̂(v)−1
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(1-α) confidence bands for ĈV (v)

Pointwise: Simultaneous:

ĈV (v)± n1/2Zα/2ρ̂(v) ĈV (v)± n1/2Uα
( ρ̂(v)+ρ̂(b)

ρ̂(b)

)
Uα is the upper α-quantile of supv∈[0,0.5] |B(v)|, where B(v) is a Brownian bridge.
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Estimate of cumulative VE with pointwise (—) and simultaneous (· · ·) confidence bands for
VaxGen004 dataset
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Hypothesis testing

Goal: Test overall and differential vaccine efficacy on v ∈ [a, b]

H10 (Overall Null): vaccine efficacy zero for all v

H1a (General alternative): VE nonzero for some v
H1m (Monotone alternative): VE non-negative for all v , and positive
for some v .

H20 (Differential Null): vaccine efficacy does not depend on v

H2a (General alternative): VE depends on v
H2m (Monotone alternative): VE decreases with increasing v .
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Defining test processes and statistics

Define: test processes Ẑ and test statistics T for each alternative:

H10: Ẑ (1)(v) =
√
nĈV (v)/ρ̂(b) and t̂(v) = ρ̂2(v)/ρ̂2(b)

H1a: T
(1)
a =

∫ b

a
(Ẑ (1)(v))2dt̂(v)

H1m: T
(1)
m1 =

∫ b

a
Ẑ (1)(v)dt̂(v)

H20: Ẑ (2)(v) =
√
n( ĈV (v)

v−a −
ĈV (b)
b−a )/ρ̂(b)

H2a: T
(2)
a =

∫ b

a
(Ẑ (2)(v))2dt̂(v)

H2m: T
(2)
m1 =

∫ b

a
Ẑ (2)(v)dt̂(v)
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Some simplified examples

VE(v) = 1
CV (v) = v

Z (1) ∝ ĈV (v) = v

Z (2) ∝ ĈV (v)
v
− ĈV (1) = 0
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− ĈV (1) = v−1

2

v

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

0.2 0.4 0.6 0.8 1.0

V
E

C
V

Z
2

VE(v) = 1− v

CV (v) = v − v2/2
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− ĈV (1) = 1−v

2

v

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

0.2 0.4 0.6 0.8 1.0

V
E

C
V

Z
2

12



Test statistic distributions

Under their respective nulls, the test processes Ẑ (1)(v) and Ẑ (2)(v)
converge to Wiener processes indexed by t(v) = ρ2(v)/ρ2(b).

Test statistics T
(1)
a , T

(1)
m1 , T

(2)
a , T

(2)
m1 converge to the respective

functionals, so their null distributions can be simulated.

Discretized versions of the monotone alternative test statistics T
(2)
m2 ,

T
(2)
m2 also exist.
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Simulation study

Generate time-to-failure data from given hazard function:

λ(t, v |x) = exp(γv + (α + βv)x t ≥ 0, v ∈ [0, 1]

v generated from uniform distribution
x vaccination status 0 or 1 with probability 0.5
t simulated from exponential distribution, using the hazard function
conditional on v , x
Censoring simulated from an independent exponential distribution with
rates of 20 to 30 %

Results in true β(v) = α + βv and VE (v) = 1− exp(α + βv)
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Simulation setup

H10 : VE (v) = 0 for all v ∈ [a, b]

Model 1: (α, β, γ) = (0.0,0.0,0.3) (Null)
Model 2: (α, β, γ) = (-0.5,0.5,0.3) (Alternative)
Model 3: (α, β, γ) = (-0.6,0.6,0.3) (Alternative)
Model 4: (α, β, γ) = (-0.6,0.0,0.3) (Alternative)

H20 : VE (v) does not depend on v ∈ [a, b]

