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Scientific Motivation

@ Randomized HIV vaccine trials
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Statistical Motivation

@ Want to perform inference on vaccine efficacy, accounting for
infecting type in the model.

@ Measures on infecting type only observed in infected subjects -
cannot be treated as ordinary covariates!
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T: follow-up time

d: failure indicator

V. mark variable

X: Vaccine (1) or placebo(0). Could be a vector, including other
covariates of interest (possibly time-varying).



Parameter of interest...sort of

@ We are interested in the strain-specific vaccine efficacy:

Alt,v[X1 =1
VE() =1 2EvXi=1)
A(t, v| X1 =0)
e \(t,v|X) is a conditional strain-specific hazard.
o Interpretable as instantaneous failure rate due to type v at time t,
conditional on having survived up to t.
e Also conditional on X, which includes vaccination status.
o Gilbert (2000) demonstrates the above, based on two assumptions:

e A.1) Vaccination reduces strain-specific transmission probability per
exposure uniformly.

e A.2) Risk behavior and exposure equal among participants regardless of
vaccination status.



N
Estimation of 5(v) using partial likelihood

@ Proportional hazards assumption (Cox [1972]):
(v, t|X) = Xo(t, v)exp(B(v)T X)

@ Localized log partial likelihood:

Ev(ﬁv):zn:/ol/oTKh(u—v)
i=1

x lﬂT(V)Xi(t) — log (Z Vj(t)eﬁT(V)Xf>

j=1

x Nj(dt, du)

e Counting process N; = I(X; < t,0; =1, V; < v): jumps from 0 to 1 at
u= V;and t = T; if ith subject is uncensored.

o Weighted by risk set of all subjects at time T; ["At risk” Yj(t)].

o ...and by V; being close to v of interest [Kernel function Kj(-)].

e For v € [0,1], the MPLE is 3(v) = arg maxs(v)L(8(v))
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Other quantities of interest based on the MPLE

@ In the PH model, 81(v) is the hazard ratio for vaccinees vs.
non-vaccinees

e Thus, VE(v) =1 - exp(//B\l(v))
e Calculations of asymptotic variance: (similar to Cox ['72]):

sO(t,8)=ntY Yi(t)e T2z

i=1

5<2)(t B) (SOt 5)\*
w5 ( )

Z// Ki(u — v)Jn(t, B)N;(dt, du)

In(t, B) =
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More asymptotic properties of the MPLE

\ﬁ(ﬁ’() B(v)) —+a N(0, 0T~ (v))

= 3/5 (integral of squared kernel function)

Vnh(VE(v) — VE(v)) =4 N(0, npo3(v)e* ()

Bu(v) VE(v)
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Pointwise estimates and confidence bands for VaxGen004 dataset:
n = 5403; 2:1 randomization; 336 failures with observed marks
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The real quantity of interest

@ Cumulative vaccine efficacy

—_—— b —~

CV(v) = / VE(u)du, [a,b] € [0,1]
° ﬁ(EV(v) — CV/(v)) converges to a mean-zero Gaussian process.
e Naive variance estimate: fab fz(u)(l,l)ezél(u)du

e lIgnores correlations at discrete values of v in finite samples.

e Instead use p?(v) = fi‘(v)(l,l), where

£,(v) = n—lZ/av/OTA(U)Jn(t,B(u))Z\(u)TN,-(dt, )

Alv) = ehE(v)
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(1-av) confidence bands for E\\/(v)

Pointwise: Simultaneous:
CV(v) £ 22, 15p(v) CV(v) + /20U (HH0))

Uo is the upper a-quantile of sup,cg 0.5)|B(v)|, where B(v) is a Brownian bridge.
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CV(v)

Estimate of cumulative VE with pointwise (—) and simultaneous (- - -) confidence bands for
VaxGen004 dataset
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Hypothesis testing

Goal: Test overall and differential vaccine efficacy on v € [a, b]

@ Hip (Overall Null): vaccine efficacy zero for all v

o Hy, (General alternative): VE nonzero for some v
o Him (Monotone alternative): VE non-negative for all v, and positive
for some v.

@ Hy (Differential Null): vaccine efficacy does not depend on v

o H,, (General alternative): VE depends on v
o Hom, (Monotone alternative): VE decreases with increasing v.
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Defining test processes and statistics

Define: test processes Z and test statistics T for each alternative:

o Hio: ZW(v) = /nCV(v)/p(b) and t(v) = p*(v)/p?(b)
o Hi: TV = fb(?(l)( ))?di(v)
o Him: TS = [P Z0(v)d?(v)
o Hyy: 2(2)(v) = ﬁ(aﬂv) - Ebv(b))/,ﬁ(b)
o Ho,: T(2) fab(z(Q
o Hom: TE) = [P 21

a
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Some simplified examples

VE(v) =1 VE(v) =v VE(v)=1—v
CV(v)=v CV(v) =v?)2
z(0) a/(v) =v

CV(v) =v —v?/2
o 7 a/(v) = é
Z?) o« YW _ vy =o 2@ o VO _ Gy = v 5@ o VM _ &y
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Test statistic distributions

o Under their respective nulls, the test processes Z()(v) and Z(2)(v)
converge to Wiener processes indexed by t(v) = p?(v)/p?(b).