Model 5: (α, β, γ) = (-0.7,0.0,0.3) (Nul)
Model 6: (α, β, γ) = (-1.2,1.2,0.3) (Alternative)
Model 7: (α, β, γ) = (-1.5,1.5,0.3) (Alternative)
Model 8: (α, β, γ) = (-1.8,1.8,0.3) (Alternative)

Models 1, 2, 5, 8: 1,000 simulations each with n = 500, 800;
h = 0.05, 0.10, 0.15

Models 3, 4, 6, 7: n = 500 and h = 0.10 only.
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Simulation results: estimation
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For selected models with n=500 and h = 0.1, random sample of 50 point estimates for β1(v)

and CV(v) (—), true values (—) and mean of 1000 estimates (· · ·)
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Selected results: coverage and power

Tests of overall vaccine efficacy

Size/Power (%)

Model (α, β, γ) n h T
(1)
a T

(1)
m1 T

(1)
m2 Coverage (%)

M1 ( 0.0,0.0,0.3) 500 0.10 7.0 2.8 9.6 96.5

M2 (-0.5,0.5,0.3) 500 0.05 49.0 57.3 69.0 93.9
0.10 58.7 68.6 70.0 99.6
0.15 63.7 69.8 74.5 98.8

800 0.05 70.8 76.9 85.5 94.9
0.10 74.7 81.5 87.1 99.1
0.15 70.2 71.8 86.4 98.8

M3 (-0.6,0.6,0.3) 500 0.10 75.4 82.2 84.7 96.5

M4 (-0.6,0.0,0.3) 500 0.10 96.5 98.4 99.8 96.7
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Selected results: coverage and power

Tests of differential vaccine efficacy

Size/Power (%)

Model (α, β, γ) n h T
(1)
a T

(2)
m1 T

(2)
m2 Coverage (%)

M5 (-0.7,0.0,0.3) 500 0.10 4.2 3.3 12.1 98.4

M6 (-1.2,1.2,0.3) 500 0.10 38.0 42.3 48.8 96.7

M7 (-1.5,1.5,0.3) 500 0.15 61.7 66.0 73.0 94.8

M8 (-1.8,1.8,0.3) 500 0.10 60.7 60.7 77.2 95.5
0.10 65.6 68.0 83.2 98.1
0.15 81.2 80.2 89.9 95.3

800 0.05 92.5 87.1 92.0 93.9
0.10 96.2 94.1 96.9 93.2
0.15 96.2 94.4 97.6 96.0
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Criticisms & Conclusions

Many calculation details weren’t explicitly stated - needed author
code to clarify:

Integrals implemented differently from paper text
Bandwidth-dependent measures to avoid the lower boundary - not
mentioned in text
Simulation results difficult to reproduce from details in paper

Possible next steps:

Simulate from more complex distributions (distinguish between
monotone and general alternatives)
Compare to finite competing risks (Prentice et al. 1975)
Clarify calculation details and justify the additional procedures.
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Thank you!

HIV plushie from www.giantmicrobes.com
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Discretized monotone alternative test statistics

Defined by inverting covariance estimates of Wiener processes on a
finite grid:

T
(1)
m2 = (K − 1)1/2

∑K
k=2

Z (1)(vk )−Z (1)(vk−1)√
t(vk )−t(vk−1)

T
(2)
m2 = Π̂−1

K

∑K
k=2 Z

(2)(vk)− Z (2)(vk−1)/π̂k

π̂
2
k = τ̂k−1,k−1 − 2τ̂k−1,k + τ̂k,k

τ̂i,j = Ĉov(Z (2)(vi ), Z
(2)(vj ))

=
t̂(vi )

(vi − a)(vj − a)
−

t̂(vi )

(vi − a)(b − a)
−

t̂(vj )

(b − a)(vj − a)
+

1

(b − a)2

Γ = (τ̂i,j )K×K

ξ = (π̂−1
2 , π̂

−1
3 − π̂−1

2 , ..., π̂
−1
K − π̂−1

K−1, π̂
−1
K )

Π̂K = ξ
T Γξ
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