o Test statistics Tgl), TW ng), T converge to the respective

ml’ ml
functionals, so their null distributions can be simulated.
@ Discretized versions of the monotone alternative test statistics T,%),

T,(n22) also exist.
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Simulation study

@ Generate time-to-failure data from given hazard function:

A(t, v|x) = exp(yv + (o + Bv)x t>0,vel0,1]

v generated from uniform distribution

x vaccination status 0 or 1 with probability 0.5

t simulated from exponential distribution, using the hazard function
conditional on v, x

Censoring simulated from an independent exponential distribution with
rates of 20 to 30 %

@ Results in true f(v) = a+ fv and VE(v) =1 — exp(a + Sv)

14



.
Simulation setup

Hip : VE(v) =0 for all v € [a, b]
o Model 1: (a, 3,7) = (0.0,0.0,0.3) (Null)
e Model 2: (o, 8,7) = (-0.5,0.5,0.3) (Alternative)
e Model 3: (o, 8,7) = (-0.6,0.6,0.3) (Alternative)
e Model 4: (o, 8,7) = (-0.6,0.0,0.3) (Alternative)
@ Hoo : VE(v) does not depend on v € [a, b]
Model 5: (a, 3,7v) = (-0.7,0.0,0.3) (Nul)
Model 6: («, 3,v) = (-1.2,1.2,0.3) (Alternative)
Model 7: («, 5,v) = (-1.5,1.5,0.3) (Alternative)
Model 8: (a, 3,7v) = (-1.8,1.8,0.3) (Alternative)
Models 1, 2, 5, 8: 1,000 simulations each with n = 500, 800;
h =10.05,0.10,0.15

o Models 3, 4, 6, 7: n=>500 and h = 0.10 only.
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Simulation results: estimation
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For selected models with n=500 and h = 0.1, random sample of 50 point estimates for 31(v)

and CV(v) (—), true values (—) and mean of 1000 estimates (- - -)
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Selected results: coverage and power

Tests of overall vaccine efficacy

Size/Power (%)

Model (o, B,7) n ho| T T,Sqll) T,Sqlz) Coverage (%)
M1 (0.0,0003) 500 0.10| 70 28 9.6 96.5
M2 (-0.5,0.5,0.3) 500 0.05 | 49.0 57.3 69.0 93.9

0.10 | 58.7 68.6 70.0 99.6

0.15 | 63.7 69.8 74.5 98.8

800 0.05 | 70.8 76.9 855 94.9

0.10 | 747 815 87.1 99.1

0.15 | 70.2 71.8 86.4 98.8

M3 (-0.6,0.6,0.3) 500 0.10 | 75.4 82.2 847 96.5
M4 (-0.6,0.0,0.3) 500 0.10 | 96.,5 98.4 99.8 96.7
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Selected results: coverage and power

Tests of differential vaccine efficacy

Size/Power (%)

Model (o, B,7) n h TV T,(nzl) T,fz) Coverage (%)
M5 (-0.7,0.0,0.3) 500 0.10 | 4.2 33 121 98.4
M6 (-1.2,1.2,0.3) 500 0.10 | 38.0 423 4838 96.7
M7 (-151503) 500 0.15| 61.7 66.0 73.0 04.8
M8 (-1.8,1.8,0.3) 500 0.10 | 60.7 60.7 77.2 95.5

0.10 | 65.6 68.0 83.2 98.1
0.15 | 81.2 80.2 89.9 95.3
800 0.05 | 925 87.1 92.0 93.9
0.10 | 96.2 941 96.9 93.2
0.15 | 96.2 944 97.6 96.0
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Criticisms & Conclusions

@ Many calculation details weren't explicitly stated - needed author
code to clarify:

o Integrals implemented differently from paper text

o Bandwidth-dependent measures to avoid the lower boundary - not
mentioned in text

e Simulation results difficult to reproduce from details in paper

@ Possible next steps:

e Simulate from more complex distributions (distinguish between
monotone and general alternatives)

o Compare to finite competing risks (Prentice et al. 1975)

o Clarify calculation details and justify the additional procedures.
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Thank you!

HIV plushie from www.giantmicrobes.com
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Discretized monotone alternative test statistics

@ Defined by inverting covariance estimates of Wiener processes on a
finite grid:
1 —ZWy,
°7—()7( )1/22:,(2 (vk—1)

t(Vk) t(kal)

] 2 —ﬂ Z Z(2)(vk)—Z(2)(vk,1)/7Ark

A2 A a A
Ml = Th—1,k—1 = 2Tk—1,k + Th,k
71 = Cov(ZP(w), 2P ()
t(v;) t(vi) t(v;) 1
(vi—a)yy—a) (v—ab—a) (b—a)y—a) (b—a)?




